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1. INTRODUCTION

Let M be alattice and D be a distributive lattice with 0 and 1. If
a/b is a prime quotient of M then we can define a partial lattice M(aDb)
as follows: M(uDb) is the set-theoretical union of M and D, and we
identify 2 with 1 and b with 0; M and D are sublattices and m v d,
mad (m€EM, de D) are defined only for d€Mn D = {a,b}. Shortly
speaking we put the distributive lattice D into the prime quotient a/b
of M. We will show that in every equational class & containing M there
exists a lattice which contains a relative sublattice isomorphic to M(aDb).
In this paper we define a special lattice M[{D] (an extension of M by D)
containing the relative sublattice M(aDb). The construction is a generaliza-
tion of that given by R.W. Quackenbush [7] for the case if M isa
bounded distribuitive lattice. Let M3 be the five-element modular, non-
distributive lattice, M,[D] was d’eﬁne(i in {9] and later discussed by A.
Mitschke and R. Wille [5]. Let M(aDb) be the sublattice of M[D]
generated by M(aDb). We prove that the quotient sublattice of @/ in
MuDb) (and in M|D]) is isomorphic to D, and O(a/b)/w in MaDb)
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is isomorphic to (D). For modular M, these results have been proved
independently by R. Freese [3]. Finally we give a shorter proof of the
main theorem of [5].

2. THE FINITE CASE

Let first D be a finite distributive lattice with the ultrafilters
01:¢Qy, -1, Q,- (By the definition of the ultrafilter Q,# D).

For an arbitrary lattice M we define a special subdirect power M[D]
of M as follows: M[D] contains all d= d,,d,,....d)yeM" for
which Q. D Q]. implies d, > a’].. M[D] is obviously a sublattice of M",
hence a subdirect power of M. Let X be the poset of all ultrafilters of
D. Then M[D}] is the lattice of all monotone maps of X into the lattice
M.

Before we discuss some interesting properties of this lattice, let us
take too examplars for M[D]. Let D be the three-element chain 3. We
shall consider M = M, (with the elements 0, a,,a,,as, 1), and in the
second case M = Ny, the five-element non-modular lattice (with the ele-
ments 0, 1,4, b, ¢c; a> b). The corresponding lattices M,[3] and N[3]
are:

M,(3) an Ni3] (1,1

("1"’1) play.a,)

(0, 0) (0,0
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If 2 is the two-element distributive lattice then M[2] = M. The cor-
respondence

m—>fm=(m,m,...,m) (me M)

is the canonical embedding of M into M" and by the definition of M[D]
every f, belongs to M[D]. Let a/b a prime quotient of M. We shall
show that the corresponding quotient f / f, of M[D] is isomorphic to
D. But by the Birkhoff — Stone representation theorem we have for every
de€ D the correspondence d -~ 8; = (d .. d ye 2", where d =1
if deQ, and d,=0 if dg Q.. If d}d then a".-0 d =1 hence
d¢Q, deg, and therefore Q, QQ hence 0,2 ¢ zmphes d.> d
We define gd(a/b) G200 PR n)Ef Ity v&here y;=a if d

and y,=b otherwise. Then d-g (@ /b)Y € M[D] is an 1somorphzsm be-
tween D and f /f,. The elements f, m€M) and y (e /f)
form a relative sublattice isomorphic to M(aDb), hence

Proposition 1. M(aDb) is isomorphic to a relative sublattice of M[D].

Let A be an equational class containing M (we assume that
[Mi> 1).

Proposition 2. The free lattice F 4 (M(aDb)) over X generated by
MaDb) exists.

Let M(aDb) be the sublattice of M[D] generated by M(aDb).
M[D] is a subdirect power of M hence

Proposxtxon 3. Every congruence relation of a/b (= f / fp) can be
extended to M(f 11,) (= M(an)), hence in M(aDb) ®a, b)Y/ w is iso-
morphic to ©(D). :

Let M be a bounded lattice. Then the g , defined above can be tak-
en as an element of M[D].

Proposition 4. If M is a bounded lattice then M[D] is generated by

{f,, Ime MU (g,1d € D}.
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Proof. (See [4]). Let A= (h,h,,.

= {Ql.i h/‘ > h;}. Then X, is an increasing subset of X (a subset F of
1

., h,)EMID]. Let X, =

X isincreasing if x € I, y > x imply y€ E}. Hence there exists a uni-
que element ¢, €D such that X, = {Q}.l €€ Q].} (e; is the minimal ele-
]

ment of the intersection N Q, of all Q;€ X, ). We prove that h =
i

n
= z\=/1 (fhi A gei). Let us take:

.\/ (f,,. A 8, )(Q;) = Vihle.€Q.}=
i=1 i €j 7 i’ i

=V {nl Q€ Xel_} = V{hillzi> h;} = h,.

3. THE GENERAL DEFINITION OF M[D]

@ will denote the equational class of bounded distributive lattices. If
D € 2, then the set X of all ultrafilters of D becomes a compact total-
ly order disconnected space by identifying X with the set Homg (D, 2)
of homomorphism onto 2. Let M be an arbitrary lattice.

Definition. € (X, M) is the lattice of all continuous monotone
maps of the compact totally order disconnected space X into the discrete
space M. '

If D is a finite distributive lattice then by the definition of M{Dj
in the previous paragraph we obtain that M[D] = € _ (X, M). Therefore
we define in the general case: M[D] is the lattice € _ (X, M).

Remark. We give a motivation for the definition of M[D]. Let M be
a bounded distributive lattice. In [7] R.W. Quackenbush has defined M[D]
as follows: M[D] is the subalgebra of MX generated by (f, ImeM} U
U {g,lde D}, where forall Qe X f, (Q)=m and

1 if de 0,

gd(Q)={ ,
0 if d¢ Q.
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Brian A. Davey [2] has shown, that (for distributive M) M[D] isiso-
morphic to €_ (X, M). (The proof is essentially the same as the proof of
Proposition 4). The proof does not use the distributivity of M, we have
therefore

Proposition 5. If M is a bounded lattice, then M[D) is the sublat-
tice of M¥* generated by

{f;nl meMiu (g, d e Dy,

Theset {f Im& M} isasublattice of M[D}] isomorphic to M. Let
a/b be a prime quotient of M. Then f /f, € M[D] isisomorphic to
€ (X,2). By atheorem of H.A. Priestley [6] this last lattice is iso-
morphic to D, hence we have the following

Theorem 1. Let a/b be a prime quotient in a lattice M and let D
be a bounded distributive lattice. Then there exists a lattice M|{D] contain-
ing the relative sublattice M(aDb) such that the quotient a/b of M[D]
is isomorphic to D, and ©(a, b)/w is isomorphic to (D).

For modular lattices this theorem was proved independently by R.
Freese [3].

Corollary 1. If X is an equational class containing M, then
r K(M(a.Db)) exists.

Let M(aDb) denote the sublattice of M{D] generated by M(aDb)
{morc precisely by M(f;be }). Then -/W(an) has the following charac-
terization

Corollary 2. MaDb) is the sublattice of M{D] generated by
{fm jimeMiu {hdde D}
where
a if deg,

hd(.Q)==‘
b if d&Q.
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4. FINITE MODULAR LATTICES

If M is a simple modular lattice then obviously lrl(an) = M[D].
The lattice given by the first diagram is also 11713(a1D0). Another char-
acterization for M,[D] was given in [8], [9]: let L be the poset of all
triples (x,y,z) (x,y,z€ D) with the property xAy=yAz=XxAzZ,
ordered by the rule: (x, y,z)< (x',y',z') iff x<x', y<y', z<z'. The
lattice operations of L are:

(Xl,}’l,Zl)/\ (xzayza 22)= (xl /\xz, )"1 /\.Vz, 21 /\22)
and
(X, ¥ 2V (g, 25, 2,) = (6 VI VI V) A (2 v 2)),
By VI AL VX)) Az v 2yl
(z, vzy) vy vxy) Ay, vy,)D.

Let a,,a,,a, denote the atoms of M,, then the injections a, -
+(1,0,0). a,~>(0,1,0), a; > (0,0, 1), d~ (d,0,0) (d€ D) defines
an embedding of M(a,D0) into L. In [8], [9] it was proved that the
congruence lattices of D and L are isomorphic, moreover every congru-
ence relation of D can be extended to L. This yields that L is a sub-
direct power of M3. Let Pl. be a ultrafilter of D, then we denote by
©[P;] the extension of the congruence relation ©[P] to L. Let u be
an element of L, then we can take the mapping u: X ~ M, where X
is the set of ultrafilters of D for which d(P,.) is the image of a; by the
natural homomorphism ¢: L~ L/O[P;] (L/O[P;] is isomorphic to M,).
We get

Proposition 6. L is isomorphic to M,[D].

The given representation of M,[3] is shown by the next diagram
(the elements of 3 are 0,¢, /).
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(0,0, 0)

Problem. Is it possible to give a similar characterization for M[D] if
M 1is a finite simple complemented modular lattice?

Let PisPys--sP, be the atoms of M. An-element (x1 s Xy ,xn)
of D" is called normalif p,v P;> Py implies x; A X;= XA X, =X AX
Conjecture: M[D] is the poset of all normal elements.

5. THE CHARACTERISATION OF F ,(M,(0Da,)).

(.# denotes the equational class of modular lattices.) In this section
we give a simple proof for the main theorem of |5]. The proof is based on
an interesting property of M,.

Proposition 7. Let M3 be a sublattice of a modular lattice L. If
fix) and g(x) are unary algebraic functions over M3 then f10) = g(0)
and fla;) = gla;) imply fix)=g(x) for every x€L (x€ a, /0).

Proof. The product of two unary algebraic functions fi and [, is
defined by 1 )= f1 (f,(x)). Let us take the following special unary al-
gebraic functions over M3. fi=xv a; 8x)=xn a;, i(x)=x(=xv0=
=xal). Let f be a uary algebraic function such that f(0) # fla,).
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Then f is obviously the product of these special functions. Let x be an
element of a,/0. Then for u,v€{a;,a,,a3}, u#v we have:

(O 8, f,x)=f,x) and g f g (x)=g,(x)
If w«,v,w are three distinct elements of {a;,a,,a;} then we prove:
) e, =185, and g feg =g f g.

Take f,g,f,x)v f g, f,(x). We can assume that x < a, since for
other x (2) is obviously satisfied. By the modularity we get

18,7, v /g, ,x)={xvwavlvu}v{xv v) Awlvul=
={xvwalrvxvawmlivu=[{xvwaxvylvu=
=xviwalxvi)vu=jkvryawlvuvx)=
=[xvyawlvu=fg f ().

By the symmetry of v and w we get (2). Using (1) and (2) a simple dis-
cussion proves our lemma.

Theorem 2 (A. Mitschke and R. Wille [5]). Let N bea mod-
ular lattice and let M,(0Da,) be a relative sublattice of N. The following
statements are equivalent: :

(a) N is generated by M3(0Da1);
(b) N isisomorphic to F ‘”(M3(0Da1 );

(c) N is isomorphic to the subdirect power of M, containing all
quasi-real, continuous mappings of the Stone space S(D) into the T,
space M, with the subbasis {[x)|x € My}. (For the notion sec [4]).

Proof of Theorem 1. lLet M3(0Da1) be a relative sublattice of the
modular lattice L, and denote by N the sublattice generated by
M,(0Da, ). We prove that N is isomorphic to N, where N, is the lat-
tice obtained from D by taking all (x,y,z) (x,y,z€ D) with xAy=
=xAz=yAaz. Put D'={xelix= (dv_a3)/\a2)va1, d& D}. Then
D' is a distributive sublattice of a; va, /cz«i isomorphic to D.
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(i) For xeN weset x, =xAa,, x, =((xAay)Vvaz)ray,
Xy = ((x A a;)va,)na. By the modularity of N we have X AXx, =
=(xnra)rxray)va)na, =[x Al(xray)vay)lna =[xAray)v
v (x Aaz)]Aa,. By the symmetry of a, and a; weget x, Ax; =
=x; Ax,. Finally, x, Axy=[((x Aay)va;)ra;]n{((xAraz)vay)n
ral=[xnay)valalxaag)vayjaa; ={(xnray)via;A((xArasz)v
va)itra; =[(xaa)vixnaay)aa;. Thus x Ax, =x, Axy=
=X, AXs, hence using the distributivity of D:

3) if X1sXy, X3 €D then x1=(x1vx2)/\(x1vx3).

(i) Put x(1)=a1 V(XAay)v(xaay), x(2)=a2v(x/\al)v
v(x/\a3), x(3)=a3v(x/\a1)v(x/\a2).

From (1) we get
a, AxPD Ax® = (a; AxP)a(a; A xP) =

=la, Ala,vxaa)vxaa)lnala Alagvixaa)yv
4)

vixaa)l={(xnra)via g, vixaa))IAalxaa)v

via, Alagvixaa)l= (g va)Aalx; vx,)=x,.

Obviously (x Aa,)V (x Aay)< x@ and x®, ie. (xAa,)v

vxaay) <x®Pax® . Applying (2), from these inequalities, we get
xDAx@Ax® =ja, vixaa)vixnaa)a @ Ax®) = (g, A x@ A

AX) Vv (xaa)vxaa)vxAa)=x, VxAag,)V(xra)=
=(x/\al)v(x/\a2)v(x/\a3). Thus

If xéN and x, €D (i=1,2,3)
(5) then x=(XAa1)v(x/\a2)v(x/\a3)
implies x = (xVva)A(xva,)Axva,).

(iii) Let. A be the set {x; x=(x A al) v (x A a,)v (x A a3),
X{, Xy, X5 € D} If x,v€EA then ((xvy)a al)v ((xvy)A a2) v
vilxvy)aa)=xvy, ie. A isa join semilattice.

(iv) By Proposition 7 if x&€ A then
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xva1=(x/\a2)v(x/\a3)val, ((xvaz)Aa3)Val, ((xva3)Aa2)vai
are in D’ hence from (5) it follows that

If x€N and

" xval,((xvaz)/\a3)va1,((xva3)/\a2)va1ED'

then xz(xval)/\(xvaz)/\(xv%)
implies x=(xAa)vixaa,)v(xnAay)

A is therefore a meet semilattice too. A contains obviously the rela-
tive sublattice M3(0Da1). The representation x = x, v ((x, Vaz) A a,)v
v ((x;y v “2) A a3) implies that A is generated by this partial lattice, hence
A and N are isomorphic.

(v) Finally we prove that N and N, are isomorphic too. Let us
take the correspondence x - (xl,xz,x3). But X AX,) =X  AXy =
=X, AXg, Le. (xy ,xz,x3) € NO. Conversely let (u,v,w)€ NO and set
x=uv(vvay)aa,lv(wva,)ra,]. Itis easy to verify that x, = u,
Xy =V, and Xy =W, the given correspondence is a one-to-one order pre-
serving mapping. Thus N = NO. The conditions (a) and (b) are also equiv-
alent. For the proof of the equivalence of (a) and (¢) we refer to [3].

Let L be a lattice from the equational class #°, A prime quotient
a/b of L is called . -pure if for every extension M€ % of L and
for any two unary algebraic functions f(x), g(x) over L the conditions
fla) = gla), Ab)=g(b) imply flx)=g(x) for every x€a/b, x€M.
The finite lattice L is . -pure if every prime quotient is ¥ -pure. By
Proposition 7 M, is .#-pure.

Problem. Is it true that ﬂ(an} = I 4(aDb) for M€ # if and on-
ly if M is .#-pure?
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