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Standard sublattices

E. Fried and E. T. Schmidt

0. Introduction

The concept of a standard ideal of a lattice was introduced in [1]. An ideal S of a
lattice L is called standard if

IA(SVvK)=(IAS)V(IAK) (1)

holds for any pair of ideals 7, K of L, where v and A denote the lattice-operations of
the ideal-lattice I(L) of L.

This concept is a generalization of neutral ideals and has many useful properties.
Standard ideals play the same role for lattices as invariant subgroups for groups. A
congruence of a group is determined by any congruence-class. However, even this does
not hold for congruences generated by standard ideals. So, we should take into con-
sideration all ‘standardlike’ possible congruenceclasses.

The aim of this paper is to give a generalization of standard ideals for convex sub-
lattices, called standard sublattices, and to prove that many important properties of
standard ideals are also valid for standard sublattices.

1. The definition of a standard sublattice

We shall denote by U and n the set-theoretical and by v and A the lattice-theo-
retical operations. ¢ denotes the empty set. The convex sublattice generated by a subset
A of the lattice L will be denoted by (A4). Let 4 and B be two (nonempty) subsets of
the lattice L. Then we define

Av B={{avb] acA, beB})
AArB={{anb]acA, beB}),

i.e., Av B and A A B are the convex sublattices of L generated by the elements av b
and a A b (acA, beB), respectively.

Let us remark, if 4 and B are both ideals (or both dual-ideals) then 4 v B and
A A B are exactly the join and the meet of 4 and B in the ideal-lattice. However, in the
general case neither A< A v B nor A A B=Z A are valid. For example, if A={a} and
B={b} then both inequalities imply 4= B.
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DEFINITION. A convex sublattice S of a lattice L is called a standard sublattice if

IAN{S,K>={AS,INK> )]
and
IV{S,KD>={vS,IvK)> (3)

hold for any pair {I,K} of convex sublattices of L, whenever neither S~ K nor
In{S, Ky are empty. (Thus, the word ‘standard’ implies convexity.)

PROPOSITION 1. For each seL, {s} is a standard sublattice of L.

Proof. {s}nK+#0 implies sekK, yielding <{{s},K>=K, ITA{s}SIAK, and
Iv {s}<IvK. Thus,in (2) and (3) both the left and the right hand sides of the equa-
tions are I A K and I v K| respectively.

Now, we are going to prove that we have indeed a generalization. To do this we
need the following

LEMMA 1. For the convex sublattices A and B of the lattice L the equalities
AN(B]=(A]A(B] and {4,(B]>=(4]v (B8]

hold, where (X] denotes the ideal generated by X.

Proof. A<(A] implies, obviously, both AA(B]=(A]A(B] and {4, (B]>=Z
(A1, (B]>= (4] v (B].

(i) xe{A] A (B] implies xe(A4] and xe(B], for (4] A (B]=(4]n(B]. Since the
ideal {4] consists of all elements of L having an upper bound in 4 we have x=<a for
some aeA. Hence x=aAxeAA(B].

(i) Let xe(4], i.e., x<a for some aec 4, and ye(B]. Then we have, using the con-
vexity of {4, (B]), by y<xv y<av y that xv yel4, (B]). Thus, (4]v (B], the
smallest convex sublattice containingall x v y(xe (4], ye(B]), is contained in {4, (B]>.

PROPOSITION 2. Anideal S of a lattice L is standard if and only if it is a standard
sublattice.

Proof. Let us assume, first, that the ideal S is a standard sublattice of L. Then the
ideals I and K are, of course, convex sublattices. Moreover SN K #0and In{S, K> #
0 are, clearly, satisfied. Thus we have by (2) and (3)

IANSS, K>={AS,IAK) and Iv{S,K>={IVvS,IvK).
{A, B)=Av B for the ideals 4 and B, i.e., we arrive at

INSVK)=(IAS)V(IAK) and Iv(SAK)=(IvS)A(IvK).
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The first equality gives us, precisely, that S is a standard ideal. (The second equality
is an obvious one.)

Let, conversely, S be a standard ideal.

Using the obvious equality (/ A K]=(I] A (K] valid for any subset J and K of L,
we have for the convex sublattice / and K of L, by Lemma 1:

IAN(S, KD=TA(SVv(K])=(I]A(SV(K])
and

AAS, IAKYy={TIAS, IAK>=((I]AS)v{I AK)=((I]AS)Vv((I]A(K]).

The standard ideal property for S yields (2).

We claim, now, that (3) is valid for every ideal S of L.

SZ(S, K> and K<{S, K> imply <IvS,IvK>=sIv<{S,K). By Lemma !
(S, K>=85v (K], ie., Iv{S, K) is, clearly, the convex sublattice generated by the
elements of the form x v (s A y) where xel, s€S, y<t for some te K. By convexity

xvs, (xvs)A(xvit)edvS,IvK)
and
xvsExv(svy)S(xvs)v(xve) imply xv(svt)edIvS,IvK).

Using the convexity of {Iv S, I v K) again we have I v (S, K><{I v S, I v K which
finishes the proof.

Now, we prove that standard sublatices have similar characterisations to those of
standard ideals in [1].

THEOREM 1. The following four conditions are equivalent for each convex sub-
lattice S of a lattice L.

(a) S is a standard sublattice.

(B) Let K<L be any convex sublattice of L such that KnS #0. Then, to each
x€{S, K) there exist s,, s,€S, a,, a,€K such that:

x=(xAs)V(xra)=(xvs)A(xVva,).

(B’) Let K be as before. Then, for each S and to each elements xe{S, K and to
each s,, s1€S there are elements sy, s,€ S, a,, a,€K such that:

x=(xAs)v(xA(agvsy))=(xvsy)A(xV(a;Asy)).

(Y) The relation OS] on L defined by:
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‘x=y(0[S]) if and only if
xAy=((xAy)vi)a(xvy) and xvy=((xvy)As)V(XAy)

with suitable t, s in S’ is a congruence relation.

Proof. We will prove the equivalence of the four conditions cyclically.

(a) implies (B). Let KNS #0and let xe{S, K>. For I ={x}therelation/n{S, K}
is satisfied. x is, clearly, the greatest element of I A (S, K, i.e., by (2) the greatest
element of <I A S, I AK). Thus, x=(xAsy)V (x Aa,) with suitable s,€S, a,ek.

The dual property follows, similarly, from (3).

(B) implies (B’). Let K'={{s}, K) where s is an arbitrary element of S. Then
seK’ implies SN K'#0. Further, K<K'<{S, KD yields (S, K>=<S, K"). Thus,
for any xe{S, K) the equality

x=(xAsy)v(xrndy) (51€8,d,€K’)

holds, by (B). However d; <a; v s (a;eK) implies xS (x Asy) v (xA(a; vs))Sxvx=
X, 1.€.,
x=(xAs)V(xA(avs)). 4)

We have dually, for an arbitrary s'e S the equality
x=(xvs)A(xv{a,rs)) (s,€S, a,eK). (5

Remark. Substituting in (B') sy, 53, ay, @, bY $3, 84, a3, a4, Tespectively, where
S32 8y, 4585, A= ay, 4,54, (83, S4€8, a3, a,€K) we also get equality.

Proof. 1t is enough, by duality, to deal only with s, and a;. Monotonity implies:

x=(xAs)V(xA(a;vsy)S(xAsy)V(xAa(azvs,))Sxvx=x,
proving the statement.

(B’) implies (y). Let 8[S] be defined as follows: ‘x= y(0[S]), for x= y, if and
only if y=(yvt)Aax and x=(xAs)v y hold for suitable s, z in S".

Let us mention, that we may choose s and ¢ such that s=¢ holds, because of the
monotonity. It is not too hard to verify that [ S] is an equivalence relation (see [2]
p. 24.). We shall prove, that xAz=yAz(0[S]) and xvz=yvz(§[S]) are also
valid for every ze L. Since the definition of 6[S] is self-dual it is enough to prove
only the first statement.

y<x implies yAz<x Az thus the trivial inequality yAz<tv(yAz) gives us
yAaz=(tv(yAz))A(xAz). On the other hand

Ev(yaz)A(xaz)S@Evy)axaz=((tvy)Ax)az=yAz,
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1.€.,
yaz=({(yaz)vi)a(xnaz).

Now, let K be the convex sublattice {t A y Az, y>. We have s, t A yAzelS, KD,
for seS, t A y AzeK. By the convexity of (S, K) the inequalities

tAYAZSEAYSEAXSSAXSS

imply s A xedS, K> yielding x=(sAx)v ye{S, K>. Thus, the convexity of {S, K>
and the inequalities
IANYAZEYAZEXAZEX
imply yAz, x Aze(S, K.
Since te S, we have, by (B'), elements s'€S, a, €K such that

xnz=((xAzZ)AS )V (xAzA(agvi)).
As y is the greatest element of K, we obtain, by the remark, that

xAaz=((xAz)As)V((xAZ)A(yvE)=(xaz)As)V((yVE)Arx)Az)=
(xAz)As)v(yaz).

Hence, 0[S] is a congruence relation.

(y) implies (a). It is enough to prove (2). S, K< (S, K) implies </ AS, I AK} <
I A{S, K>, ie. we have to prove I A{S, K)S{ AS, I AK). First we prove that
eachuelIn{S, K) is contained in {J A S, I A K. Let v be an element of the nonempty
set SNK. (S, K> is, obviously, the set of all elements y with s; Ak;SyEs, vk,
(51, 52€S, ky, k,€K). Moreover, monotonity implies that we may also suppose
5, 2v<s, and k; £v=<k,. The same hold for u, for it belongs to (S, K). s; =s5,(6[S])
implies k,vs,=k, Vs, =k,(0[S]). Then, there exists by (y) an seS such that
u=uAs)v(unrk,).

uel implies u=(uAs)v(unk,)eI AS,IAK). Since I A{S, K is the smallest
convex sublattice containing all elements of the form i A y (iel, ye{S, K>), it is
enough to prove that all of these elements are in </ A S, I AK). Since In{S, K>#0
it contains an element u. We may choose s, €S, k, €K such that s; A k{ < y as we have
seen. Thus:

IN(s AK)STAYS(Evu)a(yvu).

It is enough to prove, by convexity, that

iN(s Ak )EUIAS, IAKY and iAyeIAS, IAK) for usi,usy,
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since
ueln{S, K> implies ivuel,yvuelS, K>.

iA(syAky)=(i As;)A(iAky) proves that this element belongs to (I A S, I A K).
usiny=<iand ugiAnyZyimply that i A yeIn{S, K>, i.e., i A y is an element
of {IAS,IAK?}. Hence, the theorem is proven.

COROLLARY 1. If S is a standard sublattice than S is a congruence class by the
congruence relation 9 S].

Proof. Let x=y(0[S]), x> y. We have to prove that if one of these elements
belongs to S then both of them are in S. By the self-dual definition of standard sub-
lattice we may assume yeS. By condition (y) y=(yv¢)Ax and x=(xAs)v y with
suitable s, t€S. Then x=(xAs)vVy<(xA(yvs))vy=x, ie, x=(xA(yvs))vy.
Trivially y<x A (yvs)< yvsand y, yvseS. Hence, by the convexity of S, x A (y v 5)e
S yielding x=(xA (yvs))v yeSs.

Let S be a standard sublattice of the lattice L. Then L/S denotes the lattice L/8[S].

COROLLARY 2. Let S and T be two standard sublattices. Then ST is either a
standard sublattice or it is empty.

Proof. We may assume that SN T contains an element u. Let us suppose that
x=y(6[S]) and x= y(0[T]) where x> y. Then we have x=(s; A x) Vv y with a suit-
able s; € S which may be supposed to be greater then u. On the other hand x= y(8[ T])
implies s; Ax=s; A y(0[T]) where s; Ax=s, Ay by the monotonity. Hence, (y)
implies s; Ax=(#; A (s AXx)) Vv (5; A y) with a £; Zu in T. Consequently x=(s; Ax)V
y=[(t;A(ssAax)v(syAp)]vy=((tyAsy)Ax)v y. But ¢, s,2u yield t;As;2u,
i.e., ; As;€T N S. The duality finishes the proof.

COROLLARY 3. The meet of a standard ideal and a standard dual ideal is a
standard sublattice.

Proof. By Proposition 2 and by the duality all standard ideals and standard dual
ideals are standard sublattices. Corollary 2 completes the proof.

Remark. The converse of Corollary 3 is not true. For example in N5 there are one-
element subsets which are not the meet of a standard ideal and of a standard dual
ideal. Proposition 1 proves our statement. We can prove more. We define on the set
{ags. s @uyo..3bgyeuns By Cosevny Cpy ...} the following partial order:

ao <by, a;1<4a;, bi<biiy, a4y <C;<biiy.

It is easy to see that we have a subdirectly irreducible lattice, where 0 (ay, b,) is the
smallest congruence. This lattice has neither 0 nor 1, i.e., for each standard ideal or
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standard dual ideal the congruence class containing a, must also contain b,. Thus the
standard sublattice {a,} is not even the meet of two congruence-classes generated
by a standard ideal and by a dual standard ideal.

2. Properties of standard sublattices

Firstly, we prove two Lemmas.

LEMMA 2. Let S be a standard sublattice and I be an arbitrary convex sublattice
of the lattice L such that InS #0. Then I S is a standard sublattice of the lattice I.

Proof. In S is obviously a convex sublattice of 1. To prove that In S is standard
we use condition (B). Each convex sublattice K of I is, clearly, a convex sublattice of
L itself. Thus, by () each xe{SnI, K> is to be written in the form

x=(xAs)v(xna) (seS,ack),

since KNS =(KnI)nS=Kn(InS)is not empty.

We may assume, by monotonity, that both s=u and a=u, where u is a given ele-
ment of KN (SnIT). Then we have for s'=(xvu)As:

u=(xvu)Auss'; s'=xvu; s Es.
ueSnl, xvuel, s'eS imply s'e SN 1. Hence, by x As'=xA(xVU)AS=XAS,
x=(xnas)v(xrna) (s'eSnI, aek)

yields (B) in I. The duality finishes the proof.

LEMMA 3. Let x— x’ be a homomorphism of L onto L' and let S be a standard
sublattice of L. The homomorphic image S’ of S is a standard sublattice of L'.

Proof. We shall prove (B) for S'. The coimage K of an arbitrary convex sublattice
K’ of L’ is, obviously, a convex sublattice of L. K’ S'#0 implies Kn S #0. Each
y'e<S’, K') has, clearly, a coimage xe<S, K for which, by (B)

x=(xAs)v(xaa) (seS,aek)

holds. Then, x'=y’, s'eS’, a’e K’ proves the first statement of (8) for S’. The proof
is completed by duality.

THEOREM 2. (The first isomorphism theorem). Let L be a lattice, S a standard
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sublattice and I a convex sublattice of L such that SNI1#9. Then SN is a standard
sublattice of I and:
U, SHYIS=I(INS).

Proof. The first statement was proved in Lemma 2. Using the first isomorphism
theorem for universal algebras it remains to prove that every congruence class of
(I, ) may be represented by an element of . Indeed, if xe{Z, S then, by (B), x=
(xAs)V(xAaa)=(xvs)A(xva,) (s, 5,€S8, ay, a,€l) and choosing any u in
S NI we may suppose that s, Su=<s,, a,<uZa,. Then,

x=(xAs))V(xaa)=(xAs)v(xaa)=xnra(0[S]), for s,=Zay,

and, similarly, x=xva,(0[S]). For y=(xAa,)va, we have a,<y=<a, yielding
veland x=xva,=(xAay)va,=y(0[S]) proving the theorem.

THEOREM 3 (Second isomorphism theorem). Let L be a lattice S a convex
sublattice and T a standard sublattice of L such that T<S. Then S is standard in L if
and only if ST is standard in L|T and in this case the isomorphism L|S=(L|T)/(S/T)
holds.

Proof. If S is standard then S/T is standard in L/T by Lemma 3. The converse is
proved in the same way as it is in [1] for standard ideals. The second isomorphism
theorem for universal algebras finishes the proof.

It has been proved (see [1]) that L is a distributive lattice whenever every ideal of
it is standard. A similar statement holds for standard sublattices.

THEOREM 4. Let u be an element of the lattice L. If every convex sublattice con-
taining u is standard then L is a distributive lattice.

Proof. We shall prove that distributivity is implied whenever the ideals and the
dual ideals containing u are standard. Let, namely, L, =L/(u] and L,=L/[u). The
condition and Lemma 3 imply that each ideal of L; and each dual ideal of L, is
standard. Thus, both L, and L, are distributive. If a<b have the same image both in
L, and in L, then exist pSu<gq such that b=av p and a=b A g, since both (] and
[u) are standard. Thus,

a=bag=bA((baq)vqg)=bAr(avg)Zba(av p)=brb=b,

proving that L is a subdirect product of the two distributive lattices L; and L,. Hence,
L is itself distributive.

THEOREM 5. In a relatively complemented lattice every congruence class is a
standard sublattice.
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Proof. Let L be a relatively complemented lattice and let § be a congruence relation
on L. Let, further, S denote the congruence class containing a given element a of L.
For x< y, x= y(0) let x’ denote the relative complement of x in the interval [x A a, y]
and let y" denote the relative complement of y in the interval [x, av y]. From x= y(0)
follows xAa=xAx'=yAx'=x'(0) yielding a=av (xAa)=avx'(6). Hence, t=
avx’is an element of S and so is, dually, the element s=a A y’. Further, x'< y A
(avx')=ynt implies y=x'vx<(yat)vx<y proving y=(yat)vx. We get
x=(xVvs)A y dually. Thus, condition (y) of Theorem 1 is satisfied for S, i.e., S is
standard.

Each standard sublattice is a class of a congruence relation. If the lattice is relative-
ly-complemented this relation is unique and all classes are standard sublattices, i.e.,
6[S]=0 holds for each congruence class S of 6.

In the following example we will give a congruence 6 of a lattice L such that 8[S]=
0 holds for each congruence class S of 0 though none of these classes are standard.

Let N denote a family of lattices isomorphic to N for each integer n. The ele-
ments of N will be denoted by o,, a,, b,, c,, i,, respectively, where o is the smallest
element J is the greatest element and a<b. There is an amalgam L of these lattices such
that o,=c¢,_y and a,=i,_, and L contains no further elements. Now, the classes
S,={o,, a,, b,} are classes of a congruence relation having the desired property.
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