Standard sublattices

E. Fried and E. T. Schmidt

0. Introduction

The concept of a standard ideal of a lattice was introduced in [1]. An ideal S of a lattice L is called standard if

$$I \wedge (S \vee K) = (I \wedge S) \vee (I \wedge K) \tag{1}$$

holds for any pair of ideals I, K of L, where \vee and \wedge denote the lattice-operations of the ideal-lattice I(L) of L.

This concept is a generalization of neutral ideals and has many useful properties. Standard ideals play the same role for lattices as invariant subgroups for groups. A congruence of a group is determined by any congruence-class. However, even this does not hold for congruences generated by standard ideals. So, we should take into consideration all 'standardlike' possible congruenceclasses.

The aim of this paper is to give a generalization of standard ideals for convex sublattices, called standard sublattices, and to prove that many important properties of standard ideals are also valid for standard sublattices.

1. The definition of a standard sublattice

We shall denote by \cup and \cap the set-theoretical and by \vee and \wedge the lattice-theoretical operations. \emptyset denotes the empty set. The convex sublattice generated by a subset A of the lattice L will be denoted by $\langle A \rangle$. Let A and B be two (nonempty) subsets of the lattice L. Then we define

$$A \lor B = \langle \{a \lor b/ \ a \in A, b \in B\} \rangle$$
$$A \land B = \langle \{a \land b/ \ a \in A, b \in B\} \rangle,$$

i.e., $A \lor B$ and $A \land B$ are the convex sublattices of L generated by the elements $a \lor b$ and $a \land b$ ($a \in A$, $b \in B$), respectively.

Let us remark, if A and B are both ideals (or both dual-ideals) then $A \vee B$ and $A \wedge B$ are exactly the join and the meet of A and B in the ideal-lattice. However, in the general case neither $A \leq A \vee B$ nor $A \wedge B \leq A$ are valid. For example, if $A = \{a\}$ and $B = \{b\}$ then both inequalities imply A = B.

Presented by G. Grätzer. Received March 6, 1974. Accepted for publication in final form December 16, 1974.

DEFINITION. A convex sublattice S of a lattice L is called a standard sublattice if

$$I \land \langle S, K \rangle = \langle I \land S, I \land K \rangle \tag{2}$$

and

$$I \lor \langle S, K \rangle = \langle I \lor S, I \lor K \rangle \tag{3}$$

hold for any pair $\{I,K\}$ of convex sublattices of L, whenever neither $S \cap K$ nor $I \cap \langle S, K \rangle$ are empty. (Thus, the word 'standard' implies convexity.)

PROPOSITION 1. For each $s \in L$, $\{s\}$ is a standard sublattice of L.

Proof. $\{s\} \cap K \neq \emptyset$ implies $s \in K$, yielding $\langle \{s\}, K \rangle = K$, $I \wedge \{s\} \leq I \wedge K$, and $I \vee \{s\} \leq I \vee K$. Thus, in (2) and (3) both the left and the right hand sides of the equations are $I \wedge K$ and $I \vee K$, respectively.

Now, we are going to prove that we have indeed a generalization. To do this we need the following

LEMMA 1. For the convex sublattices A and B of the lattice L the equalities

$$A \wedge (B] = (A] \wedge (B]$$
 and $\langle A, (B] \rangle = (A] \vee (B]$

hold, where (X] denotes the ideal generated by X.

Proof. $A \subseteq (A]$ implies, obviously, both $A \land (B] \subseteq (A] \land (B]$ and $\langle A, (B] \rangle \subseteq \langle (A], (B] \rangle = (A] \lor (B]$.

- (i) $x \in (A] \land (B]$ implies $x \in (A]$ and $x \in (B]$, for $(A] \land (B] = (A] \cap (B]$. Since the ideal (A] consists of all elements of L having an upper bound in A we have $x \le a$ for some $a \in A$. Hence $x = a \land x \in A \land (B]$.
- (ii) Let $x \in (A]$, i.e., $x \le a$ for some $a \in A$, and $y \in (B]$. Then we have, using the convexity of $\langle A, (B] \rangle$, by $y \le x \lor y \le a \lor y$ that $x \lor y \in \langle A, (B] \rangle$. Thus, $(A] \lor (B]$, the smallest convex sublattice containing all $x \lor y (x \in (A], y \in (B])$, is contained in $\langle A, (B] \rangle$.

PROPOSITION 2. An ideal S of a lattice L is standard if and only if it is a standard sublattice.

Proof. Let us assume, first, that the ideal S is a standard sublattice of L. Then the ideals I and K are, of course, convex sublattices. Moreover $S \cap K \neq \emptyset$ and $I \cap \langle S, K \rangle \neq \emptyset$ are, clearly, satisfied. Thus we have by (2) and (3)

$$I \land \langle S, K \rangle = \langle I \land S, I \land K \rangle$$
 and $I \lor \langle S, K \rangle = \langle I \lor S, I \lor K \rangle$.

 $\langle A, B \rangle = A \vee B$ for the ideals A and B, i.e., we arrive at

$$I \wedge (S \vee K) = (I \wedge S) \vee (I \wedge K)$$
 and $I \vee (S \wedge K) = (I \vee S) \wedge (I \vee K)$.

The first equality gives us, precisely, that S is a standard ideal. (The second equality is an obvious one.)

Let, conversely, S be a standard ideal.

Using the obvious equality $(I \wedge K] = (I] \wedge (K]$ valid for any subset I and K of L, we have for the convex sublattice I and K of L, by Lemma 1:

$$I \land \langle S, K \rangle = I \land (S \lor (K)) = (I) \land (S \lor (K))$$

and

$$\langle I \wedge S, I \wedge K \rangle = \langle (I \cap S, I \wedge K \rangle = ((I \cap S) \vee (I \wedge K) = ((I \cap S) \vee ((I \cap K))).$$

The standard ideal property for S yields (2).

We claim, now, that (3) is valid for every ideal S of L.

 $S \leq \langle S, K \rangle$ and $K \leq \langle S, K \rangle$ imply $\langle I \vee S, I \vee K \rangle \leq I \vee \langle S, K \rangle$. By Lemma 1 $\langle S, K \rangle = S \vee \langle K |$, i.e., $I \vee \langle S, K \rangle$ is, clearly, the convex sublattice generated by the elements of the form $x \vee (s \wedge y)$ where $x \in I$, $s \in S$, $y \leq t$ for some $t \in K$. By convexity

$$x \lor s, (x \lor s) \land (x \lor t) \in \langle I \lor S, I \lor K \rangle$$

and

$$x \lor s \le x \lor (s \lor y) \le (x \lor s) \lor (x \lor t)$$
 imply $x \lor (s \lor t) \in \langle I \lor S, I \lor K \rangle$.

Using the convexity of $\langle I \vee S, I \vee K \rangle$ again we have $I \vee \langle S, K \rangle \leq \langle I \vee S, I \vee K \rangle$ which finishes the proof.

Now, we prove that standard sublatices have similar characterisations to those of standard ideals in $\lceil 1 \rceil$.

THEOREM 1. The following four conditions are equivalent for each convex sublattice S of a lattice L.

- (a) S is a standard sublattice.
- (β) Let $K \leq L$ be any convex sublattice of L such that $K \cap S \neq \emptyset$. Then, to each $x \in \langle S, K \rangle$ there exist $s_1, s_2 \in S$, $a_1, a_2 \in K$ such that:

$$x=(x \wedge s_1) \vee (x \wedge a_1) = (x \vee s_2) \wedge (x \vee a_2).$$

 (β') Let K be as before. Then, for each S and to each elements $x \in \langle S, K \rangle$ and to each $s_2, s'_1 \in S$ there are elements $s_1, s'_2 \in S$, $a_1, a_2 \in K$ such that:

$$x = (x \wedge s_1) \vee (x \wedge (a_1 \vee s_2)) = (x \vee s_2) \wedge (x \vee (a_2 \wedge s_1)).$$

(γ) The relation $\theta[S]$ on L defined by:

 $x \equiv y(\theta[S])$ if and only if

$$x \wedge y = ((x \wedge y) \vee t) \wedge (x \vee y)$$
 and $x \vee y = ((x \vee y) \wedge s) \vee (x \wedge y)$

with suitable t, s in S' is a congruence relation.

Proof. We will prove the equivalence of the four conditions cyclically.

(a) implies (b). Let $K \cap S \neq \emptyset$ and let $x \in \langle S, K \rangle$. For $I = \{x\}$ the relation $I \cap \langle S, K \rangle$ is satisfied. x is, clearly, the greatest element of $I \wedge \langle S, K \rangle$, i.e., by (2) the greatest element of $\langle I \wedge S, I \wedge K \rangle$. Thus, $x = (x \wedge s_1) \vee (x \wedge a_1)$ with suitable $s_1 \in S$, $a_1 \in K$.

The dual property follows, similarly, from (3).

(β) implies (β '). Let $K' = \langle \{s\}, K \rangle$ where s is an arbitrary element of S. Then $s \in K'$ implies $S \cap K' \neq \emptyset$. Further, $K \subseteq K' \subseteq \langle S, K \rangle$ yields $\langle S, K \rangle = \langle S, K' \rangle$. Thus, for any $x \in \langle S, K \rangle$ the equality

$$x = (x \wedge s_1) \vee (x \wedge \bar{a}_1)$$
 $(s_1 \in S, \bar{a}_1 \in K')$

holds, by (β). However $\bar{a}_1 \leq a_1 \vee s$ ($a_1 \in K$) implies $x \leq (x \wedge s_1) \vee (x \wedge (a_1 \vee s)) \leq x \vee x = x$, i.e.,

$$x = (x \wedge s_1) \vee (x \wedge (a_1 \vee s)). \tag{4}$$

We have dually, for an arbitrary $s' \in S$ the equality

$$x = (x \lor s_2) \land (x \lor (a_2 \land s')) \qquad (s_2 \in S, a_2 \in K). \tag{5}$$

Remark. Substituting in (β') s_1 , s_2' , a_1 , a_2 by s_3 , s_4' , a_3 , a_4 , respectively, where $s_3 \ge s_1$, $s_4' \le s_2'$, $a_3 \ge a_1$, $a_4 \le a_2(s_3, s_4' \in S, a_3, a_4 \in K)$ we also get equality.

Proof. It is enough, by duality, to deal only with s_3 and a_3 . Monotonity implies:

$$x = (x \wedge s_1) \vee (x \wedge (a_1 \vee s_2) \leq (x \wedge s_3) \vee (x \wedge (a_3 \vee s_2)) \leq x \vee x = x,$$

proving the statement.

 (β') implies (γ) . Let $\theta[S]$ be defined as follows: ' $x \equiv y(\theta[S])$, for $x \ge y$, if and only if $y = (y \lor t) \land x$ and $x = (x \land s) \lor y$ hold for suitable s, t in S'.

Let us mention, that we may choose s and t such that $s \ge t$ holds, because of the monotonity. It is not too hard to verify that $\theta[S]$ is an equivalence relation (see [2] p. 24.). We shall prove, that $x \land z = y \land z(\theta[S])$ and $x \lor z = y \lor z(\theta[S])$ are also valid for every $z \in L$. Since the definition of $\theta[S]$ is self-dual it is enough to prove only the first statement.

 $y \le x$ implies $y \land z \le x \land z$ thus the trivial inequality $y \land z \le t \lor (y \land z)$ gives us $y \land z \le (t \lor (y \land z)) \land (x \land z)$. On the other hand

$$(t \vee (y \wedge z)) \wedge (x \wedge z) \leq (t \vee y) \wedge x \wedge z = ((t \vee y) \wedge x) \wedge z = y \wedge z,$$

i.e.,

$$y \wedge z = ((y \wedge z) \vee t) \wedge (x \wedge z).$$

Now, let K be the convex sublattice $\langle t \land y \land z, y \rangle$. We have $s, t \land y \land z \in \langle S, K \rangle$, for $s \in S$, $t \land y \land z \in K$. By the convexity of $\langle S, K \rangle$ the inequalities

$$t \wedge y \wedge z \leq t \wedge y \leq t \wedge x \leq s \wedge x \leq s$$

imply $s \wedge x \in \langle S, K \rangle$ yielding $x = (s \wedge x) \vee y \in \langle S, K \rangle$. Thus, the convexity of $\langle S, K \rangle$ and the inequalities

$$t \land y \land z \leq y \land z \leq x \land z \leq x$$

imply $y \land z$, $x \land z \in \langle S, K \rangle$.

Since $t \in S$, we have, by (β') , elements $s' \in S$, $a_1 \in K$ such that

$$x \wedge z = ((x \wedge z) \wedge s') \vee (x \wedge z \wedge (a_1 \vee t)).$$

As y is the greatest element of K, we obtain, by the remark, that

$$x \wedge z = ((x \wedge z) \wedge s') \vee ((x \wedge z) \wedge (y \vee t)) = ((x \wedge z) \wedge s') \vee ((y \vee t) \wedge x) \wedge z) = ((x \wedge z) \wedge s') \vee (y \wedge z).$$

Hence, $\theta \lceil S \rceil$ is a congruence relation.

 (γ) implies (α) . It is enough to prove (2). S, $K \leq \langle S, K \rangle$ implies $\langle I \wedge S, I \wedge K \rangle \leq I \wedge \langle S, K \rangle$, i.e. we have to prove $I \wedge \langle S, K \rangle \leq \langle I \wedge S, I \wedge K \rangle$. First we prove that each $u \in I \cap \langle S, K \rangle$ is contained in $\langle I \wedge S, I \wedge K \rangle$. Let v be an element of the nonempty set $S \cap K$. $\langle S, K \rangle$ is, obviously, the set of all elements v with $s_1 \wedge k_1 \leq v \leq s_2 \vee k_2$ $(s_1, s_2 \in S, k_1, k_2 \in K)$. Moreover, monotonity implies that we may also suppose $s_1 \leq v \leq s_2$ and $s_1 \leq v \leq s_2$. The same hold for $s_1 \leq v \leq s_2 \leq s_2$

 $u \in I$ implies $u = (u \land s) \lor (u \land k_2) \in \langle I \land S, I \land K \rangle$. Since $I \land \langle S, K \rangle$ is the smallest convex sublattice containing all elements of the form $i \land y$ $(i \in I, y \in \langle S, K \rangle)$, it is enough to prove that all of these elements are in $\langle I \land S, I \land K \rangle$. Since $I \cap \langle S, K \rangle \neq \emptyset$ it contains an element u. We may choose $s_1 \in S$, $k_1 \in K$ such that $s_1 \land k_1 \leq y$ as we have seen. Thus:

$$i \wedge (s_1 \wedge k_1) \leq i \wedge y \leq (i \vee u) \wedge (y \vee u).$$

It is enough to prove, by convexity, that

$$i \wedge (s_1 \wedge k_1) \in \langle I \wedge S, I \wedge K \rangle$$
 and $i \wedge y \in \langle I \wedge S, I \wedge K \rangle$ for $u \leq i, u \leq y$,

since

$$u \in I \cap \langle S, K \rangle$$
 implies $i \lor u \in I, y \lor u \in \langle S, K \rangle$.

 $i \wedge (s_1 \wedge k_1) = (i \wedge s_1) \wedge (i \wedge k_1)$ proves that this element belongs to $\langle I \wedge S, I \wedge K \rangle$. $u \leq i \wedge y \leq i$ and $u \leq i \wedge y \leq y$ imply that $i \wedge y \in I \cap \langle S, K \rangle$, i.e., $i \wedge y$ is an element of $\langle I \wedge S, I \wedge K \rangle$. Hence, the theorem is proven.

COROLLARY 1. If S is a standard sublattice than S is a congruence class by the congruence relation $\theta[S]$.

Proof. Let $x \equiv y(\theta[S])$, x > y. We have to prove that if one of these elements belongs to S then both of them are in S. By the self-dual definition of standard sublattice we may assume $y \in S$. By condition $(\gamma) \ y = (y \lor t) \land x$ and $x = (x \land s) \lor y$ with suitable s, $t \in S$. Then $x = (x \land s) \lor y \le (x \land (y \lor s)) \lor y \le x$, i.e., $x = (x \land (y \lor s)) \lor y$. Trivially $y \le x \land (y \lor s) \le y \lor s$ and y, $y \lor s \in S$. Hence, by the convexity of S, $x \land (y \lor s) \in S$ yielding $x = (x \land (y \lor s)) \lor y \in S$.

Let S be a standard sublattice of the lattice L. Then L/S denotes the lattice $L/\theta \lceil S \rceil$.

COROLLARY 2. Let S and T be two standard sublattices. Then $S \cap T$ is either a standard sublattice or it is empty.

Proof. We may assume that $S \cap T$ contains an element u. Let us suppose that $x \equiv y(\theta[S])$ and $x \equiv y(\theta[T])$ where x > y. Then we have $x = (s_1 \wedge x) \vee y$ with a suitable $s_1 \in S$ which may be supposed to be greater then u. On the other hand $x \equiv y(\theta[T])$ implies $s_1 \wedge x \equiv s_1 \wedge y(\theta[T])$ where $s_1 \wedge x \geq s_1 \wedge y$ by the monotonity. Hence, (γ) implies $s_1 \wedge x = (t_1 \wedge (s_1 \wedge x)) \vee (s_1 \wedge y)$ with a $t_1 \geq u$ in T. Consequently $x = (s_1 \wedge x) \vee y = [(t_1 \wedge (s_1 \wedge x)) \vee (s_1 \wedge y)] \vee y = ((t_1 \wedge s_1) \wedge x) \vee y$. But $t_1, s_1 \geq u$ yield $t_1 \wedge s_1 \geq u$, i.e., $t_1 \wedge s_1 \in T \cap S$. The duality finishes the proof.

COROLLARY 3. The meet of a standard ideal and a standard dual ideal is a standard sublattice.

Proof. By Proposition 2 and by the duality all standard ideals and standard dual ideals are standard sublattices. Corollary 2 completes the proof.

Remark. The converse of Corollary 3 is not true. For example in N_5 there are one-element subsets which are not the meet of a standard ideal and of a standard dual ideal. Proposition 1 proves our statement. We can prove more. We define on the set $\{a_0, ..., a_n, ...; b_0, ..., b_n, ...; c_0, ..., c_n, ...\}$ the following partial order:

$$a_0 < b_0$$
, $a_{i+1} < a_i$, $b_i < b_{i+1}$, $a_{i+1} < c_i < b_{i+1}$.

It is easy to see that we have a subdirectly irreducible lattice, where $\theta(a_0, b_0)$ is the smallest congruence. This lattice has neither 0 nor 1, i.e., for each standard ideal or

standard dual ideal the congruence class containing a_0 must also contain b_0 . Thus the standard sublattice $\{a_0\}$ is not even the meet of two congruence-classes generated by a standard ideal and by a dual standard ideal.

2. Properties of standard sublattices

Firstly, we prove two Lemmas.

LEMMA 2. Let S be a standard sublattice and I be an arbitrary convex sublattice of the lattice L such that $I \cap S \neq \emptyset$. Then $I \cap S$ is a standard sublattice of the lattice I.

Proof. $I \cap S$ is obviously a convex sublattice of I. To prove that $I \cap S$ is standard we use condition (β). Each convex sublattice K of I is, clearly, a convex sublattice of L itself. Thus, by (β) each $x \in \langle S \cap I, K \rangle$ is to be written in the form

$$x = (x \land s) \lor (x \land a) \quad (s \in S, a \in K),$$

since $K \cap S = (K \cap I) \cap S = K \cap (I \cap S)$ is not empty.

We may assume, by monotonity, that both $s \ge u$ and $a \ge u$, where u is a given element of $K \cap (S \cap I)$. Then we have for $s' = (x \vee u) \wedge s$:

$$u = (x \lor u) \land u \le s'; \quad s' \le x \lor u; \quad s' \le s.$$

 $u \in S \cap I$, $x \lor u \in I$, $s' \in S$ imply $s' \in S \cap I$. Hence, by $x \land s' = x \land (x \lor u) \land s = x \land s$,

$$x = (x \wedge s') \vee (x \wedge a)$$
 $(s' \in S \cap I, a \in K)$

yields (β) in I. The duality finishes the proof.

LEMMA 3. Let $x \rightarrow x'$ be a homomorphism of L onto L' and let S be a standard sublattice of L. The homomorphic image S' of S is a standard sublattice of L'.

Proof. We shall prove (β) for S'. The coimage K of an arbitrary convex sublattice K' of L' is, obviously, a convex sublattice of L. $K' \cap S' \neq \emptyset$ implies $K \cap S \neq \emptyset$. Each $y' \in \langle S', K' \rangle$ has, clearly, a coimage $x \in \langle S, K \rangle$ for which, by (β)

$$x = (x \land s) \lor (x \land a)$$
 $(s \in S, a \in K)$

holds. Then, x' = y', $s' \in S'$, $a' \in K'$ proves the first statement of (β) for S'. The proof is completed by duality.

THEOREM 2. (The first isomorphism theorem). Let L be a lattice, S a standard

sublattice and I a convex sublattice of L such that $S \cap I \neq \emptyset$. Then $S \cap I$ is a standard sublattice of I and:

$$\langle I, S \rangle / S \cong I / (I \cap S)$$
.

Proof. The first statement was proved in Lemma 2. Using the first isomorphism theorem for universal algebras it remains to prove that every congruence class of $\langle I, S \rangle$ may be represented by an element of I. Indeed, if $x \in \langle I, S \rangle$ then, by (β) , $x = (x \wedge s_1) \vee (x \wedge a_1) = (x \vee s_2) \wedge (x \vee a_2)$ $(s_1, s_2 \in S, a_1, a_2 \in I)$ and choosing any u in $S \cap I$ we may suppose that $s_2 \leq u \leq s_1$, $a_2 \leq u \leq a_1$. Then,

$$x = (x \wedge s_1) \vee (x \wedge a_1) \equiv (x \wedge s_2) \vee (x \wedge a_1) = x \wedge a_1(\theta [S]), \text{ for } s_2 \leq a_1,$$

and, similarly, $x = x \lor a_2(\theta[S])$. For $y = (x \land a_1) \lor a_2$ we have $a_2 \le y \le a_1$ yielding $y \in I$ and $x = x \lor a_2 = (x \land a_1) \lor a_2 = y(\theta[S])$ proving the theorem.

THEOREM 3 (Second isomorphism theorem). Let L be a lattice S a convex sublattice and T a standard sublattice of L such that $T \leq S$. Then S is standard in L if and only if S/T is standard in L/T and in this case the isomorphism $L/S \cong (L/T)/(S/T)$ holds.

Proof. If S is standard then S/T is standard in L/T by Lemma 3. The converse is proved in the same way as it is in [1] for standard ideals. The second isomorphism theorem for universal algebras finishes the proof.

It has been proved (see [1]) that L is a distributive lattice whenever every ideal of it is standard. A similar statement holds for standard sublattices.

THEOREM 4. Let u be an element of the lattice L. If every convex sublattice containing u is standard then L is a distributive lattice.

Proof. We shall prove that distributivity is implied whenever the ideals and the dual ideals containing u are standard. Let, namely, $L_1 = L/(u]$ and $L_2 = L/[u)$. The condition and Lemma 3 imply that each ideal of L_1 and each dual ideal of L_2 is standard. Thus, both L_1 and L_2 are distributive. If $a \le b$ have the same image both in L_1 and in L_2 then exist $p \le u \le q$ such that $b = a \lor p$ and $a = b \land q$, since both (u] and [u] are standard. Thus,

$$a=b \land q=b \land ((b \land q) \lor q)=b \land (a \lor q) \ge b \land (a \lor p)=b \land b=b$$

proving that L is a subdirect product of the two distributive lattices L_1 and L_2 . Hence, L is itself distributive.

THEOREM 5. In a relatively complemented lattice every congruence class is a standard sublattice.

Proof. Let L be a relatively complemented lattice and let θ be a congruence relation on L. Let, further, S denote the congruence class containing a given element a of L. For $x \le y$, $x = y(\theta)$ let x' denote the relative complement of x in the interval $[x \land a, y]$ and let y' denote the relative complement of y in the interval $[x, a \lor y]$. From $x = y(\theta)$ follows $x \land a = x \land x' \equiv y \land x' = x'(\theta)$ yielding $a = a \lor (x \land a) \equiv a \lor x'(\theta)$. Hence, $t = a \lor x'$ is an element of S and so is, dually, the element $s = a \land y'$. Further, $x' \le y \land (a \lor x') = y \land t$ implies $y = x' \lor x \le (y \land t) \lor x \le y$ proving $y = (y \land t) \lor x$. We get $x = (x \lor s) \land y$ dually. Thus, condition (γ) of Theorem 1 is satisfied for S, i.e., S is standard.

Each standard sublattice is a class of a congruence relation. If the lattice is relatively-complemented this relation is unique and all classes are standard sublattices, i.e., $\theta[S] = \theta$ holds for each congruence class S of θ .

In the following example we will give a congruence θ of a lattice L such that $\theta[S] = \theta$ holds for each congruence class S of θ though none of these classes are standard.

Let $N^{(n)}$ denote a family of lattices isomorphic to N_5 for each integer n. The elements of $N^{(n)}$ will be denoted by o_n , a_n , b_n , c_n , i_n , respectively, where o is the smallest element i is the greatest element and a < b. There is an amalgam L of these lattices such that $o_n = c_{n-1}$ and $a_n = i_{n-1}$ and L contains no further elements. Now, the classes $S_n = \{o_n, a_n, b_n\}$ are classes of a congruence relation having the desired property.

REFERENCES

- [1] G. Grätzer and E. T. Schmidt, *Standard ideals in lattices*, Acta Math. Ac. Sci. Hungary. *12* (1961), 17–86.
- [2] G. Grätzer, Lattice theory (W. H. Freeman and Company, San Francisco, 1971).

Eötvös Lóránd University Budapest Hungary

Mathematical Institute
Hungarian Academy of Science
Budapest
Hungary