ON FINITELY GENERATED SIMPLE MODULAR LATTICES

by
E. T. SCHMIDT (Budapest)

0. Introduction

R. WILLE asked the following question: does every finitely generated modular lattice contain a prime quotient? The answer is negative, as shown by the following

THEOREM. There exists a finitely generated simple modular lattice of infinite length.

The proof is based on the method of [1].

1. Preliminaries

Let Q be the chain of all rational numbers $\frac{k}{2^n}$, $0 \le k \le 2^n$, $n = 0, 1, 2, \ldots$

Lemma [1]. Let N be a bounded distributive lattice. Then there exists a bounded modular lattice M with the following properties:

- (i) M has three elements u_1 , u_2 , u_3 such that 0, u_1 , u_2 , u_3 , 1 form a sublattice isomorphic to \mathfrak{M}_5 , (the five element modular but not distributive lattice) and $(u_i]$ is isomorphic to N;
- (ii) for every congruence relation Θ_i of $(u_i]$ (i = 1, 2, 3) there exists exactly one congruence relation $\overline{\Theta}$ of M such that for $b, c, \in (u_i]$ $b \equiv c(\overline{\Theta})$ iff $b \equiv c(\Theta_i)$.

We apply this lemma for the lattice Q = N and M will always denote this lattice getting from Q.

The following lattice construction is due to Hall and Dilworth [2] (see also [1]). Let us take two bounded lattices L_1 and L_2 . Suppose that L_1 has a principal dual ideal I_1 , L_2 has a principal ideal I_2 and $I_1 \simeq I_2$ by $\varphi: x \to x'$. We get a lattice L as follows: L is the set of all $x \in L_1$, $y \in L_2$, we identify x with x' for all $x \in I_1$; $x \leq y$ have unchanged meaning if $x, y \in L_1$, or $x, y \in L_2$ and x < y, $x, y \notin I_1 = I_2$ iff $x \in L_1$, $y \in L_2$ and there exists a $z \in I_1$, such that x < z in L_1 and x < y in L_2 . We denote L as follows:

$$L = L_1 + L_2(\varphi I_1 = I_2)$$
.

It is easy to see that for modular lattices L_1 , L_2 the lattice L is modular, too ([1] Lemma 2).

2. The construction

In the lattice M the dual ideal $[u_i)$ is isomorphic to $(u_j]$ and both are isomorphic to Q. Let us take M in five disjoint replicas M_1, M_2, M_3, M_4 and M_5 . We denote the elements $u_1, u_2, u_3, 0, 1$ in M_i by $u_1^i, u_2^i, u_3^i, 0^i, 1^i$. The $[u_1^i] \subseteq M_1$ is isomorphic to $(u_3^i] \subseteq M_2$, by the natural isomorphism. For a natural isomorphism we use always the symbol φ_n .

We can define the following lattices

$$A_0 = M_5 + M_4(\varphi_n[u_3^5) = (u_1^4]);$$

 $A_1 = M_1 + M_2(\varphi_n[u_1^1) = (u_3^2]);$
 $A_2 = M_4 + A_1(\varphi[u_3^3) = (u_1^2])$

where

$$arphi^{-1}(x) = egin{cases} rac{x}{2} & ext{for } 0^1 \leq x \leq u_1^1 \,, \ rac{x+1}{2} & ext{for } 0^2 \leq x \leq u_1^2 \,, \end{cases}$$
 $K = A_0 + A_2(arphi_0[1^4] = (0^3]) \,.$

The poset of all 0^i , u_1^i , u_2^i , u_3^i , $1^i \in K$ (i = 1, 2, 3, 4, 5) is represented by Fig. 1.

In the lattice M, $u_i/0$ and $1/u_j$ are projective quotients, hence $1^3/u_3^3$ and $u_1^2/0^2$ are projective in K. We shall denote the corresponding algebraic function which maps $1^3/u_3^3$ onto $u_1^2/0^2$ by $f_0(x)$. Then

$$f_0(x) = \left\{ \left\{ \left[\left[\left(\left(\left((x \wedge u_2^3) \vee u_1^3) \wedge u_1^5 \right) \vee u_2^5 \right) \wedge u_1^5 \right] \vee u_2^4 \right] \wedge u_3^4 \right\} \vee u_2^2 \right\} \wedge u_1^2.$$

Similarly, $1^3/u_3^3$ and $u_1^1/0^1$ are projective, and there corresponds to the algebraic function $g_0(x)$. $f_0^{-1}(x)$ and $g^{-1}(x)$ are inverse functions.

 $u_1/0^2$ is a sublattice of $1^3/u_3$, therefore the restrictions of f_0 , f_0^{-1} , g_0 , g_0^{-1} define four unary partial operations \tilde{f}_0 , \tilde{f}_0^{-1} , \tilde{g}_0 , \tilde{g}_0^{-1} on $1^3/u^3$. On the other hand, we have a natural isomorphism between $1^3/u_3^3$ and Q. By this isomorphism we get the partial operations f, f^{-1} , g, g^{-1} on Q corresponding \tilde{f}_0 , \tilde{f}_0^{-1} , \tilde{g}_0 , \tilde{g}_0^{-1} . By the definition of A_2 we have:

$$f(x) = \frac{x+1}{2}, x \in Q; f^{-1}(x) = 2x - 1, \frac{1}{2} \le x \le 1;$$

$$g(x) = \frac{x}{2}, x \in Q; g^{-1}(x) = 2x, 0 \le x \le \frac{1}{2}$$

We have to prove that K is a finitely generated simple lattice. First we prove that $P = \{u_1^i, u_2^i, u_3^i \mid i = 1, 2, \ldots, 5\}$ is a generating set. We can see that $f_0, f_0^{-1}, g_0, g_0^{-1}$ are defined by the elements of P, hence it is enough to prove that in the partial algebra

$$Q = \langle Q; \vee, \wedge, f, f^{-1}, g, g^{-1} \rangle$$

the subset $Q_0 = \{0, 1\}$ is a generating set. Let \bar{Q}_0 be denote the subalgebra generated by Q_0 , and let Q_n be the following subset of Q:

$$Q_n = \left\{ \frac{0}{2^n}, \frac{1}{2^n}, \frac{2}{2^n}, \dots, \frac{k}{2^n}, \dots, \frac{2^n}{2^n} \right\}.$$

The union $\bigcup_{n=0}^{\infty}Q_n$ is obviously Q. We prove by induction for n, that every $Q_n\subseteq Q_0$; $Q_0\subseteq Q_0$ by the definition of Q_0 . Now let $Q_n\subseteq Q_0$ and let $\frac{u}{2^{n+1}}\in Q_{n+1}$, where $0\leq u\leq 2^{n+1}$. If $u\leq 2^n$ then $\frac{u}{2^n}\in Q_n$ and $\frac{u}{2^{n+1}}=g\left(\frac{u}{2^n}\right)$, hence $\frac{u}{2^{n+1}}\in Q_n$. In other case $2^n\leq u\leq 2^{n+1}$ we take $\frac{u-2^n}{2^n}\in Q_n$ and apply the operation f getting $\frac{u}{2^{n+1}}=f\left(\frac{u-2^n}{2^n}\right)\in Q_{n+1}$.

By condition (ii) of the Lemma every congruence relation of K is the smallest extension of a congruence relation of the quotient $1^3/u_3^1$. Therefore if Q is a simple partial algebra, K is a simple lattice. Let u, v, u < v be two elements of Q and let Θ be a congruence relation such that $u \equiv v(\Theta)$. Then there exist two integers k and n with the property

$$u \leq \frac{k}{2^n} < \frac{k+1}{2^n} \leq v.$$

From $u \equiv v(\Theta)$ we get $\frac{k}{2^n} \equiv \frac{k+1}{2^n}(\Theta)$. If $\frac{k+1}{2^n} \leq \frac{1}{2}$ then we can

apply g^{-1} , hence

$$\frac{k}{2^{n-1}} = g^{-1}\left(\frac{k}{2^n}\right) \equiv g^{-1}\!\left(\frac{k+1}{2^n}\right) = \frac{k+1}{2^{n-1}}(\theta)\,.$$

In the other case $\frac{1}{2} \leq \frac{k}{2^n}$; from $\frac{k}{2^n} \equiv \frac{k+1}{2^n} (\Theta)$ we get using f^{-1}

$$\frac{k-2^{n-1}}{2^{n-1}} = f^{-1}\left(\frac{k}{2^n}\right) = f^{-1}\left(\frac{k+1}{2^n}\right) = \frac{k+1-2^{n-1}}{2^{n-1}}\left(\Theta\right).$$

By induction we have that from $u = v(\Theta)$ it follows $0 = 1(\Theta)$, i.e., Q is a simple partial algebra.

This completes the proof of the theorem.

COROLLARY. There exist a finitely generated modular lattice which does not contain a prime quotient.

PROOF. Let K be a finitely generated simple modular lattice of infinite length. If a/b is a prime quotient of K and c/d is an arbitrary quotient $c \equiv d(\Theta(a, b))$, hence there exists a finite chain $d = z_0 < z_1 < \ldots < z_n = c$ such that z_i/z_{i-1} is weak projective into a/b $(i = 1, 2, \ldots, n)$ and therefore z_i/z_{i-1} has a finite length. This implies that c/d has a finite length. This is a contradiction to the assumption that K is of infinite length.

REFERENCES

E. T. SCHMIDT, Every finite distributive lattice is the congruence lattice of some modular lattice, Algebra Universalis 4 (1974), 49-57.
 J. M. Hall and R. P. Dilworth, The imbedding problem for modular lattices, Ann. of Math. 45 (1944), 450-456.

(Received December 14, 1973)

MTA MATEMATIKAI KUTATÓ INTÉZETE H-1053 BUDAPEST REÁLTANODA U. 13-15. HUNGARY By condition (ii) of the Lemma every congruence relation of K is the smallest extension of a congruence relation of the quotient $1^3/u_3^1$. Therefore if Q is a simple partial algebra, K is a simple lattice. Let u, v, u < v be two elements of Q and let Θ be a congruence relation such that $u \equiv v(\Theta)$. Then there exist two integers k and n with the property

$$u \leq \frac{k}{2^n} < \frac{k+1}{2^n} \leq v.$$

From $u \equiv v(\theta)$ we get $\frac{k}{2^n} \equiv \frac{k+1}{2^n}(\theta)$. If $\frac{k+1}{2^n} \leq \frac{1}{2}$ then we can

apply g^{-1} , hence

$$\frac{k}{2^{n-1}} = g^{-1} \left(\frac{k}{2^n} \right) = g^{-1} \left(\frac{k+1}{2^n} \right) = \frac{k+1}{2^{n-1}} \left(\Theta \right).$$

In the other case $\frac{1}{2} \leq \frac{k}{2^n}$; from $\frac{k}{2^n} \equiv \frac{k+1}{2^n} (\Theta)$ we get using f^{-1}

$$\frac{k-2^{n-1}}{2^{n-1}}=f^{-1}\left(\frac{k}{2^n}\right)\equiv f^{-1}\left(\frac{k+1}{2^n}\right)=\frac{k+1-2^{n-1}}{2^{n-1}}\left(\Theta\right).$$

By induction we have that from $u \equiv v(\Theta)$ it follows $0 \equiv 1(\Theta)$, i.e., Q is a simple partial algebra.

This completes the proof of the theorem.

COROLLARY. There exist a finitely generated modular lattice which does not contain a prime quotient.

PROOF. Let K be a finitely generated simple modular lattice of infinite length. If a/b is a prime quotient of K and c/d is an arbitrary quotient $c \equiv d(\Theta(a,b))$, hence there exists a finite chain $d=z_0 < z_1 < \ldots < z_n=c$ such that z_i/z_{i-1} is weak projective into a/b $(i=1,2,\ldots,n)$ and therefore z_i/z_{i-1} has a finite length. This implies that c/d has a finite length. This is a contradiction to the assumption that K is of infinite length.

REFERENCES

E. T. Schmidt, Every finite distributive lattice is the congruence lattice of some modular lattice, Algebra Universalis 4 (1974), 49-57.
 J. M. Hall and R. P. Dilworth, The imbedding problem for modular lattices, Ann. of Math. 45 (1944), 450-456.

(Received December 14, 1973)

MTA MATEMATIKAI KUTATÓ INTÉZETE H-1053 BUDAPEST REÁLTANODA U. 13-15. HUNGARY