## On the length of the congruence lattice of a lattice

## E. T. Schmidt

In [1] J. Berman has shown that for every chain L of length n there exists a finite lattice K such that  $L \cong \Theta(K)$  and K has length 5. With a similar construction we prove:

THEOREM. Let L be a finite distributive lattice with exactly one dual atom. Then there exists a finite lattice K such that  $L \cong \Theta(K)$  and K has length 5.

First we prove

LEMMA. Let k be an arbitrary natural number. There exists a lattice  $T^k$  of length four such that

- (i) for every i  $(1 \le i \le k)$   $T^k$  has three elements  $a^i$ ,  $b^i$ ,  $c^i$ ;  $0 \rightarrow a^i \rightarrow b^i \rightarrow c^i$ ,  $c^i \land c^j = 0$   $(i \ne j)$ ;
- (ii)  $T^k$  has exactly one non-trivial congruence relation  $\Theta$  for which  $\Theta = \Theta(a^i, b^i)$  (i=0, 1, ..., k) and the only non-trivial  $\Theta$ -classes are  $\{a^i, b^i\}$  (i=0, 1, ..., k);
  - (iii) Every  $a^i$ ,  $b^i$ ,  $c^i$  (i=1, 2, ..., k) is join-irreducible.

Proof. Take the following lattice represented by Fig. 1.

It is easy to see that  $\Theta(0, x) = \Theta(y, 1) = i$  for every x > 0, y < 1, and  $\Theta(b^i, c^i) = \Theta(d^i, 1)$ ,  $\Theta(b^i, d^i) = \Theta(c^i, 1)$ ,  $\Theta(b^i, b^0) = \Theta(c^i, 1)$ . The intervals  $[a^i, b^i]$  and  $[a^j, b^i]$  ( $i \neq j$ ) are projective, hence the equivalence relation  $\Theta$  defined by the following classes  $\{a^i, b^i\}$  (i = 0, 1, ..., k) and  $\{x\}$  for all  $x \in T^k$ ,  $x \neq a^i$ ,  $x \neq b^i$  (i = 0, 1, ..., k) is the only one non-trivial congruence relation of  $T^k$ . (i) and (iii) are obviously satisfied.



Fig. 1.

Presented by G. Grätzer. Received December 10, 1973. Accepted for publication in final form September 11, 1974.

The proof of the theorem. Let L be a finite distributive lattice with exactly one dual atom and  $J(L) = \{p_1, ..., p_n\}$  denote the poset of all non-unit, non-zero join-irreducible elements of L. Then L is completely determined by J(L). We can assume  $J(L) \neq \emptyset$ , for  $J(L) = \emptyset$  we get that L is the 2-element lattice and then an arbitrary simple lattice K of length 5 has the property  $L \cong \Theta(K)$ .

Take the lattice  $T^n$  in n copies  $T_1^n$ ,  $T_2^n$ ,...,  $T_n^n$  where  $T_i^n = \{0, 1, w_i, z_i, a_i^0, b_i^0\} \cup \bigcup_{j=1}^n \{a_i^j, b_i^j, c_i^j, d_i^j\}$ . We identify the unit elements and the zero elements of these lattices and define two elements x, y such that  $x \wedge y = 0$ ,  $x \vee y = 1$ ,  $x \wedge a = y \wedge a = 0$ ,



Fig. 2.

 $x \vee a = y \vee a = 1$  for every  $a \in \bigcup_{i=1}^{n} T_i^n$ ,  $a \neq 0$ , 1. We define some further elements under x such that the ideal (x] will be a simple lattice of length four. In this way we get the poset  $K = (x] \cup \{y\} \cup \bigcup_{i=1}^{n} T_i^n$ , which is obviously a lattice (Fig. 2).

Let  $\Omega$  be the set of all pairs (i, j)  $(1 \le i \le n, 1 \le j \le n)$  such that  $p_i - p_j$  in J(L). For each  $(i, j) \in \Omega$  we adjoin two new elements  $u_{ij}$  and  $v_{ij}$  to K with the following covering diagram:



Fig. 3.

In this way we get from K the poset  $K^* = K \cup \bigcup_{(i, j) \in \Omega} \{u_{ij}, v_{ij}\}.$ 

We define

$$A_{ij} = \begin{cases} \{0, a_i^j, b_i^j, c_i^j, a_j^i, b_j^i, u_{ij}, v_{ij}\} & \text{if } (i, j) \in \Omega, \\ \{0, a_i^j, b_j^i, c_i^j\} & \text{if } (i, j) \notin \Omega. \end{cases}$$

It is easy to verify that  $K^*$  is a lattice and that the  $A_{ij}$  are ideals of  $K^*$ . Also  $A_{ij} \cap A_{kl} = \{0\}$  for  $(i, j) \neq (k, l)$ .

We shall describe the congruence relations of  $K^*$ . The join-irreducible congruence relations of  $K^*$  are  $\Theta(s, t)$  where  $s \rightarrow t$  in  $K^*$ . By the lemma we can see that if  $\Theta(s, t) \neq i$  then for s and t the only possible choices are  $\{a_i^j, b_i^j\}$   $\{0 \leq j \leq n, 1 \leq i \leq n\}$ ,  $\{u_{ij}, v_{ij}\}$ , or  $\{v_{ij}, c_i^j\}$  if  $(i, j) \in \Omega$ . Using the lemma again we have  $\Theta(a_i^j, b_i^j) = \Theta(a_i^0, b_i^0)$ .

 $\Theta(v_{ji}, u_{ji}) = \Theta(a_j^0, b_j^0)$  and  $\Theta(v_{ij}, c_i^j) = \Theta(a_i^0, b_i^0)$  and hence there are most n non-trivial join-irreducible congruences in  $\Theta(K^*): \Theta(a_1^0, b_1^0), ..., \Theta(a_n^0, b_n^0)$ . If  $(i, j) \in \Omega$  then from  $a_i^j \equiv b_i^j (\Theta(a_i^0, b_i^0))$  we get  $u_{ij} = u_{ij} \vee a_i^j \equiv u_{ij} \vee b_i^j = c_i^j (\Theta(a_i^0, b_i^0))$ , hence  $a_j^i = u_{ij} \wedge b_j^i \equiv c_i^j \wedge b_j^i = b_j^i (\Theta(a_i^0, b_i^0))$ . Thus we get that  $(i, j) \in \Omega$  implies  $\Theta(a_i^0, b_i^0) \geqslant \Theta(a_j^0, b_j^0)$ .

We shall characterize the congruence relations  $\Theta(a_i^0, b_i^0)$ . By inspection  $\Theta(a_i^0, b_i^0)$ -classes are:

$$\{a_i^t, b_i^t\}, \quad t = 0, 1, ..., n,$$
 (1)

$$\{u_{sj}, v_{sj}\}$$
 if  $(s, j) \in \Omega$ , (2)

$$\{u_{il}, v_{il}, c_i^l\}$$
 for  $(j, l) \in \Omega$ , (3)

where i=j or there exists a sequence  $m_1, m_2, ..., m_r$ , such that  $(i, m_1), (m_1, m_2), ..., (m_r, j) \in \Omega$ . It follows that  $\Theta(a_1^0, b_1^0), \Theta(a_2^0, b_2^0), ..., \Theta(a_n^0, b_n^0)$  are different congruence relations. The correspondence  $p_i \to \Theta(a_i^0, b_i^0)$  is therefore a poset isomorphism from J(L) to  $J(\Theta(K^*))$ ; thus  $L \cong \Theta(K^*)$ , since  $l \in L$  and  $l \in \Theta(K^*)$  are both join-irreducible. The length of  $K^*$  is 5.

PROBLEM. Does there exist to every finite distributive lattice L with n dual atoms a natural number  $\varphi(n)$  such that  $L \cong \Theta(K)$  for some finite lattice K of length  $\varphi(n)$ ? (Conjecture  $\varphi(n) = 5n$ .)

I am very indebted to the referee for his many helpful suggestions.

## REFERENCE

[1] J. Berman, On the length of the congruence lattice of a lattice, Alg. Univ. 2 (1972), 18–19.

Mathematical Institute
of the Hungarian Academy of Science
Budapest
Hungary