On the length of the congruence lattice of a lattice ## E. T. Schmidt In [1] J. Berman has shown that for every chain L of length n there exists a finite lattice K such that $L \cong \Theta(K)$ and K has length 5. With a similar construction we prove: THEOREM. Let L be a finite distributive lattice with exactly one dual atom. Then there exists a finite lattice K such that $L \cong \Theta(K)$ and K has length 5. First we prove LEMMA. Let k be an arbitrary natural number. There exists a lattice T^k of length four such that - (i) for every i $(1 \le i \le k)$ T^k has three elements a^i , b^i , c^i ; $0 \rightarrow a^i \rightarrow b^i \rightarrow c^i$, $c^i \land c^j = 0$ $(i \ne j)$; - (ii) T^k has exactly one non-trivial congruence relation Θ for which $\Theta = \Theta(a^i, b^i)$ (i=0, 1, ..., k) and the only non-trivial Θ -classes are $\{a^i, b^i\}$ (i=0, 1, ..., k); - (iii) Every a^i , b^i , c^i (i=1, 2, ..., k) is join-irreducible. Proof. Take the following lattice represented by Fig. 1. It is easy to see that $\Theta(0, x) = \Theta(y, 1) = i$ for every x > 0, y < 1, and $\Theta(b^i, c^i) = \Theta(d^i, 1)$, $\Theta(b^i, d^i) = \Theta(c^i, 1)$, $\Theta(b^i, b^0) = \Theta(c^i, 1)$. The intervals $[a^i, b^i]$ and $[a^j, b^i]$ ($i \neq j$) are projective, hence the equivalence relation Θ defined by the following classes $\{a^i, b^i\}$ (i = 0, 1, ..., k) and $\{x\}$ for all $x \in T^k$, $x \neq a^i$, $x \neq b^i$ (i = 0, 1, ..., k) is the only one non-trivial congruence relation of T^k . (i) and (iii) are obviously satisfied. Fig. 1. Presented by G. Grätzer. Received December 10, 1973. Accepted for publication in final form September 11, 1974. The proof of the theorem. Let L be a finite distributive lattice with exactly one dual atom and $J(L) = \{p_1, ..., p_n\}$ denote the poset of all non-unit, non-zero join-irreducible elements of L. Then L is completely determined by J(L). We can assume $J(L) \neq \emptyset$, for $J(L) = \emptyset$ we get that L is the 2-element lattice and then an arbitrary simple lattice K of length 5 has the property $L \cong \Theta(K)$. Take the lattice T^n in n copies T_1^n , T_2^n ,..., T_n^n where $T_i^n = \{0, 1, w_i, z_i, a_i^0, b_i^0\} \cup \bigcup_{j=1}^n \{a_i^j, b_i^j, c_i^j, d_i^j\}$. We identify the unit elements and the zero elements of these lattices and define two elements x, y such that $x \wedge y = 0$, $x \vee y = 1$, $x \wedge a = y \wedge a = 0$, Fig. 2. $x \vee a = y \vee a = 1$ for every $a \in \bigcup_{i=1}^{n} T_i^n$, $a \neq 0$, 1. We define some further elements under x such that the ideal (x] will be a simple lattice of length four. In this way we get the poset $K = (x] \cup \{y\} \cup \bigcup_{i=1}^{n} T_i^n$, which is obviously a lattice (Fig. 2). Let Ω be the set of all pairs (i, j) $(1 \le i \le n, 1 \le j \le n)$ such that $p_i - p_j$ in J(L). For each $(i, j) \in \Omega$ we adjoin two new elements u_{ij} and v_{ij} to K with the following covering diagram: Fig. 3. In this way we get from K the poset $K^* = K \cup \bigcup_{(i, j) \in \Omega} \{u_{ij}, v_{ij}\}.$ We define $$A_{ij} = \begin{cases} \{0, a_i^j, b_i^j, c_i^j, a_j^i, b_j^i, u_{ij}, v_{ij}\} & \text{if } (i, j) \in \Omega, \\ \{0, a_i^j, b_j^i, c_i^j\} & \text{if } (i, j) \notin \Omega. \end{cases}$$ It is easy to verify that K^* is a lattice and that the A_{ij} are ideals of K^* . Also $A_{ij} \cap A_{kl} = \{0\}$ for $(i, j) \neq (k, l)$. We shall describe the congruence relations of K^* . The join-irreducible congruence relations of K^* are $\Theta(s, t)$ where $s \rightarrow t$ in K^* . By the lemma we can see that if $\Theta(s, t) \neq i$ then for s and t the only possible choices are $\{a_i^j, b_i^j\}$ $\{0 \leq j \leq n, 1 \leq i \leq n\}$, $\{u_{ij}, v_{ij}\}$, or $\{v_{ij}, c_i^j\}$ if $(i, j) \in \Omega$. Using the lemma again we have $\Theta(a_i^j, b_i^j) = \Theta(a_i^0, b_i^0)$. $\Theta(v_{ji}, u_{ji}) = \Theta(a_j^0, b_j^0)$ and $\Theta(v_{ij}, c_i^j) = \Theta(a_i^0, b_i^0)$ and hence there are most n non-trivial join-irreducible congruences in $\Theta(K^*): \Theta(a_1^0, b_1^0), ..., \Theta(a_n^0, b_n^0)$. If $(i, j) \in \Omega$ then from $a_i^j \equiv b_i^j (\Theta(a_i^0, b_i^0))$ we get $u_{ij} = u_{ij} \vee a_i^j \equiv u_{ij} \vee b_i^j = c_i^j (\Theta(a_i^0, b_i^0))$, hence $a_j^i = u_{ij} \wedge b_j^i \equiv c_i^j \wedge b_j^i = b_j^i (\Theta(a_i^0, b_i^0))$. Thus we get that $(i, j) \in \Omega$ implies $\Theta(a_i^0, b_i^0) \geqslant \Theta(a_j^0, b_j^0)$. We shall characterize the congruence relations $\Theta(a_i^0, b_i^0)$. By inspection $\Theta(a_i^0, b_i^0)$ -classes are: $$\{a_i^t, b_i^t\}, \quad t = 0, 1, ..., n,$$ (1) $$\{u_{sj}, v_{sj}\}$$ if $(s, j) \in \Omega$, (2) $$\{u_{il}, v_{il}, c_i^l\}$$ for $(j, l) \in \Omega$, (3) where i=j or there exists a sequence $m_1, m_2, ..., m_r$, such that $(i, m_1), (m_1, m_2), ..., (m_r, j) \in \Omega$. It follows that $\Theta(a_1^0, b_1^0), \Theta(a_2^0, b_2^0), ..., \Theta(a_n^0, b_n^0)$ are different congruence relations. The correspondence $p_i \to \Theta(a_i^0, b_i^0)$ is therefore a poset isomorphism from J(L) to $J(\Theta(K^*))$; thus $L \cong \Theta(K^*)$, since $l \in L$ and $l \in \Theta(K^*)$ are both join-irreducible. The length of K^* is 5. PROBLEM. Does there exist to every finite distributive lattice L with n dual atoms a natural number $\varphi(n)$ such that $L \cong \Theta(K)$ for some finite lattice K of length $\varphi(n)$? (Conjecture $\varphi(n) = 5n$.) I am very indebted to the referee for his many helpful suggestions. ## REFERENCE [1] J. Berman, On the length of the congruence lattice of a lattice, Alg. Univ. 2 (1972), 18–19. Mathematical Institute of the Hungarian Academy of Science Budapest Hungary