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On the length of the congruence lattice of a lattice

E. T. Schmidt

In [1] J. Berman has shown that for every chain L of length n there exists a finite
lattice X such that L& @(K) and K has length 5. With a similar construction we
prove:

THEOREM. Let L be a finite distributive laitice with exactly one dual atom.
Then there exists a finite lattice K such that L= © (K) and K has length 5.
First we prove

LEMMA. Let k be an arbitrary natural number. There exists a lattice T* of length
Jfour such that

(i) for every i (1<i<k) T* has three elements a', b*, ¢'; 0—a'—b'—c’, ¢! A ¢! =0
G#j)

(i) T* has exactly one non-trivial congruence relation © for which @ =0 (a’, b*)
(i=0, 1,..., k) and the only non-trivial ©-classes are {a', b'} (i=0, 1, ..., k);

(iil) Every @', b', ¢’ (i=1, 2, ..., k) is join-irreducible.

Proof. Take the following lattice represented by Fig. 1.

It is easy to see that © (0, x)=0 (y, 1)=1 for every x>0, y<1, and @ (b}, ¢')=
=0(d, 1), O, d)=0(c, 1), O, b°)=0(c, 1). The intervals [d’, "] and
[, b'] (i# j) are projective, hence the equivalence relation @ defined by the following
classes {d’, b’} (i=0, 1, ..., k) and {x} for all xe T*, x#a’, x#b' (i=0, 1, ..., k) is
the only one non-trivial congruence relation of T*. (i) and (iii) are obviously satisfied.

Fig. 1.
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The proof of the theorem. Let L be a finite distributive lattice with exactly one
dual atom and J (L)={p,,..., p,} denote the poset of all non-unit, non-zero join-
irreducible elements of L. Then L is completely determined by J (L). We can assume
J(L)#0, for J(L)=0 we get that L is the 2-element lattice and then an arbitrary
simple lattice K of length 5 has the property L~ 6 (K).

Take the lattice 7" in n copies 77, T3,..., Ty where T7={0, 1, w;, z;, af, b} U
UUj=y {al, b, cl, dl}. We identify the unit elements and the zero elements of these
lattices and define two elements x, y such that xAy=0, xvy=1, xAa=yAa=0,

Fig. 2.

xva=yva=1 for every ael Ji., T}, a#0, 1. We define some further elements
under x such that the ideal (x] will be a simple lattice of length four. In this way we
get the poset K= (x]u {y} ui- T/, which is obviously a lattice (Fig. 2).

Let Q be the set of all pairs (i, j) (1<i<n, 1<j<n) such that pp—p; in J (L).
For each (i, j)eQ we adjoin two new elements u;; and v;; to K with the following
covering diagram:

Fig. 3.

In this way we get from K the poset K*=KuU Ui, jyen {#) 01}
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We define
Q{O al, bi, cl, b, b, w0} i (i, j)eQ,
({0 al, bl, i} if (i,j)¢Q.

It is easy to verify that K* is a lattice and that the 4,; are ideals of K*. Also
Ay A= {0} for (i, j)# (k, I).

We shall describe the congruence relations of K*. The join-irreducible congruence
relations of K* are @ (s, t) where s—¢ in K*. By the lemma we can see that if
O (s, t)#1 then for s and ¢ the only possible choices are {a/, b{} (0<j<n, 1<i<n),
{u;;, v3;}, or {v;;, ¢} if (i, /)€ Q. Using the lemma again we have O (a/, b/)=0 (4}, b7).

O (v, u;)=01(a], b7) and O(v;;, ¢/)=0(a?, b)) and hence there are most n
non-trivial join-irreducible congruences in @ (K*): @(al, B9),..., 0(al, bY). If
(i, /)eQ then from a’*b’ (@(a}, b)) we get u;;=u;;val=u, vb’wc{ (0 (), b)),
hence ai=u,Abi=c]Abi=b, (O(af, b)) Thus we get that (i, /)eQ implies
0(a;, b))=0(a}, b7).

We shall characterize the congruence relations @ (a?, 7). By inspection @ (af,
bY)-classes are:

Ay

{d;, b}, 1=0,1,..,n, (1)
{ sJj? sj} if (S,j)GQ, (2)
{ujp vy for (), 1)eQ, 3)

where i=j or there exists a sequence m;, m,, ..., m,, such that (i, my), (my, my),...,
(m,, j)eQ. It follows that @ (a3, b}), © (a3, b3), ..., O (a, by) are different congruence
relations. The correspondence p; — @ (a7, b;) is therefore a poset isomorphism from
J (L)toJ (@ (K*)); thus L~ (K*),since l e L and 1€ @ (K*) are both join-irreducible.
The length of K* is 5,

PROBLEM. Does there exist to every finite distributive lattice L with » dual
atoms a natural number ¢ (n) such that L © (K) for some finite lattice K of length
¢ (n)? (Conjecture ¢ (n)=>5n.)

1 am very indebted to the referee for his many helpful suggestions.
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