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EVERY FINITE DISTRIBUTIVE LATTICE IS THE
CONGRUENCE LATTICE OF SOME MODULAR LATTICE

E. T. SCHMIDT

1. Introduction

The purpose of this paper is to prove the theorem formulated in the title. The
notation used is that of Grétzer [2]. The unary algebraic functions play by the
description of congruence relations a very important role. Let p=p(x) be an unary
algebraic function on the modular lattice K, and let a,<b, be two elements of K;
it is easy to show that there exists a pair a, be K, a,<a<<b< b, such that the restriction
of p to [a, b], p’[a,b] is an isomorphism between [, b] and [p(a,), p(by)], i.e., these
intervals are projective. Let now f: [a, b] - [¢, d] be an arbitrary isomorphism, then
we take f as a partial unary operation with the domain [a, b]. We called such a
partial operation a *-operation. The inverse f~' of f is again a *-operation. If
there exists for f an unary algebraic function p on K, such that f= pl[a, pp then p is
called a realization of f.

Now we consider a sublattice K, of the lattice X (in other words K is an exten-
sion of K,). Then K determines a system of projective intervals [a,, b,], [¢,, 4]
(xeQ) of K,. Let p, denote the unary algebraic function which maps [a,, b,] into
[c. d,]. With the corresponding *-operation p,=p,|(,..,.; We get a partial algebra
K5=(Ky; v, A, P, [ aef2>. A congruence relation of K, has an extension to K iff
@ is a congruence relation of Kj,.

DEFINITION. Let K, be a lattice and f,: [4,, b,] — [¢,, 4,] be *-operations of
K,. If there exist an extension K of K, such that the following conditions are satisfied:

(1) every f, has a realization in K;

(2) for every @ C (K3) there exists exactly one congruence relation & of K such
that for a, beK,, a=b(0) iff a=b(0), then we say that K is a realization of K&,

For a realization K of K3, C(K)=C(K}) obviously holds, i.e., the congruence
lattices are isomorphic.

EXAMPLE. Let K, be the three element chain: 0<a< 1. Then [0, 2] and [a, 1]
are isomorphic, so we have *-operations f:[a, 17— [0, a] and f ~'. A realization of
(Ko; vV, A S, f 1) is the following lattice, where p(x)={[(xvbd)Aac]vd}Ara
realizes f:
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We ask: does there exist for a modular lattice K, and *-operations a realization
which is modular too? We prove, if K, is a chain then there always exists such a
realization. In the second paragraph we give for a finite distributive lattice L a chain
K, and *-operations f; (i=1,2,...) with the property L=~C(K§), where Kg=
={Ky; v, A, fi>. In the third paragraph there are proved two lemmas, and in the
last paragraph the construction of K is given, which realizes K§.

2. A partial algebra

Let O be the chain of all rational numbers  with 0 < r < 1. Two non-trivial intervals
[a, 5] and [e, d] of O are isomorphic, hence an arbitrary isomorphism defines a
*-operation f:[a, b]- [¢, d].

A congruence relation @ is called irreducible if it is a join-irreducible element of
the congruence lattice. The smallest congruence relation O such that a=5b(©) will be
denoted by @ (a, b) and is called a principal congruence relation. If the congruence
lattice is finite then every irreducible congruence relation is obviously principal.

THEOREM 1. Let L be a finite distributive lattice. Then we can define on Q
*-operations [, fs,... such that the congruence lattice of the partial algebra Q=
{Qiv, AT I i=1,2,...> will be isomorphic to L.

Proof. We prove the theorem by induction as follows: for each positive integer n
let P(n) be the assertion that every distributive lattice of length <n is isomorphic to
C(Q,) for some partial algebra Q, defined on Q with *-operations. If we take on Q
for each pair 0<a;<b;<1 an arbitrary isomorphism f;:[a;, b;]— [0, 1], then the
corresponding partial algebra 0, =<Q; v, A, f;) is obviously simple, i.e. C(Q,)=2.
P(1) is proved. ,

We shall show that P(n—1) implies P(n). Now let L be any distributive lattice of
length # (>1) and let p denote a maximal irreducible element of L. Let py, p,,..., Pk
denote those irreducible elements of L which are covered by p in the poset of the
irreducible elements. If d denotes the join of all irreducible elements of L different
from p, then the length of the ideal L, =(d] is n—1. By the induction hypotheses
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there exists a partial algebra Q; defined on Q=[0, 1] with *-operations f;, such that
C(Q.,)~L,. Now we take the interval [0, 2] of rational numbers and we define the
partial algebra Q; on the set [0, 2].

The congruence relations of Q; which correspond to p;eL; (i=1,...,k) are
irreducible, consequently principal, i.e. p;— O (a;, b;) (a;<b;). We distinguish two
cases. First, if p is an atom (k=0), then we take for every pair 1<a;<b;<2 an
arbitrary isomorphism f7;:[a;, b;] - [1, 2], and let

01=<[0,2]; v, A, fi fi]i=1,2,..).

Then every congruence relation of Q;, is remade a congruence of Q, if we take the
rational numbers 1 <r <2 as one element classes. For every 1<a;<b;<2 there is
O (a;, b;)=0 (1, 2) and therefore © (1, 2) is an atom. Thus we have C(Q,)=C(Q,,) x
x22~L. The intervals [0, 1] and [0, 2] are isomorphic, we can take also Q; as a
partial algebra defined on [0, 1].

The second case is when £>0. We take the following isomorphism:

gO:[1,2]—+|:1+I£I,2] (1)

is an arbitrary isomorphism with the property that lim,_, g5 (1)=2. (For instance
the mapping x — (x +2k)/(k+1) is such an isomorphism);

i—1 i
iiLais b; 14— 1+—, i=1,2,..,k 2
is an arbitrary isomorphism. The partial algebra Q, is defined by

QL=<[0’ 2]; Vv, A’f_}vgiagi_l |J:1929,l=05 1’“-, k>

We shall prove that C(Q) is isomorphic to L. To do this we prove some simple
statements:

1. every ©@€C(Qy,) has an extension to a congruence relation @ of Q;.
Proof. Let O be an arbitrary congruence relation of Q;,, © defines a reflexive and
symmetric relation @* on [0, 2]:

either 0<u, v<1 and u=v(®) or

u=go8:(x), v=258:(»), &i<x, y<b;, x=y(0)

for some integer s>0 and 1<i<k, where gg is the
identity map.

u=v(O*) iff

Let © denote the transitive extensions of @*. The restriction of ® to [0, 1] is O,
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and O is obviously a congruence relation of Q;. @ is therefore an extension (the
smallest extension) of © to Q;.

2. Every congruence relation O (u, v), 0<u<v<2 of Q@ is the extension of a
congruence relation @e€C(Qy,).

Proof. Let x, y be two elements of the interval [a;, b;] and let ¢ be an arbitrary
congruence relation of Q,. For two integers s and i (I<i<k). x'=gig;(x)=
=go2:(¥)=y'(¢)if and onlyif x=g; 'g5°(x")=¢; "go°(»') =y (¢). O (x', y")eC(QL)
is therefore an extension of @ (x, y)eC(Q.,). If 1<u<v<2, then there exists a
natural number m such that u, v<gg' (1). There exists a finite chain

u:u0<u1<"'<ut=v

suchthatforeveryj(=1,..., 1) u;_q, u;€[gog;:(a;), g58:(b;)] for some sand i (1 <i<k).
We have proved that @ (u;_,, u;) (j=1,..., ) is the extension of a congruence relation
relation ©,;€C(Q,,). Then @ (u, v) is obviously the extension of V'_; ©;.

3. 0(u,2)=0(1, 2) for every 1<u<2, hence @ (1, 2) is irreducible.

Proof. Let t be the last integer with u<gy(1). If 2=u(¢) then 2=g; ' (2)=
=g, (u)=1(¢), hence @ (u,2)=06 (1, 2). But O (1, 2)< O (1, 2) is trivially satisfied
and thus O(y,2)=0(1,2). If ©(1,2)=6,v O, then there exists a sequence
2=u;>u,>--->u,=1 such that for each i u;=u;,,(0,) or u;=u;;,(0,). For
instance 2=u, (0,). But (1, 2)= 0 (u,, 2) implies ©, =O(1, 2); O (1, 2) is therefore
irreducible.

4. For an irreducible congruence relation ©eC(Q,,) is (1, 2)> 0O if and only
if @<060(a,;, b;) for some ie{l,..., k}.

Proof. From 1+ (i—1)/(k+1)=1+i/(k+1) (©(1,2)) we get by the appli-
cations of g™!' a=g '(1+({—-1)/(k+1))=g  (1+i/(k+1))=b,(O(1,2)) ie.
O (a;, b;)<O (1, 2). The statement ‘only if” is trival.

1-4 imply that the poset of all irreducible congruence relations of C(Q,) is iso-
morphic to the poset of all irreducible elements of L, following C(Q,)= L.

3. Two preliminary constructions

LEMMA 1. Let N be a bounded distributive lattice. Then there exists a bounded
modular lattice M with the following properties:

(1) M has three elements oy, a,, az such that 0, ay, a,, 03, 1 form a sublattice
isomorphic to M s and (o;] is isomorphic to N;

(ii) for every congruence relation ©; of («;] (i=1, 2, 3) there exists exactly one
congruence relation © of M such that for B, ye(a;] B=v(0) iff f=v(O)).
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Proof. We take the set M of all triples (x, y, z) (x, y, ze N) with the property
xAy=xnz=yAaz (x,y,z)<(x',y, z) means that x<x’, y<y' and z<z’; then M
will be a poset. If B=(x, y, z), y=(x", ¥, z’)e M then

xXAXYA(AY)=(xAXIA(ZAZ)=(yAY)A(zAZ"),

therefore fAy=(xAX',yAY',zAz')eM. M is therefore a A -semilattice. It is easy
to prove — using the distributivity of N — that sup {f, y} =V y exists and

Bvy=((xvx)v[(yvy)a(zvz')],
[vy)vIExvx)a(zvz)], (zvz)v[(xvx)A(yvy)]).

The operations A and v make M into a lattice. This lattice was defined first in [5].

Now we prove the modularity of M. Let be y=(x, y, z), f=(u, v, w) and a=
=(a, b, ¢), o> f. The modularity means a A (fv y)<fV (2 A y). Take the first com-
ponents of these elements: aA {(uvx)v[(vvy)Aa(wvz)]} and (uv(anx))v
v{[vv(bay)Ia[wv(caz)]}. Then using the facts: uaw=uAv, yAz=xAz,
bav=v, cAw=w and the distributivity of N we can write:

an{luvx)v[ovy)awvz)}=[an(uvx)]viar(wvy)a(wvz)]
=[uv(anx)]v(@rvaw)v(anvaz)
v(aanyaw)v(anyAaz)
=uv(aanx)v(@avaz)v(aryaw)
=uv(aanx)v(anbavaz)v(@aryawnac)
=uv(arx)v(ancavaz)v(@ryrwnab)
Suv(aarx)v(cavaz)v(yawab)<uv(aax)
vvawv(@wacaz)v(bAayaw)v(bAyAcAz)]

=@v(@ax))v{[vv(@ary)]a[wv(caz)]}.

The same inequality holds for the other components, hence M is modular.

Let oy =(1, 0, 0), 2, =(0, 1,0), 23 (0, 0, 1). Then a; vo;=(1, 1, 1), a; Aa;=(0, 0, 0)
ifi#jand so 0, ay, a,, 3, 1 from .# 5. For the remaining statements of the lemma we
refer to [5].

COROLLARY 1. Theintervals [0, o, | and [0, «, ]| are projective; the corresponding
unary algebraic function is p; ,(x)= (xvocs)/\ocz, [0, ;] and [ay, 1] are projective;
the corresponding function is:

g1 (x)=[(xvaz)ray]va =p; 2 (x)vay.

Let us take two bounded lattices L, and L,. Suppose that L, has a principal dual
ideal #,, L, has a principal ideal .#, and 4, ~.#,. Let ¢:x—x’ denote this iso-
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morphism. We can construct a lattice L as follows: L is the set of all xeL, and
xeL,, we identify x with x’ for all xe.#;; x<y have unchanged meaning if x, yeL,,
or x,yeL, and x<y x, y¢.#, =S, iff xeL,, yeL, and there exists a ze.#, such that
x<zin L, and z<yin L,. Let v, denote the join operations in L;, and let 0, denote
the zero of L,. It is easy to see that in L sup {x, y} always exists and

sup {x }_ng,-y if x,yeL;
Pix.y C{(xv40;)vyy if xeL; and yelL,.
By the duality we have that L is a lattice.
We denote L as follows: L=L, + L, (¢S5, =.4,).

LEMMA 2. (Hall and Dilworth [3]). Let L, be a principal ideal and L, be a
principal dual ideal of the lattice L, such that Ly Ly,=L and Lyn,#¢. If L, and L,
are modular lattices then L is a modular lattice too. If ©, and @, are congruence
relations of L, resp. L, such that @1| LmL2=@2| Liny then there exists a congruence
relation © of L with the property @[Li: o, (i=1,2).

4. The construction

LEMMA 3. Let K, be a modular lattice, which has the following properties:

(1) K, has a dual ideal # , isomorphic to Q;

(2) every congruence relation of K, is the smallest extension of a congruence
relation of #,.

Let f:[a,b]—~[c,d],a,b,c,deF, a *-operation on K,, and let denote Ki=
={Ky; Vv, A, f). Then there exists a realization K of K which is a modular lattice
and has a dual ideal J such that (1) and (2) are satisfied.

Proof. Let us take the following two lattices:

I. Let S denote the lattice M given in Lemma 1 if we set N=Q. Then we take the
intervals S;=[0, «;] and S'=[a; 1] i=1, 2 and the corresponding unary algebraic
functions p; ;(x) (i #j) and g, given in the Corollary of Lemma 1.

. T=0x Q. Let be T;,=[(0,0), (1,0)], T,=[(0,0), (0, 1)] and T*=[(1, 0),
(1, D], T*=[(0, 1), (1, D]. Then it is obviously T, =T,=T ~Q. T, and T? are
projective; the unary algebraic function is v, , (x)=xv (0, 1).

We define Ay=T+S(YT'=S,) where ¢ is an arbitrary isomorphism between
T' and S,. Let A be the lattice 4o +T(pS'=S,) where ¥ is again an arbitrary
isomorphism (Fig. 2). Let o denote the zero of 4 and let e;, e,, e3, 4 be the elements
given in Fig. 2 (e, is the element (1, 0), e, is the element (1, 0) of the second T com-
ponent of 4; similarly ey is (1, 0) and e, is (0, 1) in the first T component of A).
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Fig. 2

By Lemma 1 and 2 we get: for every congruence relation @ of (e,] (resp. [e;))
there exists exactly one congruence relation ® of A4 such that for x, ye(e,] (resp.
x, yeley)) x=y(O) iff x=y(O). The intervals [e;, e,] and [e,, e,, ve,] are pro-
jective, the corresponding unary function is r,,¢, (x).

(e,] is the ordinal sum 7 +S; +7 hence (e, ] is isomorphic to Q. The same holds
for the dual ideal [e,). Let now ¢ be an arbitrary isomorphism ¢:#,— (e;] such
that ¢9(a)=e; and g(b)=e¢,. Then we can define the lattice B=K,+4 (0. = (e;]).
(See Fig. 3.)

B:

Fig. 3

The intervals [a, b] and [e, e, v e,] are projective; we have namely the unary
function 2, = r,14,0 (x).

Take A in a second exemplar 4’ (x — x’ let be an isomorphism between 4 and 4).
If v is an isomorphism [e,)— (€}] such that v(g(c)ves)=e3 and v{o(d)ves)=e)
then we can define C=B+A4'(v(e,]=[e})). We have the lattice on Fig. 4.

Using the Lemma 2 we get: for every congruence relation @ of K, there exists
exactly one congruence relation © of C such that for x, yeK, x=y(0) iff x=y(0).
Similarly as in lattice B we have: [e; ve,, ¢;ve,] and [c, d] are projective; the
corresponding function let be 4,. '

Finally let us take the lattice D=S+S(uS%=S,) with an arbitrary isomorphism
u (Fig. 5) [d,, d,] and [ds, d,] are projective; let A; denote the corresponding unary
function.
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Fig. 6

The ideal (4, ] is isomorphic to Q, hence it is isomorphic to the dual ideal [e,) of
C. We shall define K=C+D with an isomorphism x:[e;) - (d] as follows: Let be
2 s =f (Fig. 6). Then a congruence relation @ of K, has an extension to
Kiff O is a congruence relation of Ky and every congruence relation of X is the exten-
sion of a congruence ©@ €@ (K,). K is a realization of K. The dual ideal .# generated
by ey eK satisfies obviously (1) and (2). This proves Lemma 3.

To prove our theoremlet be Ky =0, =<Q; v, A, fi, f2,...». Applying the Lemma 3
we get an extension K, of K, which realizes {Q; v, A, f;>. We can extend K, to K,
such that K, realizes {Q; v, A, f;, f>>. From K; we can get on similar way K; .. By
a direct limit procedure we get a lattice K which realizes Q; and so C(K)xC(Qy).
This proves C(K)=L.

Remark 1. A modular lattice satisfying the identity

xv A=A (xv A )
i=0 j=0 i=0
itj
is called an n-distributive lattice. (See G. Bergman [1] and A. Huhn [4].) A. Huhn
has proved that L is n-distributive iff L does not contain a sublattice B2~2"** and an
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element x such that x is the relative complement of all atoms of B in interval [infB,
sup B]. It is easy to show that the lattices 7"and S do not contain sublattice isomorphic
to 23, therefore we have:

THEOREM 2. Every finite distributive lattice is isomorphic to the congruence lat-
tice of a 2-distributive lattice.

Remark 2. Let K, be an arbitrary bounded distributive lattice and f, (xeQ)
*-operations on K. In [6] it is proved?) that K, has a modular extension, which is a
realization of K =(K,; v, A, fo).
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1) G. Gritzer proved the same statement for an arbitrary distributive lattice Ko with zero.



