EVERY FINITE DISTRIBUTIVE LATTICE IS THE CONGRUENCE LATTICE OF SOME MODULAR LATTICE

E. T. SCHMIDT

1. Introduction

The purpose of this paper is to prove the theorem formulated in the title. The notation used is that of Grätzer [2]. The unary algebraic functions play by the description of congruence relations a very important role. Let p=p(x) be an unary algebraic function on the modular lattice K, and let $a_0 \le b_0$ be two elements of K; it is easy to show that there exists a pair $a, b \in K$, $a_0 \le a \le b \le b_0$ such that the restriction of p to $[a, b], p|_{[a,b]}$ is an isomorphism between [a, b] and $[p(a_0), p(b_0)]$, i.e., these intervals are projective. Let now $f: [a, b] \to [c, d]$ be an arbitrary isomorphism, then we take f as a partial unary operation with the domain [a, b]. We called such a partial operation a *-operation. The inverse f^{-1} of f is again a *-operation. If there exists for f an unary algebraic function p on K, such that $f = p|_{[a,b]}$, then p is called a realization of f.

Now we consider a sublattice K_0 of the lattice K (in other words K is an extension of K_0). Then K determines a system of projective intervals $[a_{\alpha}, b_{\alpha}]$, $[c_{\alpha}, d_{\alpha}]$ ($\alpha \in \Omega$) of K_0 . Let p_{α} denote the unary algebraic function which maps $[a_{\alpha}, b_{\alpha}]$ into $[c_{\alpha}, d_{\alpha}]$. With the corresponding *-operation $\tilde{p}_{\alpha} = p_{\alpha}|_{[a_{\alpha}, b_{\alpha}]}$ we get a partial algebra $K_0^* = \langle K_0; \vee, \wedge, \tilde{p}_{\alpha} | \alpha \in \Omega \rangle$. A congruence relation of K_0 has an extension to K iff Θ is a congruence relation of K_0^* .

DEFINITION. Let K_0 be a lattice and $f_{\alpha}: [a_{\alpha}, b_{\alpha}] \to [c_{\alpha}, d_{\alpha}]$ be *-operations of K_0 . If there exist an extension K of K_0 such that the following conditions are satisfied:

- (1) every f_{α} has a realization in K;
- (2) for every $\Theta \in \mathbb{C}(K_0^*)$ there exists exactly one congruence relation $\overline{\Theta}$ of K such that for $a, b \in K_0$, $a \equiv b(\overline{\Theta})$ iff $a \equiv b(\Theta)$, then we say that K is a realization of K_0^* .

For a realization K of K_0^* , $C(K) \cong C(K_0^*)$ obviously holds, i.e., the congruence lattices are isomorphic.

EXAMPLE. Let K_0 be the three element chain: 0 < a < 1. Then [0, a] and [a, 1] are isomorphic, so we have *-operations $f: [a, 1] \to [0, a]$ and f^{-1} . A realization of $\langle K_0; \vee, \wedge, f, f^{-1} \rangle$ is the following lattice, where $p(x) = \{ [(x \vee b) \wedge c] \vee d \} \wedge a$ realizes f:

Presented by G. Grätzer. Received May 23, 1972. Accepted for publication in final form November 14, 1973.

Fig. 1

We ask: does there exist for a modular lattice K_0 and *-operations a realization which is modular too? We prove, if K_0 is a chain then there always exists such a realization. In the second paragraph we give for a finite distributive lattice L a chain K_0 and *-operations f_i (i=1,2,...) with the property $L \cong \mathbb{C}(K_0^*)$, where $K_0^* = \langle K_0; \vee, \wedge, f_i \rangle$. In the third paragraph there are proved two lemmas, and in the last paragraph the construction of K is given, which realizes K_0^* .

2. A partial algebra

Let Q be the chain of all rational numbers r with $0 \le r \le 1$. Two non-trivial intervals [a, b] and [c, d] of Q are isomorphic, hence an arbitrary isomorphism defines a *-operation $f: [a, b] \to [c, d]$.

A congruence relation Θ is called irreducible if it is a join-irreducible element of the congruence lattice. The smallest congruence relation Θ such that $a \equiv b(\Theta)$ will be denoted by $\Theta(a, b)$ and is called a principal congruence relation. If the congruence lattice is finite then every irreducible congruence relation is obviously principal.

THEOREM 1. Let L be a finite distributive lattice. Then we can define on Q *-operations $f_1, f_2, ...$ such that the congruence lattice of the partial algebra $Q_L = \langle Q; \vee, \wedge, f_i \mid i=1, 2, ... \rangle$ will be isomorphic to L.

Proof. We prove the theorem by induction as follows: for each positive integer n let P(n) be the assertion that every distributive lattice of length $\leq n$ is isomorphic to $C(Q_L)$ for some partial algebra Q_L defined on Q with *-operations. If we take on Q for each pair $0 \leq a_i < b_i \leq 1$ an arbitrary isomorphism $f_i: [a_i, b_i] \to [0, 1]$, then the corresponding partial algebra $Q_2 = \langle Q; \vee, \wedge, f_i \rangle$ is obviously simple, i.e. $C(Q_2) \cong 2$. P(1) is proved.

We shall show that P(n-1) implies P(n). Now let L be any distributive lattice of length n(>1) and let p denote a maximal irreducible element of L. Let $p_1, p_2, ..., p_k$ denote those irreducible elements of L which are covered by p in the poset of the irreducible elements. If d denotes the join of all irreducible elements of L different from p, then the length of the ideal $L_1 = (d]$ is n-1. By the induction hypotheses

there exists a partial algebra Q_{L_1} defined on Q = [0, 1] with *-operations f_i , such that $C(Q_{L_1}) \cong L_1$. Now we take the interval [0, 2] of rational numbers and we define the partial algebra Q_L on the set [0, 2].

The congruence relations of Q_{L_1} which correspond to $p_i \in L_1$ (i=1,...,k) are irreducible, consequently principal, i.e. $p_i \to \Theta(a_i,b_i)$ $(a_i < b_i)$. We distinguish two cases. First, if p is an atom (k=0), then we take for every pair $1 \le a_i < b_i \le 2$ an arbitrary isomorphism $f_i' : [a_i, b_i] \to [1, 2]$, and let

$$Q_L = \langle [0, 2]; \vee, \wedge, f_i, f'_i | i = 1, 2, \dots \rangle.$$

Then every congruence relation of Q_{L_1} is remade a congruence of Q_L if we take the rational numbers $1 < r \le 2$ as one element classes. For every $1 \le a_i < b_i \le 2$ there is $\Theta(a_i, b_i) = \Theta(1, 2)$ and therefore $\Theta(1, 2)$ is an atom. Thus we have $C(Q_L) \cong C(Q_{L_1}) \times 2 \cong L$. The intervals [0, 1] and [0, 2] are isomorphic, we can take also Q_L as a partial algebra defined on [0, 1].

The second case is when k>0. We take the following isomorphism:

$$g_0:[1,2] \to \left[1 + \frac{k}{k+1}, 2\right]$$
 (1)

is an arbitrary isomorphism with the property that $\lim_{t\to\infty} g_0^t(1) = 2$. (For instance the mapping $x \to (x+2k)/(k+1)$ is such an isomorphism);

$$g_i:[a_i, b_i] \to \left[1 + \frac{i-1}{k+1}, 1 + \frac{i}{k+1}\right], \quad i=1, 2, ..., k$$
 (2)

is an arbitrary isomorphism. The partial algebra Q_L is defined by

$$Q_L \! = \! \langle \big[0,2 \big]; \ \vee, \ \wedge, f_j, g_i, g_i^{-1} \ \Big| \ j \! = \! 1,2,\ldots; \ i \! = \! 0,1,\ldots,k \rangle.$$

We shall prove that $C(Q_L)$ is isomorphic to L. To do this we prove some simple statements:

1. every $\Theta \in \mathbb{C}(Q_{L_1})$ has an extension to a congruence relation $\overline{\Theta}$ of Q_L . Proof. Let Θ be an arbitrary congruence relation of Q_{L_1} , Θ defines a reflexive and symmetric relation Θ^* on [0, 2]:

$$u \equiv v(\Theta^*) \quad \text{iff} \quad \begin{cases} \text{ either } 0 \leqslant u, \, v \leqslant 1 \text{ and } u \equiv v(\Theta) & \text{or} \\ u = g_0^s g_i(x), \, v = g_0^s g_i(y), \, g_i \leqslant x, \, y \leqslant b_i, \, x \equiv y(\Theta) \\ \text{ for some integer } s \geqslant 0 \text{ and } 1 \leqslant i \leqslant k, \text{ where } g_0^0 \text{ is the identity map.} \end{cases}$$

Let $\bar{\Theta}$ denote the transitive extensions of Θ^* . The restriction of $\bar{\Theta}$ to [0, 1] is Θ ,

and $\overline{\Theta}$ is obviously a congruence relation of Q_L . $\overline{\Theta}$ is therefore an extension (the smallest extension) of Θ to Q_L .

2. Every congruence relation $\Theta(u, v)$, $0 \le u \le v < 2$ of Q_L is the extension of a congruence relation $\Theta \in \mathbb{C}(Q_{L_1})$.

Proof. Let x, y be two elements of the interval $[a_i, b_i]$ and let ϕ be an arbitrary congruence relation of Q_L . For two integers s and i $(1 \le i \le k)$. $x' = g_0^s g_i(x) \equiv g_0^s g_i(y) = y'(\phi)$ if and only if $x = g_i^{-1} g_0^{-s}(x') \equiv g_i^{-1} g_0^{-s}(y') = y(\phi)$. $\Theta(x', y') \in \mathbb{C}(Q_L)$ is therefore an extension of $\Theta(x, y) \in \mathbb{C}(Q_{L_1})$. If $1 \le u < v < 2$, then there exists a natural number m such that $u, v \le g_0^m(1)$. There exists a finite chain

$$u = u_0 < u_1 < \cdots < u_t = v$$

such that for every $j (=1,...,t) u_{j-1}, u_j \in [g_0^s g_i(a_i), g_0^s g_i(b_i)]$ for some s and $i (1 \le i \le k)$. We have proved that $\Theta(u_{j-1}, u_j) (j=1,...,t)$ is the extension of a congruence relation relation $\Theta_j \in C(Q_{L_1})$. Then $\Theta(u, v)$ is obviously the extension of $\bigvee_{j=1}^t \Theta_j$.

3. $\Theta(u, 2) = \Theta(1, 2)$ for every $1 \le u < 2$, hence $\Theta(1, 2)$ is irreducible.

Proof. Let t be the last integer with $u \le g_0^t(1)$. If $2 = u(\phi)$ then $2 = g_0^{-t}(2) = g_0^{-t}(u) = 1(\phi)$, hence $\Theta(u, 2) \ge \Theta(1, 2)$. But $\Theta(u, 2) \le \Theta(1, 2)$ is trivially satisfied and thus $\Theta(u, 2) = \Theta(1, 2)$. If $\Theta(1, 2) = \Theta_1 \lor \Theta_2$ then there exists a sequence $2 = u_1 > u_2 > \dots > u_r = 1$ such that for each i $u_i = u_{i+1}(\Theta_1)$ or $u_i = u_{i+1}(\Theta_2)$. For instance $2 = u_2(\Theta_1)$. But $\Theta(1, 2) = \Theta(u_2, 2)$ implies $\Theta_1 = \Theta(1, 2)$; $\Theta(1, 2)$ is therefore irreducible.

4. For an irreducible congruence relation $\Theta \in \mathbb{C}(Q_{L_1})$ is $\Theta(1, 2) \geqslant \overline{\Theta}$ if and only if $\Theta \leqslant \Theta(a_i, b_i)$ for some $i \in \{1, ..., k\}$.

Proof. From $1 + (i-1)/(k+1) \equiv 1 + i/(k+1)$ ($\Theta(1, 2)$) we get by the applications of g^{-1} $a_i = g^{-1}(1 + (i-1)/(k+1)) \equiv g^{-1}(1 + i/(k+1)) = b_i(\Theta(1, 2))$ i.e. $\overline{\Theta(a_i, b_i)} \leq \Theta(1, 2)$. The statement 'only if' is trival.

I-4 imply that the poset of all irreducible congruence relations of $C(Q_L)$ is isomorphic to the poset of all irreducible elements of L, following $C(Q_L) \cong L$.

3. Two preliminary constructions

LEMMA 1. Let N be a bounded distributive lattice. Then there exists a bounded modular lattice M with the following properties:

- (i) M has three elements α_1 , α_2 , α_3 such that 0, α_1 , α_2 , α_3 , 1 form a sublattice isomorphic to \mathcal{M}_5 and $(\alpha_i]$ is isomorphic to N;
- (ii) for every congruence relation Θ_i of $(\alpha_i]$ (i=1,2,3) there exists exactly one congruence relation $\overline{\Theta}$ of M such that for β , $\gamma \in (\alpha_i]$ $\beta \equiv \gamma(\overline{\Theta})$ iff $\beta \equiv \gamma(\Theta_i)$.

Proof. We take the set M of all triples (x, y, z) $(x, y, z \in N)$ with the property $x \land y = x \land z = y \land z$. $(x, y, z) \leqslant (x', y', z')$ means that $x \leqslant x'$, $y \leqslant y'$ and $z \leqslant z'$; then M will be a poset. If $\beta = (x, y, z)$, $\gamma = (x', y', z') \in M$ then

$$(x \wedge x') \wedge (y \wedge y') = (x \wedge x') \wedge (z \wedge z') = (y \wedge y') \wedge (z \wedge z'),$$

therefore $\beta \wedge \gamma = (x \wedge x', y \wedge y', z \wedge z') \in M$. M is therefore a \wedge -semilattice. It is easy to prove – using the distributivity of N – that $\sup \{\beta, \gamma\} = \beta \vee \gamma$ exists and

$$\beta \vee \gamma = ((x \vee x') \vee [(y \vee y') \wedge (z \vee z')],$$
$$[(y \vee y') \vee [(x \vee x') \wedge (z \vee z')], (z \vee z') \vee [(x \vee x') \wedge (y \vee y')]).$$

The operations \wedge and \vee make M into a lattice. This lattice was defined first in [5]. Now we prove the modularity of M. Let be $\gamma = (x, y, z)$, $\beta = (u, v, w)$ and $\alpha = (a, b, c)$, $\alpha > \beta$. The modularity means $\alpha \wedge (\beta \vee \gamma) \leq \beta \vee (\alpha \wedge \gamma)$. Take the first components of these elements: $a \wedge \{(u \vee x) \vee [(v \vee y) \wedge (w \vee z)]\}$ and $(u \vee (a \wedge x)) \vee ([v \vee (b \wedge y)] \wedge [w \vee (c \wedge z)]\}$. Then using the facts: $u \wedge w = u \wedge v$, $y \wedge z = x \wedge z$, $b \wedge v = v$, $c \wedge w = w$ and the distributivity of N we can write:

$$a \wedge \{(u \vee x) \vee [(v \vee y) \wedge (w \vee z)]\} = [a \wedge (u \vee x)] \vee [a \wedge (v \vee y) \wedge (w \vee z)]$$

$$= [u \vee (a \wedge x)] \vee (a \wedge v \wedge w) \vee (a \wedge v \wedge z)$$

$$\vee (a \wedge y \wedge w) \vee (a \wedge y \wedge z)$$

$$= u \vee (a \wedge x) \vee (a \wedge v \wedge z) \vee (a \wedge y \wedge w)$$

$$= u \vee (a \wedge x) \vee (a \wedge b \wedge v \wedge z) \vee (a \wedge y \wedge w \wedge c)$$

$$= u \vee (a \wedge x) \vee (a \wedge c \wedge v \wedge z) \vee (a \wedge y \wedge w \wedge b)$$

$$\leq u \vee (a \wedge x) \vee (c \wedge v \wedge z) \vee (y \wedge w \wedge b) \leq u \vee (a \wedge x)$$

$$\vee [v \wedge w \vee (v \wedge c \wedge z) \vee (b \wedge y \wedge w) \vee (b \wedge y \wedge c \wedge z)]$$

$$= (u \vee (a \wedge x)) \vee \{[v \vee (b \wedge y)] \wedge [w \vee (c \wedge z)]\}.$$

The same inequality holds for the other components, hence M is modular. Let $\alpha_1 = (1, 0, 0)$, $\alpha_2 = (0, 1, 0)$, $\alpha_3(0, 0, 1)$. Then $\alpha_i \vee \alpha_j = (1, 1, 1)$, $\alpha_i \wedge \alpha_j = (0, 0, 0)$ if $i \neq j$ and so 0, α_1 , α_2 , α_3 , 1 from \mathcal{M}_5 . For the remaining statements of the lemma we refer to [5].

COROLLARY 1. The intervals $[0, \alpha_1]$ and $[0, \alpha_2]$ are projective; the corresponding unary algebraic function is $p_{1, 2}(x) = (x \vee \alpha_3) \wedge \alpha_2$, $[0, \alpha_1]$ and $[\alpha_1, 1]$ are projective; the corresponding function is:

$$q_1(x) = [(x \vee \alpha_3) \wedge \alpha_2] \vee \alpha_1 = p_{1,2}(x) \vee \alpha_1.$$

Let us take two bounded lattices L_1 and L_2 . Suppose that L_1 has a principal dual ideal \mathcal{I}_1 , L_2 has a principal ideal \mathcal{I}_2 and $\mathcal{I}_1 \cong \mathcal{I}_2$. Let $\varphi: x \to x'$ denote this iso-

morphism. We can construct a lattice L as follows: L is the set of all $x \in L_1$ and $x \in L_2$, we identify x with x' for all $x \in \mathcal{I}_1$; $x \le y$ have unchanged meaning if x, $y \in L_1$, or $x_1 y \in L_2$ and x < y x, $y \notin \mathcal{I}_1 = \mathcal{I}_2$ iff $x \in L_1$, $y \in L_2$ and there exists a $z \in \mathcal{I}_1$ such that x < z in L_1 , and z < y in L_2 . Let \vee_i denote the join operations in L_i , and let 0_2 denote the zero of L_2 . It is easy to see that in L sup $\{x, y\}$ always exists and

$$\sup \{x, y\} = \begin{cases} x \vee_i y & \text{if } x, y \in L_i \\ (x \vee_1 0_2) \vee_2 y & \text{if } x \in L_1 \text{ and } y \in L_2. \end{cases}$$

By the duality we have that L is a lattice.

We denote L as follows: $L = L_1 + L_2 (\varphi \mathcal{I}_1 = \mathcal{I}_2)$.

LEMMA 2. (Hall and Dilworth [3]). Let L_1 be a principal ideal and L_2 be a principal dual ideal of the lattice L, such that $L_1 \cup L_2 = L$ and $L_1 \cap_2 \neq \phi$. If L_1 and L_2 are modular lattices then L is a modular lattice too. If Θ_1 and Θ_2 are congruence relations of L_1 resp. L_2 such that $\Theta_1|_{L_1 \cap L_2} = \Theta_2|_{L_1 \cap 2}$, then there exists a congruence relation Θ of L with the property $\Theta|_{L_i} = \Theta_i$ (i=1,2).

4. The construction

LEMMA 3. Let K_0 be a modular lattice, which has the following properties:

- (1) K_0 has a dual ideal \mathcal{I}_0 isomorphic to Q;
- (2) every congruence relation of K_0 is the smallest extension of a congruence relation of \mathcal{I}_0 .

Let $f:[a,b] \to [c,d]$, $a,b,c,d \in \mathcal{I}_0$ a *-operation on K_0 , and let denote $K_0^* = \langle K_0; \vee, \wedge, f \rangle$. Then there exists a realization K of K_0^* which is a modular lattice and has a dual ideal \mathcal{I} such that (1) and (2) are satisfied.

Proof. Let us take the following two lattices:

I. Let S denote the lattice M given in Lemma 1 if we set N=Q. Then we take the intervals $S_i = [0, \alpha_i]$ and $S^i = [\alpha_i, 1]$ i=1, 2 and the corresponding unary algebraic functions $p_{i,j}(x)$ $(i \neq j)$ and q_i given in the Corollary of Lemma 1.

II. $T = Q \times Q$. Let be $T_1 = [(0, 0), (1, 0)]$, $T_2 = [(0, 0), (0, 1)]$ and $T^1 = [(1, 0), (1, 1)]$, $T^2 = [(0, 1), (1, 1)]$. Then it is obviously $T_1 \cong T_2 \cong T^1 \cong Q$. T_1 and T^2 are projective; the unary algebraic function is $v_{1,2}(x) = x \vee (0, 1)$.

We define $A_0 = T + S(\psi T^1 = S_2)$ where φ is an arbitrary isomorphism between T^1 and S_2 . Let A be the lattice $A_0 + T(\varphi S^1 = S_2)$ where ψ is again an arbitrary isomorphism (Fig. 2). Let σ denote the zero of A and let e_1 , e_2 , e_3 , e_4 be the elements given in Fig. 2 (e_1 is the element (1, 0), e_2 is the element (1, 0) of the second T component of A; similarly e_3 is (1, 0) and e_4 is (0, 1) in the first T component of A).

Fig. 7

By Lemma 1 and 2 we get: for every congruence relation Θ of $(e_1]$ (resp. $[e_1)$) there exists exactly one congruence relation $\overline{\Theta}$ of A such that for $x, y \in (e_1]$ (resp. $x, y \in [e_4)$) $x \equiv y(\overline{\Theta})$ iff $x \equiv y(\Theta)$. The intervals $[e_3, e_2]$ and $[e_1, e_2, \vee e_4]$ are projective, the corresponding unary function is $r_{21}q_1(x)$.

 $(e_1]$ is the ordinal sum $T_1 + S_1 + T_1$ hence $(e_1]$ is isomorphic to Q. The same holds for the dual ideal $[e_4)$. Let now ϱ be an arbitrary isomorphism $\varrho: \mathscr{I}_0 \to (e_1]$ such that $\varrho(a) = e_3$ and $\varrho(b) = e_2$. Then we can define the lattice $B = K_0 + A(\varrho\mathscr{I}_0 = (e_1])$. (See Fig. 3.)

Fig. 3

The intervals [a, b] and $[e_1, e_1 \vee e_4]$ are projective; we have namely the unary function $\lambda_1 = r_{21}q_1\varrho(x)$.

Take A in a second exemplar A' $(x \to x')$ let be an isomorphism between A and A'). If ν is an isomorphism $[e_4) \to (e'_1]$ such that $\nu(\varrho(c) \vee e_4) = e'_3$ and $\nu(\varrho(d) \vee e_4) = e'_2$ then we can define $C = B + A' (\nu(e_4) = [e'_1))$. We have the lattice on Fig. 4.

Using the Lemma 2 we get: for every congruence relation Θ of K_0 there exists exactly one congruence relation $\overline{\Theta}$ of C such that for $x, y \in K_0$ $x \equiv y(\overline{\Theta})$ iff $x \equiv y(\Theta)$. Similarly as in lattice B we have: $[e_1 \vee e_4, e_1 \vee e_4']$ and [c, d] are projective; the corresponding function let be λ_2 .

Finally let us take the lattice $D=S+S(\mu S^2=S_1)$ with an arbitrary isomorphism μ (Fig. 5) $[d_2, d_1]$ and $[d_3, d_2]$ are projective; let λ_3 denote the corresponding unary function.

The ideal $(d_1]$ is isomorphic to Q, hence it is isomorphic to the dual ideal $[e_1]$ of C. We shall define K = C + D with an isomorphism $\varkappa : [e_1) \to (d]$ as follows: Let be $\lambda_2^{-1} \chi^{-1} \lambda_3 \chi \lambda_1 = f$ (Fig. 6). Then a congruence relation Θ of K_0 has an extension to K iff Θ is a congruence relation of K_0^* and every congruence relation of K is the extension of a congruence $\Theta \in \Theta(K_0)$. K is a realization of K_0^* . The dual ideal $\mathscr I$ generated by $e_4' \in K$ satisfies obviously (1) and (2). This proves Lemma 3.

To prove our theorem let be $K_0 = Q_L = \langle Q; \vee, \wedge, f_1, f_2, ... \rangle$. Applying the Lemma 3 we get an extension K_1 of K_0 which realizes $\langle Q; \vee, \wedge, f_1 \rangle$. We can extend K_1 to K_2 such that K_2 realizes $\langle Q; \vee, \wedge, f_1, f_2 \rangle$. From K_i we can get on similar way K_{i+1} . By a direct limit procedure we get a lattice K which realizes Q_L and so $C(K) \cong C(Q_L)$. This proves $C(K) \cong L$.

Remark 1. A modular lattice satisfying the identity

$$x \lor \bigwedge_{i=0}^{n} y_{i} = \bigwedge_{j=0}^{n} \left(x \lor \bigwedge_{\substack{i=0 \ i \neq j}}^{n} y_{i} \right)$$

is called an *n*-distributive lattice. (See G. Bergman [1] and A. Huhn [4].) A. Huhn has proved that L is *n*-distributive iff L does not contain a sublattice $B \cong 2^{n+1}$ and an

element x such that x is the relative complement of all atoms of B in interval $[\inf B, \sup B]$. It is easy to show that the lattices T and S do not contain sublattice isomorphic to 2^3 , therefore we have:

THEOREM 2. Every finite distributive lattice is isomorphic to the congruence lattice of a 2-distributive lattice.

Remark 2. Let K_0 be an arbitrary bounded distributive lattice and f_{α} ($\alpha \in \Omega$) *-operations on K_0 . In [6] it is proved¹) that K_0 has a modular extension, which is a realization of $K_0^* = \langle K_0; \vee, \wedge, f_{\alpha} \rangle$.

REFERENCES

- [1] G. Bergman, Ph.D. thesis
- [2] G. Grätzer, *Lattice theory*. First concepts and distributive lattices. (W. H. Freeman and Company San Francisco, 1971).
- [3] M. Hall and R. P. Dilworth, *The imbedding problem for modular lattices*, Annals of Math., 45 (1944), 450-456.
- [4] A. Huhn, Schwach, distributive Verbände, Acta F.R.M. Univ. Comen. (1971), 51-56.
- [5] E. T. Schmidt, Zur Charakterisierung die Kongruenzverbände der Verbände, Mat. Casopis 18 (1968), 3-20.
- [6] E. T. Schmidt, Über die Kongruenzrelationen der modularen Verbände, Beiträge zur Algebra and Geometrie, Halle (to appear).

Mathematical Institute of the Hungarian Academy of Sciences Budapest Hungary

¹⁾ G. Grätzer proved the same statement for an arbitrary distributive lattice K_0 with zero.