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On n-permutable equational classes

By E. T. SCHMIDT in Budapest

The product & o ¢ of two congruences &, ¢ of an algebra 4 is defined by the
following rule: a = b(@ o @) if and only iIf ¢€A4 exists such that a=c¢(®) and
c=b(P). Two congruences O, and 6, are r-permutable if and only if @,00,0
c@060,0--=0,00,00,00,0--, where on both sides there are n factors.
An algebra A is n-permutable if every two congruences in 4 are n-permutable.
We define an equational class to be n-permutable if every algebra of this class is
p-permutable. It is well known, that an nr-permutable equational class is (n+1)-
permutable, In {1] G. GrAt1zER asks for examples of equational classes which show
that n-permutability and (n-+1)-permutability are not equivalent'). In this note
we give an example with this property.

Theorem. For every natural number n=2 there exists an (n-+1)-permutable
equational class K, which is not n-permutable.

Proof. Let n be a natural number. An n-Boolean algebra
@:(B, \/5 Aafi(x): "'7f;z(x)a 0o 019 vy On)

is an algebra with two binary operations V, A, n unary operations £, (x), ..., f,{(x)
and r-+1 nullary operations ey, 04, ..., 0,, such that the following conditions
are satisfied:

1. (B; V, A) is a distributive lattice;
2. xVo,=o0,, xNVoo=x for all xcB;
3. [xVo_ AoV fix)=0;, [(xVo,_ )No]A fi(x)=0;_;.

The class of all »-Boolean algebras is denoted by 7,. If o,_,=x=0; then fi(x)
is the relative complement from x in [o,_,, 0], i.e. this interval is a Boolean Iattice.
A 1-Boolean algebra is a Boolean algebra. A finite chain ¥, of n+1 elements is

I For n=2 A. Mrrscuxe [2] has solved this problem.
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an n-Boolean algebra, if we take its elements as nullary operations: 0p<0; <0, <"
=g, (0;€%,), and fi{x)=0; if x<o,, fi(xX}=0;,_, If x=0;,. The congruences of
%, are the lattice-congruences, i.e. %, is not n-permutable. This shows that %
is not s-permutable.

Let B denote an arbitary n-Boolean algebra and x, v ¢ B, x>y. Set g;=(e;\x)V y.
(Then is gy=y, a,=x.) f &, and O, are arbitary congruences from B, such that
x=y (O0,V8,), then g;,_,=a,(0O,VO,) (i=1,2,...,n). The interval [g;_,,a] is
projective to a subinterval of [o;_,, o], i.e. [a,_,, a] is a Boolean lattice. Every
Boolean lattice is 2-permutable and so for every i (i=1, 2, ..., n) there exists a
t;€{a;— ¢, a;] such that

a; =t(0,) i odd, a, (=(0,) i even, a;=(0,) i even, a;=4(0,) i odd.
We have therefore between x, y a chain yo=ay=y, y1=8, V2=, ..., Vy=X=d,

with n+1 elements, such that y;,_,=y,(0,) if / even and y,_,=y,(@,) if i odd.
A, is therefore (n-+1}-permutable.

Remark. An equational class is (n-+1)-permutable if and only if there exists
(n+2)-ary algebraic operations pg, ..., p,+q satisfying the following identities
(see [3]):

Po(Xo, s Xy 1) =X0, Pie1(Xos X, X35 X5 . )=p (X0, Xo, Xy, Xy, ...) (i=even),
Pi—1(Xo» X1, X1, X3, X3, ... )=piXo, X, Xy, X3, X3, ...) (i 0dd),

pn—i-l(x()’ AR xn+1):xn+l'

A. MitscHke and H. WERNER have considered for the class #, the algebraic
operations:

Pilxo, X5 ey xn+1):(xi/\ﬂ:+ 1~s(xs+1)sz+2)v(xs+2/\(ﬂ(xi+1)in))

which show that X, is (n-+1)-permutable.
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