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The usual definition of homomorphism kernels of lattices is as follows:
Let L and I’ be two lattices such that L” has a 0 element. If @ is a homo-
morphism of the lattice L onto L’ then the set of all x € L for whicha @ = 0
torms the kernel of the homomorphism @. This definition — using a familiar
logical expression — is of second order type, and so this fact naturally raises
the question whether the notion of homomorphism kernel can be charac-
terized in first order terms? This means precisely the following. Does a
formula F of the first order logic with identity exist, such that & contains
as primitiv non logical constants only the lattice operations and a symbol 4
for a subset of the universe and such that F is true in a lattice L with a
specified subset L’ as the interpretation for 4 if and only if L is a homo-
morphism kernel of L? Our theorem proves that such a universal first
order formula does not exist (a universal first order formula is formed from
an open formula by prefixing to it universal quantifiers binding all its
variables).

Theorem A. The notion of homomorphism kernels of lattices can not be
characterized by a universal first order formula.

This theorem is obviously implied by the following:

Theorem B. Let n be a natural number. There exists a lattice L an an ideal I
of L whichis not @ homomorphism kernel such that for everyy,, ys, .. ., y, € L
‘it the sublattice gemerated by y,,ys, ...y, and I the ideal I is a homo-
morphism kernel.

Proof. We have to construct the lattice L. Let n be a natural number.
(‘onsider the chain C of the length » 4 2. The elements of C are denoted
by 0,1,2,...,n + 2. Take the direct product D = C' x C. The elements of
this lattice are of the form (s, t) where 0 < s <n + 2and 0 <t < n + 2.
Further, we define new elements z,(k = 0, 1, ..., 2% 4 1) satisfying the
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following relations:

Xy, N+, rF)=x), ~(+Lr+2)=-+17+1),

Xy N r+2,rF)=x,, @+ 1Lr+2)={+2 @*+2),L~1
Ty g ~(r+1,r+O=2x,_ ~{r, r-+2)=(r, r-+1),
By (r AL 7 ) =2y, 4 (7, r4+2)=(r+1,7+2)
and for xz; and z,,,, we have:

==, &y e

ze  ~{2,0) = 24~ {1, 1) = (1, 0},
xy  ~(2,0) =y~ (1, 1) = (2,1),
Typr AL R+ 1) = oy ~ (0,0 + 2) = (0,0 + H:

Zoprg (L + 1) =@y, (0,0 + 2) = (1, n + 2).

Thus we have got a lattice L = DV {xy, . . ., %y,, ;- We define the ideal /
as the subset {(0,0), (0,1)}. Fig. 1 helps to visualize the construction for
7= 3.
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Fig 1.

By the definition of the elements z; we obtain that the sublattices:
Dy = {(1,0), %, (2,0), (1, 1), (2,1)},
Dy, ={tr+1,r+1), 2, r+2,r+1), r+1,r+2),r+2r+2)}
Dy ={r,r + 1), 29, (r + L7+ 1), (r,r + 2), (r + 1,7+ 2)},
Dy ={(0,n + 1), %5y, (Ln 4+ 1), (0, n + 2), (1, n+ 2);}
are isomorphic to the modular non distributive lattice containing five

elements. This lattice is a simple one i. e. it has no proper congruence
relations.

First we prove that 7 is not a homomorphism kernel in L. Suppose on
the contrary, that is a homomorphism kernel; then there exists a congruence
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relation @ of L such that I is a class by 0, and so (0,0) = (0,1) (), thus
(1,0) = (1,0)w (0,0) = (1,0) v (0,1) = (1,1) (O).
But D, is a simple lattice which insolves (1,1) = (2,1) (0). So we get
(1,2) = (1,1)w (1,2) = (2,1) v (1,2) = (2,2) (O)
But (1,2), (2,2) € D,. Hence (2,2) = (2,3) (@). On the same way we get
that the elements of every D, are congruent by 6 i. e.
O,n+1)=({,n+ 1) (0)
consequently (0,0) = (0, % + 1)~ (1,0) = (4, n + 1) ~ (1,0) = (1, 0) (®) but
.0y €1, (1,0) ¢ I which is a contradiction to our supposition on I.
It remains to prove that for arbitrary elements ¥, , ¥, ..., y, theideal I
is a homomorphism kernel in the sublattice generated by y,, .. ..., ¥,
and I. Let us denote L” = {y,, 95....,¥,.1}.
The number of the x; — sis 2 n + 2 and so we have that there exists an
x, (0 <1< 2n + 1) different from all y; — s. But x; is an irreducible
element (v and ~ -irreducible) in L and so %, € L’. Let
LY =L\{z} (t=0,...,2n+1).
It is obvious that L;” 2 L. If we prove that I is a homomorphism kernel
in L7 for all ¢ then this is true in L’ too. We must distinguish four cases:
I.i=0.1¢e. 2y & L. Then we define 6, on L. This is the following
(Fig. 2) a = b(0y) (a < b, a, b € L) if an only if

a=(0), b= (1) (t=01,...,n+ 2)
It is routine to check that @, is a congruence relation.
II. i =2r — 1 (r = 1,2,...,%). Then we define @, on L] as follows

a=0b(0,) (e<b,a,be L) (Fig. 3) if and only if one of the following
-conditions hold:
o a={(2s), b=(2s+1) ¢t=0,1,....,n+ 2)

(s=0,1,...,1);
. Luwy<a, b (r,u) (u=0,1,...,n+ 2);
y. there exists a ¢, @ < ¢ < b such that ¢ = ¢ under «, and
¢ = b under £.
HI.¢e=2r(r=12,...,n). Then a =6(6,) (¢ < b, a,b € L") if and
only if one of the following conditions are satisfied:
a0 a=(0), b=(1) (t=01,...,0+2);
. t,2y<a, b<(27r) t=0,1,...,0+ 2);

v (LO)Za, b=(r+1,1);

0. 1,2)<Za, b (r+ 1, ¢+ 2);

e (Lh)=a, b=+ 4Lt ¢t=0,1,...,n+ 2).
©); is obviously a congruence relation (Fig. 4).
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Fig. 3
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IV. Finally we define @,,,, on L}, ,:

a4 = b(@mH) (CZ > b)

if and only if
o a, b = (L, 2);
. (m+2,1)=a, bz (1,0}
v. (0,m+ 2)=a, b=(0,2);
s, a,bel.

Q.e.d.

We note that lattice L is a modular lattice, and so we get that in the
class of all modular lattices the notion of homomorphism kernel can not
be characterized by a universal first order formula. In distributive lattices
every ideal is a homomorphism kernel and so in the class of all distributive
lattices we can characterize the homomorphism kernel in first order terms.



