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In this note group always means abelian group and G stands for a group.

In the theory of groups it is a general phenomenon that the direct summand
property of a subgroup A of G is proved in the following way: we take a well-
defined subgroup A* of G for which A N A* = O and then a subgroup M
which is maximal with respect to the properties A* S M and AN M=0
and afterwards we try to prove somehow that G = A + M. Mostly, the subgroup
A* is fully invariant.

An example is a theorem of SzeLE asserting that if A = D> C (p¥) and
AN ptG = 0, then A is a direct summand of G. In this case! A* = p*G.
Another example is a‘theorem of ERDELYI2

This suggests that to every direct summand A of G there corresponds
a greatest fully invariant subgroup A* which is contained in every complement
of A. This feeling is strengthened by the following theorem of L. FucHs?:

G= A+ B= A4 B;implies B = B, if and only if B is fully invariant,
i. e. in case B is the A* itself.

The idea of the proof of this theorem leads to the existence of A* in the
general case:

THEOREM 1. Let A be a direct summand of G and {B;} (A€ A) the set of
all complements of A (G= A + B; for every A€ A). Then A* = h B; is the

AeA
greatest fully invariant subgroup of G satisfying A N A* =0, i. e. if F is
fully invariant and A N F = O, then F & A*.

Of course, the above mentioned theorem of L. Fuchs is immediate from
Theorem 1.

It is natural to ask whether in case A= D> 'C (p*) the equality A* = pk G
holds or not. It is easy to see that the answer is in the affirmative. In general,
if Ais a bounded p-group we can always determine A*:

THEOREM 2. Let A be a direct summand of G and suppose A is a bounded
p-group with the minimal bound p* (i. e. p*A = O but p*~* A + 0). Then the
meet A* of all complements of A equals p*G.

If A is an unbounded p-group, then we are able to describe A* only under
an additional hypothesis:

1 See e.g. in the book of L. Fuchs, Abelian groups, (Budapest, 1958), p. 79.
2 Ibid. p. 8l.
‘Ibid. p. 76.
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THEOREM 3. Let G be a reduced torsion group and A a direct summand
of G such that A is an unbounded p-group. Then* A* = 3G,
&

CoroLLARY. Under the hypotheses of Theorem 3, thg cgmplement of Ain
G is uniquely determined if and only if A = G,.

In the two examples given above, any M, which is maximal with respect
to the properties M 2 A* and A N M = 0, was a complement of A. This
does not hold in general. A necessary and sufficient condition for this to hold
is the content of the following assertion which is but a trivial consequence of
a result of L. Fucus®.

THEOREM 4. Let A be a direct summand of G and A* as defined in Theorem
1. Any M containing A* and maximal with respect to A N M = O is a comple-
ment of A if and only if one of the following conditions is satisfied:

a) A is divisible;

B) Gla s as is a torsion group and p' (Glas as),=0, whenever there exists
an element in A not in pA of order p'.

Finally, we mention that in Szele’s theorem, mentioned at the beginning,
A may not be replaced by a bounded p-group of any other type, that is, Szele’s
result is the best possible one. Because if A is a bounded p-group with the bound
p* then A is a direct summand of every containing group G with AN p*G =0
when and only when A= 2 C (p*).

For the notations and terminology we refer to the book of L. Fucss,
cited in footnote 1.

Proor oF THE RESULTS. For the proof of Theorem 1 we need a lemma.
LemMa 1. Let G = A 4+ Band H a subgroup of B. If ¢ is an endomorphism
of Gsuch that Hp & B, then there exists a complement B, of A not containing H.

Proor. Let ) and @ be the projections® of G onto A and B. We may suppose
Ag = 0. Define n, = n + ¢n and 0, = O — ¢n. It is routine to check that
), and O, are projections satisfying v, @, = 0,m; + 0, =1, thus G=Gn, +G0O,
and Gr; = A. We prove that HEG ©,. Suppose that H is contained GO,
and let e H such that he¢B. hp=a-+-b(ac A, beB), a+ 0, thus
hO,=hO —(hgyn =h—a and h O, € G O,. Now, from hec GO, it follows
a4 =h—(h—a)c GO, contradicting A N GO, = 0. Thus HEG O, and so
B, = G 0, is a desired complement of A.

Now it is easy to prove Theorem 1. Indeed, put A* = A\ B;, then from Lem-
ma 1 it follows that A* is a fully invariant subgroup. Further, if H is a fully
invariant subgroup with AN H=0 then” HN A+ B)y=HN A+
+(H N B) = H N B;, thus HE B, for all Ac4 and so HE A*, finishing
the proof of Theorem I.

The proofs of Theorems 2 and 3 are based on

4 p, g denote prime numbers; G, is the p-component of G.

5 1bid. p. 75.

® A projection is an idempotent endomorphism. ¢ is the identity automorphism. If 5
and @ are endomorphisms then 5 4@ and n@ are defined as usual: x (5 + @)= xn -+ x0 and
X (n6) = (x7) 6. ’

7 See ibid. p, 72.
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Lemma 2. Let G= A+ B, ac A and b<B elements of order p and® co>>H, (a)
= H,(b). Then there is an endomorphlsm @ of G such that bp = a.
PROOF By a theorem of KuLikov® there exist decompositions A =
= {a,} + A, and B = {b;} + B, such that ac{a,} and be{b,}, further, the condi-
txon H(a) = H,(b) implies o(a;) = o(by). It follows the existence of an isomor-
phism o of {b} into {a;} such that by
We define an endomorphism ¢ by the rules: {oa}p = Ajp = Byp =
= 0 and xp = xp for x€{b;}. Obviously, ¢ satisfies the requirements.
We need also the following — in the literature frequently used —

LemMma 3. Let x — X be a homomorphism of G onto G with the kernel K
and Aasubgroupof Gsuchthat ANK=0.G= A+ Bifandonlyif G=A+ B
with B 2 K.

Now we prove Theorem 2. If G = A+ B, then p*G = p*A + p*B =
= p*B, thus p*G & B, whence p*G € A*. Thus from Lemma 3 we get that
it is enough to prove in G/p*G that A* = O. It is the same as to say that we
may suppose p*G = 0. If A* < 0, then there exists O = bc A* of order p.
Since the bound of G is that of A, it follows the existence of an element ac A
b of order p such that oo > H (a) = H (b). Applying Lemma 2 we get the
existence of an endomorphism ¢ such that by = @, contradicting A¥p& A*
(Theorem 1) and A N A* = 0. Thus Theorem 2 is proved.

Theorem 3 may be proved quite analogously, first reducing to the case of
p-groups, usmg the fact that in case Ais a p-group, G = A+ B, and p =+ ¢,
then G,= A, + B, = B, € B, thus 3G, & A* and then consxdermg G/A,G

instead of G. Then we argue as aboée, mutatis mutandis.

Theorem 4 does not need a proof, only the observation that owing to Lemma
3 we may discuss the case A* = O in which case Theorem 4 is reduced to Fuchs’s
theorem.

Finally, we prove the italicized asserfion, stated after Theorem 4. Let A
be a bounded p-group with the bound p* and of rank m not of the type >'C(p").
Then A = 3'{a.}, 0(a.) < p*. We may imbed A in G = “C (p*) in the “hatural

way. A p*G = O holds (for p*G = 0), but A is not a dlrect summand of G,
for the set of elements of order p is the same in A as in G.

® H, (x) denotes the height of the element x at the prime p.
? See ibid p. 80,



