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In this note we prove some theorems on congruence lattices of lattices. The
results are listed in § 1, where two unsolved problems are also mentioned. The
proofs are given in § 2-3.

§ 1. Results and problems

If K is a lattice, then let ®(K) denote the lattice of all congruence relations
of K. 1t is known (see [1]) that @(K) is a distributive lattice satisfying some continuity
properties (see below). It is natural to ask about the lattice-theoretical characteri-
zation of O(K). If K is finite, then ©O(X) is also finite, and conversely, every
finite distributive lattice L is isomorphic to a &(K) where K is finite too. This theorem
is due to R. P. DILwORTH and is mentioned in [1] without proof. No proof of this
theorem has been published as yet.

In this note we give a proof of this theorem; some generalizations are also
mentioned.

Before statmg the results some notions are needed. A lattice X is called section
complemented if K has a least element 0, and if every x with x =y has a complement
zin [0,¥], 1. e. xNz=0, xUz=y. The length of a chain C of n+1 ¢elements is n,
and the length of a finite lattice K is n if K contains a subchain of length » but no
subchain of length n+ 1.

TueorReM 1. Let L be a finite distributive lattice of length n. Then there exists
a finite lattice K= K(L) having the following properties:
(i) K is section complemented;
() &(K) is isomorphic to L;
(iii) the length of K is at most 2n—1;
(v) if L is irreducible, then also K is irreducible’;
(v} the congruences of K are permutable.

We do not use? the finiteness of L, only the fact that the partiaﬂy ordered set

Pofj Jom irreducible elements of L determines L, in fact: L =27 (P denates the dual

of P 27 denotes the lattice of all monotone functions defined on P with values
in the chain 2 of two elements). Thus we get

1 In fact, much moreis true. I Kis = K(L1), Ko = K{L2), L =L X L2, K=K(L), then K= K; X Kz
and conversely, if K=X(L), K= K; X Kz, then we can decompose L =1L, X Lz so that K; = K(L:),

=K(L:).

2 This remark is also due to R. P. DiLworTH.
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THEOREM 2. Let P be a partially ordered set. Then there exists a section com-
plemented locally finite® lattice K such that ©(K) =2F.

One can give several lattice-theoretical characterizations of 2P, Some of them
are included in

TueoreM 3. The following conditions* on the lattice L are equivalent:

() there exists a partially ordered set P such that L =27,

(ii) L is isomorphic to a complete sublattice of an atomic complete Boolean
algebra;

(i) L is complete and \ -distributive and every element of L is a {complete)
Join of completely join-irreducible elements;

(iv} L is a distributive compactly generated lattice in which every compact efement
is a finite join of join-irreducible compact elements,

(V) L is isomorphic to the lattice of all ideals of F, where F is a distributive
join semilattice with zero, such that every element of F is a finite join of join-irredu-
cible elements.

Finally, we give some conditions on a lattice K assuring that ®(K) satisfies
the conditions of Theorem 3.

If K is a lattice, and a, b, ¢, d€ K, then we write @, b L ¢, d if

(@NbUeNd)y=cNd, (@UBHU(eNd)=cld
or
(@Ub)yN(eUd)=clUd, (@ndN{cUd)=cNd.

E,"E»c“—d means the existence of a SEQUENCE X1, Vipeees Xny Vo such that 4, b
Lxyil. Axp,5c d. The interval [a, b] is irreducible if a=z,,...,z,=b, and
e, f ->Z;_1,2; OT g, h—~+z;_,,z; for every { imply that either the first or the second rela-
tion holds for all i Foliowmg CrawLEY [4], [a, 8] is called minimal if a,b—e, f
implies the existence of a sequence a=z,..., 7, =5, such that e, f ~z;_;,z; for all
i. Obviously, every minimal interval is irreducible, the converse does not hold in
general,

THEOREM 4. The following conditions on the lattice K are equivalent:

(1) for any a, be K (a=b) there is a sequence a=2z,,..., z,=b such that all the
intervals {z;_,, z;| are irreducible;

(2) in O(K) the law (DID)OU A(O,, a€4)=NOUO,; a€ 4) unrestrictedly
holds;

(3) there exists a partially ordered set P such that &(K) =2°;

(4) O(K) is isomorphic to a complete sublattice of an atomic complete Boolean
algebra.

3 I e. every interval [0, g} is ﬁnite
4 xelL is join irreducible if x== \/ y: implies x=y; for some i==1, 2,..., n; completely

join irreducible if x=V{(y., ag4) 1mp11es xE{y., aEA}. The element x is called compact if
x= V{(y. acd) implies x= V(¥., a€B) for some finite B 4. L is compactly generated if it
is complete and every element is the {complete) join of compact elements. A join semilattice
F is distributive if 1==x Uy implies t=x, Uy, with x;=x, y4=y. A non-void subset I of F
is an ideal if x U yel is equivalent to x, y&l. The set I(F) of all ideals of a distributive join
semilattice F partially ordered under set inclusion is a distributive lattice. L is V -distributive
if xN V(x., acd)y= Vix N x,, agd).
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Condition (1) is rather complicated, the equivalence of the others is more
interesting. We included (1) in order to get a theorem of CRAWLEY as a simple corollary.
Some easy corollaries of Theorem 4 are the following:

CoROLLARY 1. (CRAWLEY [4].) ©(K) is a Boolean algebra if and only if for any
a,bcK (a=b) there is a sequence a=z,,...,z,=b such that all the [z; ,, z;] are
minimal.

CoroLLARY 2. (HasHimoto [8], GrATZER and ScuMIDT [51.) The following con-~
ditions on a distributive lattice K are equivalent:

(1) K is locally finite (i.e. every interval is finite);

(2) ©(K) is a Boolean algebra;

(3) in ©(K) (DID) unrestrictedly holds.

COROLLARY 3. ©(K) is a chain if and only if every interval is irreducible.
The following two problems are worth mentioning:

ProsrLem 1. Let L be a compactly generated distributive lattice. Does there
exist a lattice K such that @(K) = L. Are further conditions on L necessary if we
require K to be section complemented?

ProBrem 2. Determine the least integer 6(») such that to any distributive
lattice L of length n there exists a lattice K with ®(K) = L and of length at most
o(n).

§ 2. The proof of Theorem 1

Let L be a distributive lattice, and P={p, ¢, r,...} the set of non-zero join irre-
ducible elements of L. The partial ordering relation in P is denoted by < the
covering relation by —. Our goal is to construct a lattice K with the properties
(i) —(v) of Theorem 1.

We define the set H as follows: the elements of H are those of P taken in two
copies: ¢!, g2 (g€ P); we set g' =q? if and only if ¢ is maximal in P. Let us agree
that ¢" denotes any one of ¢, ¢2; then ¢ will stand for the other of ¢?, ¢2.

We say that a subset G of H is closed if

(1) p<qg and ¢, p’€G imply p”’ € G. It is trivial that the set H is closed, and
the intersection of any number of closed sets is again closed. Thus the closed sub-
sets of H form a lattice K= K(L). We prove that K satisfies (i}—(v) of Theorem 1.

If G& H, there exists a least closed set G' containing . We denote by U and ()
the join and meet in K|, while by v, 4, "\ the set theoretical join, meet and difference.
We identify the element p” of H with the atom {p'} of K. If G, N€K, then

GUN=GVN, GNN=GnN.

Now let G, NcK, G2 N. We define F as (G\N)\F, where F, consists of
all p’ € G\ N satisfying

(2) there exists a g such that p<g, ¢ €G\N, p”€N.

We prove that F is the complement of N in G. First we prove F¢K, 1. e. that
F satisfies (1). Let us suppose p<gq, ¢, p € F. G is closed, thus p” €G. But p” €N
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is impossible, for this implies p" € F; by (2), contradicting p’ € F. p” ¢ F, implies by
(2) ¢/ €N, contradicting p’ € F, hence p” ¢ F,. Thus p” €G, p” ¢ N, p”’ ¢ F,, therefore
p’ €F, so Fis closed.

FOAONES(GN)r N=0, therefore F(\ N=0, Finally, we prove FUN=G. But
Fv NG (GN\N)vN=G, hence it is enough to prove that p’ € G implies p"€¢ FUN.
Butif p’cG, p" ¢ FUN, then p’ € Fy, hence p” and a suitable g satisfy (2), We choose
p so that ¢ be as great as possible. g"€ F, for if ¢’ ¢ F, then ¢’ € F, and there exists
anrsuch that g <r, ¥ € GN\N. Thus ¢" and # satisfy (2), ¢ <r contradicting the maxi~
mality of g. Thus ¢’ € F, p’€ Fy, and so p” € N. Hence p<gq, p”’, ¢ € FUN, so (1)
implies p’ € FUN finishing the proof of part (i) of Theorem 1.

Now we fix r€ P and define 4(r) to consist of all p/, p” such that p=r. A(r)
obviously satisfies

(3) p' € A(») implies p” € A(r).

Thus every A(r) satisfies (1) i. e. A{r)€ K. Now we prove the equality

4) ANUN=A(r)vN for every NcK.

It is enough to prove that A(r)vN is closed. To this end let p”, ¢’ € A(NVN
and p~gq. If any one of p”, ¢’ is in A(r), then p=r, thus p’€ A(r)vN. If no one
of them is in A(r), then p”, ¢’ € N, thus by the closedness of N we get p€NG
C A(r)vN, so A(rv N is closed.

The equality

AP V(XA V) =(AEVX)NA@VY) (X, YEK)

is trivial. But every v may be replaced by U owing to (4) and the A by N, so
we get

AN UENY)=(AAUX)N(4(NUY) for all X, YK,

which means, in the terminotogy of O. OrE [11], that A(r) is a distributive element
of K, implying ([11], pp. 622 —623) that the principal ideal generated by A4() is a
congruence class under a suitable congruence relation.

It is well known ({1}, p. 23) that in a section complemented lattice every congru-
ence relation © is completely determined by the ideal I{(®)={x; x=0 (©)}. Thus
@ =@ if and only if I(®) o I{®D). Further, every ideal J of a finite lattice is determined
by its greatest element; let 4(®) denote the greatest element of I{@). Thus © - A(®)
is a one-to-one order preserving correspondence between @(K) and the elements
A(®). :

We have already proved that every A{(r) is an A(®), now we prove that every
join-irreducible 4(®) is an A(r). Let ® ¢ ©(K) and let v’ be an atom of K such that
¥ =0 (0). Denote by O(r") the least congruence relation under which r" =0. Obviously
O =V(0({); ¥=0 (0)); hence if © is join-irreducible, it follows that © =©(r').
We prove that p € A(r) implies p =0 (@). Two facts must be proved. First: p’ =0 (0)
implies p” =0 (®), secondly: p~<gq, ¢’ =0 (@) imply p’ =0 (). These two assertions
prove the above one mentioned because by the finiteness of P p <r implies the
existence of a chain p=p, <p, <...<p,=r and an n-fold application of the two
assertions implies p’ =0 (©). To prove the first assertion we may suppose p’ #p”,
and then there is an s€P such that p <s; p" =0 (8) implies p’ Us =5(0) and by
@) pr=pUs’, thus p”=p" N{p'Us)=p”" N5 =0 (©). Now we prove the second
assertion: ¢’ =0 (®) implies p’Ug =p’ (@) and p”" Ug =p” (©); but p' <p”Uqg’,
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p’<p'Ugq by (1), thus p’Uqg =p”Ugq’. Taking the meet of the two congruences
we get p” Uqg =0 (@), and meeting by p”” we conclude p”’ =0 (@), as desired.

To sum up: there is a one-to-one order preserving correspondence between
the join-irreducible congruences of K and the A(r) and between the A(r) and r;
hence the partially ordered set of join-irreducible congruences is isomorphic to P,
finishing the proof of (ii) of Theorem 1.

In [7] we have proved that in a section complemented lattice the congruences
are permutable; this establishes (v) of Theorem 1.

Instead of part (iv) of Theorem 1 we prove the assertion of the footnote to
part (iv). Let L=L, XL, and P,=PrL;, P,=PrL,. Then P=P,vP, and
x€P,, yC P, imply that x and y are incomparable, in symbol P =P, + P, (cardinal
sum). This obviously implies K(L)=K(L,) X K(L,). The converse statement may be
proved in the same way.

It remained to prove (iii). K is a section complemented finite lattice, conse-
quently, its length is less than or equal to the number of atoms. We prove that
K has at most 2n — | atoms. Indeed, if x denotes the number of maximal elements
of P, then K has x +2(n— x) =2n — x atoms. The smaller is the x the greater is the
number of atoms of K. The least value of x is 1, so K has at most 2n—1 atoms.
The estimation is the best possible, for if L=2-141, i.e. L is a Boolean algebra
of n—1 atoms, with a new unit element adjoined, then the length of L is n and the
length of K is exactly 2n —1.

§ 3. The infinite case

Let P be an arbitrary partially ordered set, and define H by taking every element
of P in two copies p!, p2. We agree again in putting p! =p? if and only if p is maxi-
mal in P. The subset GS H is closed if
@) p<q, p,q €G implies p”€G.

We define K as the lattice of all finite closed subsets of H. K is a lattice, for
the closure of a finite subset of H is finite again. One can prove in the very same
way as in the finite case that K is a section complemented lattice.

To every r€ P we define the ideal A(r) consisting of all 4 € K such that p’ ¢ 4
implies pzr. The reasoning that proved in the finite case that A(r) is a
distributive element, proves now that (r) is a distributive ideal. Further, if r =0 (®)
in K, then 4 =0 (©) for every 4 € A(r). This implies that the join-irreducible compact
congruence relations are just those which are determined by the (r), further, K
is locally finite, thus every compact congruence relation is a finite join of join-irre-
ducible ones. It follows that ©(K) is isomorphic to 2%,

Several characterizations of lattices which occur in Theorem 2 are given in
Theorem 3. Now we prove the equivalence of conditions (i)—(v) of Theorem 3.

The equivalence of (ii) and (iii) is a special case of a theorem of BUcHI [3].
The equivalence of (iv) and (v) follows from a theorem of NacHBIN [10]. Hence
it is enough to prove the implications (i) — (ii) —(iv) —(i).

It is easy to verify that 2f is isomorphic to S(P), where S(P) denotes the set of
all s-ideals of P. An s-ideal H of P is a subset such that x € H and y=x imply y€ H.
S(P) is a complete lattice in which the complete join and meet coincide with the
set-theoretical join and meet.
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Now if L=2P then L == S(P), the latter being a complete sublattice of the com-
plete atomic Boolean algebra of all subsets of P; thus (i) —(ii) is proved.

If L is a complete sublattice of an atomic complete Boolean algebra, then L
is complete and for any p € B, p is of finite height, thus we may take the least element
A(p) of L which is =p. It is routine to check that an element of L is compact if
and only if it is of the form A(p). Further, A(p) is join-irreducible if and only if

n n
p is an atom, and if p==V p,, where the p;-s are atoms, then A(p) =V 4(p,); thus
i=3 i=1

(ii) —(iv) is completely proved.’

Finally, if L satisfies (iv), then let P denote the partially ordered set of join-
irreducible compact elements of L. The proof of L= S(P) is straight forward. Then,
on using the note we made at the beginning of the proof, we see L =27, finishing
the proof of (iv) ~(i) and of Theorem 3.

Theorem 4 is nothing else but an application of Theorem 3. If a, b€ K, we
denote by ©,, the least congruence relation under which @ =b. A congruence relation

© is compact if and only if it may be written in the form @ =V ©,,.
i=1

O(K) is V-distributive [1], and every element is the meet of completely meet-
irreducible elements [2], further ®(X) is compactly generated.

0, (a=b5) is join-irreducible if and only if the interval [a, b] is irreducible
(the irreducibility of an interval being defined before Theorem 4).

Thus for a ©(K) condition (1) of Theorem 4 is the same as (iv) of Theorem 3;
(2) of Theorem 4 is identical with the dual of (iii) of Theorem 3; (3) is the same as
(i) in Theorem 3; and (4) is equivalent to (ii) of Theorem 3. But condition (i) of
Theorem 3 is self-dual, hence not only the conditions of Theorem 3 are equivalent,
but they are aiso equivalent to their duals. We infer that the conditions of Theorem
4 are equivalent.

2% is a Boolean algebra if and only if P is unordered. Thus ®(L) is a Boolean
algebra if © and ® are compact join-irreducible congruences, then neither © >®
nor ® <® does hold. But a join-irreducible ® =0,, has this property if and
only if it is minimal in the sense defined before Theorem 4. Thus Corollary 1 is
proved.

If K is distributive, a<b, a, b€ L, then 0,=0, U®,, with every a<c<b
and ©,, 0, <0,. It follows that the following three conditions are equivalent:
1. ®,, is irreducible; 2. ©,, is minimal; 3. [a, b] is a prime interval, i. e. no ¢ exists
with ¢ <c<b. Now Corollary 2 is trivial.

Corollary 3 does not call for proof.
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