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In this note our aim is to prove the following

Theorem. A necessary and sufficient condition for an abelian group
G to contain a universal subgroup 1) Z such that G/Z is a universal homo-
morphic image 2) is

(a) for p-groups: r(p'@) is O or infinite, for every integer ¢;

(b) for torsion groups: every p-component of G fulfils (a);

(c) for groups with torsion free rank 1(>0): t is infinite.

This theorem solves completely a problem of L. Fuons ([1], p. 352,
Problem 85).

For convenience sake we call a universal subgroup Z perfect if GJZ is
a universal homomorphic image.

Remark 1. Condition (a) means the following: @ is either bounded
and pk-1G is infinite, where % is the smallest integer with p*G =0, or @
is unbounded and the final rank of & (fin r(G)=min 1(p'G)) is infinite.

Remark 2. Comparing our theorem with a theorem of L. Fucas 3)
we find that the existence of universal subgroups implies in almost all
cases the existence of a perfect universal subgroup Z. The exceptions are:
{(a1) G is a bounded p-group such that pF-16G is finite but not 0; (b)) ¢ is
a torsion group every p-component of which fulfills (a) or (a1) and at
least one:p-component fulfills (a1}; (c1) the torsion free rank of ¢ is a
natural integer v and G'=T"+ Y C(cc), where T is a torsion group satis-
fying (b) or (by). i

For the notions and notations we refer to [1].

We need the trivial

Lemma. If Z;is a universal subgroup of & and U, a universal homo-
morphic image and if we have for a subgroup Z of @

1y A subgroup Z of @ is a universal subgroup if every subgroup of G is isomorphic
to a homomorphic image of Z {see [1], p. 341, or [2]).

2} A homomorphic image U of & is called universal if every homomorphic image
of G is isomorphic to some subgroup of U (see [1] p. 336, or [2]}).

3} See {1}, p. 343, or [2].
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1°. Z; is a homomorphic image of Z;
2°.  U; is isomorphic to a subgroup of G/Z,
then Z is a universal subgroup and //Zis a universal homomorphicimage of G.

Proof of the Theorem.

Case (a). Necessity. From the theorem of Fuchs, mentioned in
remark 2, we know that fin 1(@)=0 or infinite. Hence we need only
consider the case that t(p*@)=0, O0#1(p*1Q)<oco, Then ZC @G, Z ~@G
imply 1(p*-1Z)=1(p*-1(), thus pt-1Z=p%-1¢ and it is 1mposs1ble that ¢
is isomorphic to a subgroup of G/Z.

Sufficiency. First, let ¢ be a bounded p-group with the minimal bound
p*. Then G=G1+ ... +G, where G;= C(p?) and v(Gy)=r(pF1Q); thus
the condition implies that Gy is infinite. We put G;=G;" +G;", where
G =0 or Q4" =~ Gy according as G; is finite or not. Then Z= Ek: G is

i=1
a perfect universal subgroup, for we may choose in the Lemma G ~Z; >~ U,
as Z ~ @ (in fact, Z = G); that G is isomorphic to a subgroup of G/Z
is trivial.

Secondly, if G is unbounded, fin ¢(G)> Ro follows from the cendition.
Then we may decompose 4) G=0G1-+G, where G1 is a bounded group
satisfying (a) and fin ¢(G)=1(Gz)=m. It follows that G contains a sub-
group ¥ isomorphic to the free p-group 5) F,(imn); let B be a lower basic
subgroup ¢) of F. We define Z=2"4 B, where Z’ is a perfect universal
subgroup of Gi.

The case (b) is trivial.

Case (¢). Necessity. If the torsion free rank t{>0) is finite, then Z ~ @,
G CZ imply r=10(G)=10(Z) and thus 1o(G/Z)=0, contradicting the fact
that @ is isomorphic to a subgroup of G/Z.

Sufficiency. Let t be infinite. We may decompose 7) G =G+ G» such
that ¢4 is a torsion group with bounded p-components satisfying (b),
thus having a perfect universal subgroup Z’ and /3 contains subgroups
H =~ F(x) and H; >~ Fp(m;) where my denotes the final rank of the pi-
component of the maximal torsion subgroup of G5 while

{H, Fy, Fo, }EH—%—EF;

We define Z=2"+ K+ B, where KCH, H/K~> R+ 3 Y C(p°) where
t mp<T Wy
the summation is for all ¢ with m; <t;=max (r, m;), further B is a lower

4) This follows easily from‘ Theorem 3E.5 of [1].
5 See [1], p. 39.

6 See [1], p. 185 and Theorem 31.4.

7} Lemma 87.2 of [1L
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basic subgroup of > H;. We may choose8) Uy=G1+> R+ 3 C(p)
14

mi=> Ry it
and Z1=G1+ F(r)+ 3 Fp(m).
m= R
Now Z ~ Z, and that U, is isomorphic to a subgroup of G/Z is clear from
> Hi~> Y O(@). Thus the proof of the theorem is complete.

m; =N, i =¥,

8) See [1], p. 338 and p. 342.
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