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18 G. GRATZER AND E. T, SCHMIDT

Introduction

The subject of this paper is to define a special class of lattice ideals,
the class of standard ideals, and to examine its properties in detail. Before
giving the definition of standard ideal we want the reader make acquainted with
three tendencies of modern lattice theory which lead naturally to this notion.

The distributive lattices play a central role in lattice theory. This may
be explained, on one hand, by the fact that lattices were abstracted from
Boolean algebras through the distributive lattices. On the other hand, the
distributive lattices have a lot of important properties that lattices in general
do not have and, consequently, many of the researches were restricted to
distributive lattices.

This fact gives the reason why some mathematicians have tried to define
types of elements resp. ideals of lattices which preserve some properties of
distributive lattices. It was of importance when in his paper [23] O. ORE has
defined the notion of neutral element and ideal in modular lattices, and it
was also of significance that in [4] G. BIRKHOFF succeeded in defining these
notions in arbitrary lattices. The neutral elements play a central role, for
instance, in the theory of direct factorizations of lattices (see [6]). Therefore
the question how it is possible to generalize this notion to a wider class of
lattice elements and ideals seems to be of interest.

Another trend of researches wants to elaborate the theory of lattice ideals
similarly to the theory of ideals in rings or invariant subgroups in groups.
Chiefly we are thinking of the fact that any ideal of a ring is the kernel of
one and only one homomorphism, furthermore the ideals satisfy the well-
known isomorphism theorems, the lemma of Zassenhaus and the Jordan—
Holder—Schreier refinement theorem. Such efforts have to overbridge many
difficulties. Naturally, within the Boolean algebras — since the Boolean
algebras are rings as well — the researcher does not meet any difficulty.
It is also easy to setfle this question in distributive lattices, only a good
definition of the factor lattice is needed. (The simplest possible method is
the following: we embed the distributive lattice in a Boolean algebra — for
instance by the method of [13] — and so we get from the well-known
notions and theorems of Boolean algebras the same in distributive lattices.)

The case of general lattices is not so simple. In general, the above
mentioned theorems are not true. In his paper [31] K. SHODA avoided these
difficulties by a suitable definition of the factor algebra; this definition of
factor algebra, however, in case of lattices does not seem to be applicable.
This was pointed out in [14] by ]. HAsHIMOTO, remarking that this definition
of factor algebra in chains gives only the factor chain of two elements.



STANDARD IDEALS IN LATTICES 19

In [14], using an other definition of factor lattices, J. HASHIMOTO has
proved interesting isomorphism theorems. HASHIMOTO made the very strong
restriction: all the ideals occurring in the isomorphism theorems, are neutral.
The question arises: is it possible to enlarge the class of neutral ideals,
preserving the validity of the isomorphism theorems?

The third tendency of researches that we are going to sketch has started
from the Birkhoff—Menger structure theorem of complemented modular lattices
of finite length (see G. BirkHOFF [2], [3] and K. MENGER [22]). This structure
theorem asserts that the lattices of the above type coincide with the direct
products of simple lattices. A theorem of R. P. DiLworTH [8] states that this
structure theorem remains true without any alteration if we omit the suppo-
sition of modularity (of course, we must change the word ‘‘complemented”
to “relatively complemented”). In fact, with this theorem began the investigation
of the structure of relatively complemented lattices. The aim of these researches
is to prove the results of the theory of relatively complemented modular
lattices for relatively complemented lattices as well (some example from among
these kinds of papers: J. E. McLAUuGHLIN [20], [21] and G. SzAsz [32)).

The following theorem of G. BIRKHOFF [6] is well known: in a com-
plemented modular lattice if we let a congruence relation @ correspond to the
ideal of all x with x=0 (@), then we get a natural one-to-one correspondence
between neutral ideals and congruence relations. A theorem of SHIH-CHIANG
WANG [34], connected with this theorem of G. BIRKHOFF, asserts that the
lattice of all congruence relations of a complemented modular lattice is a
Boolean algebra if and only if all neutral ideals are principal. However, if
we want to formulate these theorems for relatively compiemented lattices or
for section complemented lattices (i. e. in which the intervals [0, a], as lattices,
are complemented), then we do not get in general true assertions. So the
question arises, how it is possible to get natural generalizations of these
theorems for relatively complemented lattices, i. e. one may ask for the class
of ideals, that plays, from the point of view of homomorphisms, a similar
role in relatively complemented (section complemented) lattices, as the neutral
ideal in complemented modular lattices.

We see that the developments of these there tendencies of lattice theory
raise a common request, namely, that of finding appropriate generalizations
of neutral ideals, of course, one generalization to each tendency! It was a
great surprise to us, when it became clear that the very same generalization
of neutral ideals answers all the questions raised above. This generalization
is given by the notion of standard element and ideal.

An element s of the lattice L will be called standard if

xnsuy)=(Exnsuxny
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for all pairs of elements x,y of L. A standard ideal of L is defined as a
standard element of the lattice of all ideals of L.

The aim of the present paper is to study the most important properties
of the standard elements and ideals and, as an application, to prove that the
standard ideals make us possible to develop further the above listed three
tendencies of lattice theory. We will prove that in some respects the notion

~of standard ideals is the best-possible one. Namely, the class of standard
ideals is the widest one, satisfying the first isomorphism theorem, provided
some natural conditions are assumed. Many other properties are also typical
to the standard ideals, e. g. the existence of a “dictionary” — as given below.
But, of course, if somebody will try to develop a theory of certain type of
ideals, satisfying the requirements only of one of the above mentioned tend-
encies, then he will go further at the direction than we did.

It will appear from this paper that the notion of standard ideal corre-
sponds to the notion of invariant subgroup of groups. Several theorems of
group theory may be “translated” to lattice theory using the following “dic-
tionary”:*

subgroup - ideal

invariant subgroup — standard ideal
factor group — factor lattice?
group operation — join operation.®

We will use this “dictionary” for getting the appropriate forms of the
isomorphism theorems, the Zassenhaus lemma, the solution of Schreier’s
extension problem and so on. We will see that the “dictionary” works well
in all these cases. We get, of course, only the translations of the theorems
but not those of the proofs!

The dictionary may be used also for translating negative assertions.
An example: the invariant subgroup of an invariant subgroup is in general

! The “dictionary” may be used only in translating from group theory to lattice theory
but not in the reversed direction! Therefore we used the sign - instead of equality.

2 modulo a standard ideal!

3 In the colloquium on Paitially Oidered Seis (Oberwolfach, 26—30 October 1959)
we have delivered a lecture in which a sketch of this theory was given. After the lecture
Professor R. H. Bruck proposed an extension of the dictionary, that — after a short dis-
cussion — led to the correspondence

abelian group -~ distributive lattice.

Using this, one can define the colvability of a lattice, notions corresponding to the centra-
lizator, and commutator subgroup and so on. it may be hoped that one can elaborate this
part of the theory.
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not invariant in the whole group and the same is true for standard ideals.
(It is worth while mentioning that the neutral ideal of a neutral ideal is
neutral in the whole lattice.) '

Despite the fact that the notion of standard ideal is more general than
that of neutral ideal, there appeared a lot of new properties of neutral ideals
from the study of this generalization. Besides many not all too imporiant
properties, the best example is the result of Chapter VI (Theorem 23). This
theorem characterizes neutral ideals in a special class of modular lattices.
However, the proof shows clearly that the assertion is a typical one for stand-
ard ideals. Hence, we may say, that in this theorem we use the standard
ideals as a method of proof.

The paper consists of six chapters.

The first chapter is of preliminary character. It contains notions which
are not generally known, while for the fundamental notions of lattice theory
and general algebra we refer to [6], [16] and [29]. The frequently used notions
and theorems from the literature are enumerated.

In Chapter Hi, after the definition of standard element and ideal, we
prove the two fundamental characterization theorems. In the remaining part
we deduce some properties of the standard element and ideal which seems
to be of importance.

In Chapter I we are interested in the connections between standard
and neutral elements. In § 1 we verify the simplest connections, but already
from these we deduce a new proof of a theorem concerning neutral ideals;
a proof of this theorem within the theory of neutral ideals does not seem to
be an easy task. In § 2 we prove the coincidence of standard and neutral
elements in a rather wide class of lattices including modular as well as
relatively complemented lattices. In § 3 we give a necessary and sufficient
condition for a standard element to be neutral. In §4 we deal with the
lattice of all ideals of a weakly modular lattice. We prove that the lattice of
all ideals is not necessarily weakly modular. In the remaining part of the
section we discuss some properties of the ideal lattice.

In Chapter IV we prove that the class of standard ideals and that of
the homomorphism kernels coincide in section complemented lattices. From
this we infer the generalizations of the above mentioned theorems of
G. BIRkHOFF and S. WaNG. Then we prove the isomorphism theorems, the
lemma of Zassenhaus and some of its consequences. In the last section we
solve the lattice-theoretical equivalent of Schreier’s extension problem.

In Chapter V we first prove that any distributive equality is capable of
the characterization of the neutrality of an element of a modular lattice. Then
in § 2 we prove that in modular lattices the uniquely relatively complemented
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elements are just the neutral ones, and thus we get a generalization of a
well-known theorem of vON NEUMANN.

In Chapter VI we deal with ideals satisfying the first isomor-
phism theorem. In § 1 for a special class of section complemented lattices,
while in § 3 for modular lattices with zero and of locally finite length we
prove that this class of ideals coincides with the class of neutral ideals. In
§ 4 we show that under some natural conditions the standard ideals form
the widest class of ideals satisfying the first isomorphism theorem.

There are 20 unsolved problems given at the end of the corre-
sponding sections. We hope some of the readers will find it interesting to
deal with them.

CHAPTER |
PRELIMINARIES

§ 1. Some notions and notations

The partial ordering relation will be denoted by <, in case of set lat-
tices (that is lattices the elements of which are certain subsets of a given
set) by <. In lattices the meet and the join will be designated by n and U,
and the complete meet and complete join by A and V. The least and greatest
element of a partially ordered set (or of a lattice) we denote by 0 and 1.
If a covers b (i.e. a>b, but a>x>b for no x), then we write a>b.

If a(x) is a property defined on the set H, then we define {x;e(x)}
as the set of all x € H for which e(x) is true. Hence in partially ordered sets
(a}=={x; x = a} is the principal ideal generated by «, while {x;a =x = b}
is the interval [a, b], provided that a=b. If b covers g, then the interval
[a, b] is a prime interval. The dual principal ideal is denoted by [a).

If any;two elements a,b of L, satisfying a <#b, may be connected by
a finite maximal chain, then L is said to be semi-discrete. If the lengths of
the maximal chains of the lattice L are finite and bounded, then L is called
of finite length. If all intervals of the lattice L, as lattices, are of finite length,
then L is of locally finite length. If L has a O and is of locally finite length,
furthermore for all a¢ L, in [0,a] any two maximal chains are of the same
length, then we say that in L the Jordan—Dedekind chain condition is satisfied.
In this case the length of any maximal chain of the interval [0, a] will be
denoted by d(a), and d(x) is called the dimension function.

Let P and Q be partially ordered sets. The ordinal sum of P and Q
is defined as the partially ordered set, which is the set union of P and Q,
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and the partial ordering remains unaltered in P and Q, while x <y holds
for all x € P and y € Q; this partially ordered set will be denoted by P& Q.

The set of all ideals of a lattice L, partially ordered under set inclu-
sion, form a lattice, which will be denoted by /(L).

Lemma L. I(L) is a conditionally complete lattice. The meet of a set of
ideals (if it exists) is the set-theoretical meet. The join of the ideals I, (e € A)
is the set of all x such that

X = iczx Ueee U ia,n_ (ia}- € !aj)
Jfor some elements «; of A.

If A is a general algebra and @ is a congruence relation of A, then
the congruence classes of A modulo @ form a general algebra A(®). This
is a homomorphic image of A.

We will use the two general isomorphism theorems (REDEI [29]):

THE FIRST GENERAL ISOMORPHISM THEOREM. Let A be a general algebra
and A’ a subalgebra of A, further let @ be an equivalence relation of A such
that every equivalence class of A may be represented by an element of A'. Let
@' denote the equivalence relation of A" induced by ®. If © is a congruence
relation, then so is @ and

A(O) = A(®).

The natural isomorphism makes a congruence class of A correspond to the
contained congruence class of A'.

THE SECOND GENERAL ISOMORPHISM THEOREM. Lef A’ be a homomorphic
image of the general algebra A, let @ be an equivalence relation of A, and
denote @' the equivalence relation of A’ under which the equivalence classes
are the homomorphic images of those of A modulo ©, and suppose that no
two different equivalence classes of A modulo ® have the same homomorphic
image. Then & is a congruence relation if and only if @ is one and in
this case

A(O) = AN(®)).
The natural isomorphism makes an equivalence class of A correspond fo its
homomorphic image.

§ 2. Congruence relations in lattices

Let @ be a congruence relation of the lattice L, and denote by L(®)
the homomorphic image of L induced by the congruence relation ©, that is,
the lattice of all congruence classes. If L(®) has a zero, then the complete
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inverse image of the zero is an ideal of L, called the kernel of the homo-
morphism L — L(@).

A simple criterion for a binary relation 7 to be a congruence relation
is formulated in

LEMMA 1I. (GRATZER and ScHMIDT [12].) Let n be a binary relation de-
fined on the lattice L. v is a congruence relation if and only if the following
conditions hold for all x,y, 2 € L:

(@) x=x (n);

(b) xuy=xny (n) if and only if x=y (n);

©xzyz=z x=y@m) y=z (@) imply x=2 (1’;

(d) xz=y and x=y (), then xUz=yUz (n) and xnz=ynz (n).

The congruence relations of L will be denoted by ®, @,.... The set
of all congruence relations of L, partially ordered by “©® = @ if and only
if x==y (O) implies x=y (®)”, will be designated by G(L).

LeEmma 1. (BIRKHOFF [4] and KRISHNAN [18].)* @ (L) is a complete laftice.
X=y (/\A@,,) if and only if x=y (0.) for all «a € A; x=y (VA@“) if and
s et

only if there exists in L a sequence of elements XUy=2,= 2, =+ = 2, =
=XxNy such that z=2z.1 (Ou) (i=1,2,...,n) for suitable «a,...,e,€A.

The least and greatest elements of the lattice @(L) will be designated
by @ and ¢, respectively.

Let H be a subset of L, ®[H] will denote the least congruence relation
under which any pair of elements of H is congruent. This we call the con-
gruence relation induced by H. If H has just two elements, H=={q, b}, then

O [H] will be written as ®,. The
oaub congruence relation @, is called
minimal.
aub First we describe — following
end R. P. DILWORTH — the minimal con-
gruence relation @,. To this end
we have to make some preparations.

Given two pairs of elements
a, b and ¢, d of L, suppose that
either

cud

cud

anb
anbo cnd

cndzanb
al b) and
. Fig. 1 (cnd)yu(aub)=cud,

* See also Gratzer and Scumior [12].



STANDARD IDEALS IN LATTICES 25

or
cud=aub and (cud)n(anb)==cnd.

Then we say that a, b is weakly projective in one step to c,d, and write

a, b.c,d. The situation is given in Fig. 1. In other words, a, b »c,d

if and only if the intervals [(aub)nend,aub), [cnd,cud] or [anbd,

(anbyucudl], [end cud] are transposes in the sense of [6].

If there exist two finite sequences of elements a==xp, X1,..., Xa=¢
and b==Yyy,...,¥.=d in L such that
) @, b==X0, Yo—> X1, Y —> ++* == X, Pu=1¢, d,
then we say that a, b is weakly projective to ¢, d, in notation: @, b—- ¢, d, or
if we are also interested in the number n, then we write @, 6-"¢, d.

Iif a,6-'-¢c,d and ¢, d-'-a, b, then a,b and c,d are transposes,
and we write a, b ¢, d. If the sequence (1) may be chosen in such a way
that the neighbouring members are transposes, then a,b and ¢, d are called
projective, and we write a, b«-c¢, d.

The notion of weak projectivity is due to R. P. DiLwoRrTH [8] (see also
Macrcev [19], GrATZER and SCHMIDT {12]). DiLwoRrTH uses his terminology
just reversed as we do.

The importance of this notion is shown by the fact that a, a, b—c,d and
a="b (O) imply c=d () (applying this to &=, we get that a =10 im-
plies ¢==d, a fact which will be used several times).

Now we are able to describe @y

THEOREM L. (R. P. DILwORTH [8].) Let a, b,c,d be elements of the lat-
tice L. c==d (@) holds if and only if there exist y; € L with

@) cUd=yp=pnz =ph=cnd and a,b-—»y;-l,yi
(i=1,2,...,h.
It is easy to ‘describe ®[H], using Lemma III, Theorem I and the fol-
lowing ftrivial identity:
3) OlH]= V Ou.

a, bEH
The symbol G@[H] will be used mostly in case H is an ideal. Then
one can prove the following important identity (see [14]):
@ O[VI]=VOlL] (I € I{L)).

The following definition is of central importance in this paper. Let L
be a lattice and 7 an ideal of L. By the factor lattice L// of the lattice L
modulo the ideal / is meant the homomorphic image of L induced by @[/], i. e.

L/I = L(B[I}).
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Finally, we mention the definition of permutability: the congruence re-
lations @ and @ are called permutable if a=x (@) and x=0b (@) imply
the existence of a y such that a=y (@) and y=6b (O).

§ 3. Lattices and elements with special properties

2 will denote the lattice of two elements.

Let U denote the non-modular lattice of five elements, generated by
the elements p, g, r, thatis, p>¢q, pUur=quUr=i, pnr=o. V will denote
the modular, non-distributive lattice of five elements with the generators
D, q, r, that is, pUg=qUr=rup=1i, png=qnr=rnp=o.

An element d of the lattice L is called distributive if
(5) du(xny)=(@ux)nduy)
for all x,y¢ L. In [25] O. ORE has proved that d is distributive if and only
if x=y (O[(]]) implies xUy=[(xny)ud]n(xUy).

An element n of L is said to be neutral if the sublattice {n, x, y} is

distributive, where x and y are arbitrary elements from L. The following
theorem will be useful:

THEOREM II. (ORE [24].) The elements x,y,z € L generate a distributive
sublattice of L if and only if for all permutations a, b, ¢ of x,y,z the fol-
lowing equalities hold:

(6) audne)y=(@ub)n(auc),
) an(ucy=(@nb)ulanc),
8) (@anb)udncoulcnay=(@ub)nduc)n(cua).

COROLLARY. An element n of L is neutral if and only if for all x,y €L
the five equalities obtained from (6)—(8) by substituting permutations of
x,y,n hold.

REMARK. It will follow from the theory of standard elements that this
corollary may be sharpened, omitting three from the five conditions.

THEOREM IlI. (BIRKHOFF [5].) An element n of L is neutral if and only if

@) nu(xny)=@mux)n(ruy) foral x,y€lL;
) nnxuy)y=(@nx)u(any) forall x,y€L;
(ii) nnx=nny and nUx=nUy (x,y€L)

imply x =1y, i.e. the relative complements of n are unique.

THEOREM IV. (ORE [24].) An element n of a modular lattice L is neutral
if and only if condition (i) (or equivalently, condition (i) is satisfied.
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An ideal / of L is called distributive if it is a distributive element
of I(L). 1 is neutral if it is a neutral element of I(L).

The lattice L is weakly modular (see GRATZER and ScHMIDT [12]) if
from a, b —c,d (a,b,c,d € L;c=~d) it follows the existence of a;, b €L
satisfying anb=ai<b=aub and ¢, d—>ay, b;.

LEmma IV. (GRATZER and ScumiDT [12].) Let the lattice L be

A) modular, or

B) relatively complemented, or

C) simple.

Then L is weakly modular.

A lattice L with zero is calied section complemented if all of its in-
tervals of type [0, a] are complemented as lattices. In general, the lattice L
is section complemented if any element of L is confained in a suitable prin-
cipal dual ideal which is section complemented as a lattice.?

The following assertion is trivial:

Lemma V. Any relatively complemented lattice is section complemented.
Finally, we mention the V-distributive law:
XN Vye= V(XN ¥a).

A complete lattice L is called V-distributive if this law unrestrictedly holds in L.
Of importance is the theorem of FuNavAmMA and NAKAYAMA that asserts:
O(L) is V-distributive.
The partition lattice P(H) of the set H is defined as the partially
ordered set of all partitions of H, where the partition p is said to be smaller
than g if p is a refinement of g.

CHAPTER 1
STANDARD ELEMENTS AND IDEALS

§ 1. Standard elements
We begin with repeating the definition of standard elements:
The element s of the lattice L is standard if the equality
9) xn(sup)=xns)u(xny)
holds for all x,y€ L.

5 The section complemented lattices with zero are called by Hermes [16] ,,abschnitt-
komplementdre Verbinde”. The English name was suggested by Mr. Lorenz.
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First of all, let us see some examples for standard elements. In the
latice U (see Chapter I, § 3) p is a standard element. At the same time, it
is clear that p is not neutral. (Furthermore, in the same lattice (r] is'a ho-
momorphism kernel, but r is not standard.)

Obviously, any element of a distributive lattice is standard. Further-
more, in any lattice the elements O and 1 (if exist) are standard elements.

The simplest form for defining standard elements is the equality (9),
however, it is not the most important property of a standard element. Some
important characterizations of standard elements are given in

THEOREM 1. (The fundamental characterization theorem of standard ele-
ments.) The following conditions upon an element s of the lattice L are equi-
valent :

(¢) s is a standard element,

(8) the equality u=(uns)u(unt) holds whenever u=sut (u,t€L);

(y) the relation O, defined by “x=y (0;) if and only if (xny)Us =
XUy for some s = 5", is a congruence relation;

) for all x,y¢clL

@) su(xny)=(@sux)n(suy),
(ii) sNx==snNy and sUx=sUy imply x=}y.

Proor. We will prove the equivalence of the four conditions cyclically

(«) implies (8). Indeed, if (¢) holds and uw=sU¢{, then u=un(sut).
Owing to (9) we get u=(uns)u(unt), which was to be proved.

(8) implies (y). Using condition (8) and Lemma II we will prove
that @, as defined above is a congruence relation.

(a) x=x (0,). Indeed, for any x € L, the equality (xnx)u(xns)=x
trivially holds, so if we put sy=xns, we get the assertion.

(b) xny=xuy (6, if and only if x=y (6,). Thisis trivial from the
definition of ;.

©) xz=y=zx=y (0, and y=2z (0,) imply x=2z (6,). By hypo-
thesis x=yUs, and y=2zU ss for suitable elements s, s» = s. Consequently,
Xx=ypUsi=(2USs)Usi=2zU(s1Usz) for s Us;=s, that means, x=2z (6,).

(d) In case x=y and x=y (0,) hold, xUz=yUz (B,) and xNz=
=ynz (0. In fact, by assumption x=yUs (si=s), and hence we get
xUz=(yUz2)Usi,that is xuz=yuUz (®,). To prove the second assertion,
we start from the relations x==yuUs;, and xnz=yUs =yuUs Applying
condition () to u=xnz t=y and using xny=y, we get

xnz=(xnzns)u(xnzny) =(ynz)us,
where ss=xn2z2ns =s, which means xnz=ynz (6.).
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(y) implies (d). First we prove that (y) implies (i). According to the
definition of @, the congruences x=sUx (®,) and y=sUy (6;) hold for
arbitrary x,y€L. We get xny=(sux)n(suy) (6. By monotonicity,
xny=(sux)n(suy), hence again by the definition of @, it follows that
(sux)n(suy)=(xny)us, with suitable s, =s. Joining with s and keeping
the inequalities sy =s and s=(sux)n(suy) in view, we derive sU(xNy) =
={sUXx)n(suUy), which is nothing else than (i).

Secondly, we prove that (y) implies (ii). Let the elements x and y be
chosen as in (ii). We know that sUy==y (0,), so meeting with x and using
xUs=yuUs we get x=(xUs)nx=(yus)nx=ynx (6, consequently,
using (y), {(xny)Us;==x with suitable s; =s. From the last equality s = x,
accordingly, si=snx=sny =y (in the meantime we have used the sup-
position snx=sny of (ii)), thus x=(xnp)Usi=(xny)uy==y. We may
conclude similarly that y = x, and thus x=y, which was to be proved.

(0) implies («). Let x and y be arbitrary elements of L and define
a==xn(sUy) and b=(xns)u(xny). By (ii), it suffices to prove that
sna==snb and sua=sub.

To prove the first equality we start from sna:
sna=snxn(suyl=xnlsn(suyl=xns.
It follows from the monotonicity that xns=b=&ns)uEny =
={xnsuylulxn(suy)]=a. Meeting with 5, we get snx=snb=sna

But we have already proved that snx=sna, and so sna==snb. To prove
sUa==sUb we start from sUa and use (i) several times:

sua=suxnsuyl=(ux)nfsu@up]=GEUux)n(suy) =
=su(xny)=suxns)u(xny)=sub,
and so Theorem 1 is completely proved.

Rewriting (i) and weakening (ii), (0) may be transformed to the fol-
lowing form:

LEMMA 1. An element s ‘of L is standard if and only if the following
two conditions are satisfied:

(i*) the correspondence x —x U s is an endomorphism of L;

(i) if xz=y, sux=sUy and snx==5nY, then x=7.

It is easy to see that (i) is equivalent to (i*). Indeed, for any fixed s,
the correspondence x—xUs is a join-endomorphism. That it is meet-endo-
morphism as well, is guaranteed just by (i). In the proof of Theorem I, at
the step “(d) implies (¢)” we have used (ii) only for x=a and y=25, and
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in this case y = x holds. Consequently, in the proof we have only used
(ii*), and so one can replace (ii) by (ii*).
From condition (y) of Theorem I we derive easily:

LemMmA 2. Let s be a standard element of the lattice L. Then (s] is a
homomorphism kernel, namely O[(s]]= 6. Conversely, if x=y (G[(s]]) holds
when and only when (xNYV)USi==xUy with a suitable sy =s, then s is a
standard element.

Proor. The congruence relation @, obviously satisfies ©.= O[(s]],
consequently (s] is in the kernel of the homomorphism induced by @,. We
have to prove that (s] is just the kernel. Otherwise there exists an x > s with
x=s (0,). By definition, it follows x==sUs; (51 =) which is obviously a
contradiction. Conversely, if @[(s]]= s, then @, is a congruence relation,
since @[(s]] is one, and then from condition (y) of Theorem 1 it follows
that s is a standard element.

We have formulated Lemma 2 separately — despite the fact that it is
an almost trivial variant of condition (y) of Theorem 1 — because it points
out that property of the standard elements which we think to be the most
important one. It may be reformulated as follows: if (s] is a principal ideal
of L, then x=y (O](s]]) if and only if there exist a sequence of elements
XUy=2z2=2z1=---=2.=xnyof L, an s; = s, and a sequence of integers
i, ..., N, such that s;,s—-Zz.1z (i=1,...,m). Now the definition of
standardness is as follows: s is standard if and only if #,=1 may be chosen
for all i. It follows then we may suppose m==1 as well.

§ 2. Standard ideals

An ideal S of the lattice L is called standard if it is a standard ele-
ment of the lattice /{L), that is, if

(10) INSUK)={UnSu(nK)

holds for any pair of ideals /, K of L.

An example for standard ideals is given by the ideal (p] of the lattice U.
Further examples will be given at the end of this section.

Our chief aim in this section is to prove the analogue of Theorem 1
for standard ideals. '

THEOREM 2. (The fundamental characterization theorem of standard
ideals.) The following seven conditions for an ideal S of the lattice L are
equivalent:
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(«’) S is a standard ideal;
(«”) the equality
INSUK)=({nS)u(nK)
holds if I and K are principal ideals;
(8") for any ideal 1, the elements of SUI are of the form sUx (s€S,
xel);
¢ )(ﬂ”) for any principal ideal I, the elements of SUl are of the jform
sUx (s€S, xcl),
(y') the relation ®s of I(L) defined by “I=K (Os) if and only if
(UnK)u S =1UK with a suitable S;=S8” is a congruence relation of I(L),
(y") the relation O[S] of L defined by “x=y (O[S]) if and only if
(xny)us=xuUy with a suitable s¢ S” is a congruence relation;
(0) for all 1 and K€ I(L)
)] SulnK)y=(Sul)n(SuK),
(i) Sni=8SnK and SUlI=SUK imply [=K.

Proor. The conditions of this theorem are the analogues of those of
Theorem 1. To make the similarity clear, first we show that (8) is equiva-
lent to the following condition:

(8*) if for the ideals / and J the inequality /SSu/ holds, then
J=UnSu(/nli).

It is, obviously, equivalent to (6*) that any element of / may be written
in the form sux(s€ Sx€). Since J is arbitrary, that means: any element
of SuUTl is of the form suUx, and this is condition (). So these two con-
ditions are equivalent.

Another analogue of (8”) may also be formulated:

- (@8™) if for the principal ideals / and J the inequality /S Su/ holds,
then J=(/nS)u(/nl).

Now, it is trivial that the equivalence of (), (8), (¥') and (J) is an
immediate consequence of Theorem 1.

(¢””) is a special case of («'). The proofs that («”) implies (8”) and
(8”) implies (y”) run on the similar lines as those of the corresponding
implications in the proof of Theorem 1. Thus it is enough to prove that
(y”) implies (8"). Suppose (y’’) holds and let / be an arbitrary ideal of L,
and x € SU/l From Lemma | we get the existence of s€S and i€/ with
x =sUi Since s=sni (O[S]), therefore sui=(sni)ui=1i (O[S]), and
so x=xn(sUi)=xni (O[S]). Accordingly, using (y”) we get x=(xni)us
where s" € S. But xni€l, hence () is proved.
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The proof of Theorem 2 is complete.
The analogues of Lemmas 1 and 2 are naturally true. We formulate
only the analogue of the most important part of Lemma 2.

LEMMA 3. Let S be a standard ideal of L. Then the congruence relation
O[S] of L defined by condition (v"’) of Theorem 2 is the congruence relation
induced by S and S is the kernel of the homomorphism induced by ©IS).

We may say that Lemma 3 gives an approval of the notation we have
used in condition (y”) of Theorem 2.
We get many examples of standard ideals from the following

LEMMA 4. The principal ideal (s] of L is standard if and only if s is
a standard element of L.

PROOF. The assertion is clear comparing Lemma 2 with condition (y)
of Theorem 2, since s, € (s] and s; =s are equivalent statements.

It follows now from Lemma 4 that the existence of standard elements
% in a lattice implies the
existence of standard
ideals. The converse
of this statement is not
true. We construct a
lattice L in which there
exists a standard ideal,
but has no standard
element. Consider the
direct product of the
chain of the integers
with 2. The elements
of this lattice are of
the form (n, 0) and
(n, 1) where n is an
arbitrary integer and O
and 1 are the elements
of 2. We define new
elements x, (n==0,
Fig. 2 +1,...), subject to

the following relations:
x,Um)=x,Un+1,00=(n+1,1),
x, N(n, 1)y=x,n(n+1,0)==(n,0).
The resulting partially ordered set L is shown in Fig. 2. One can easily
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prove that L is a lattice and L is simple, that is, & (L) consists of two ele-
ments. In L there is no standard element (if s were one, then o < ®,<¢
would be a contradiction), but the whole lattice is a standard ideal.

A proper standard ideal is obtained if we take two copies of this lat-
tice, L; and L., and define L >~ L, L.. Then this lattice contains no stand-
ard element, but L; and L. are standard ideals.

It is natural to ask, why the following condition is not included in
Theorem 2:

(0”) if I and K are principal ideals, then

@) SU(UnK)y=6BulHn(SUK);
(ii) Sni=S8SnK and Sul/=SUK imply I=K.

The reason is that we could not prove the equivalence of this condi-
tion to the others. Therefore we ask

PrROBLEM 1. Does condition (0”) characterize the standardness of the
ideal S§?

§ 3. Basic properties of standard elements and ideals

In this section and in the next one we shall deduce from the funda-
mental characterization theorems some important properties of standard ele-
ments and ideals.

If S is a standard ideal, then we call the congruence relation G[S]
generated by S a standard congruence relation. If S=(s], then @[S]= 6,
so @) is a standard congruence relation that we may call principal standard
congruence relation. First we see some results on the connection between
standard ideals and standard congruence relations.

THEOREM 3. The standard elements form a distributive sublattice of the
lattice L. The principal standard congruence relations form a sublattice of
O(L). Between these two lattices the correspondence s— @, is an isomorphism.

Further, the standard ideals form a V-distributive sublaitice of I(L) which
is closed under forming complete join. The standard congruence relations form
a sublattice of @(L). The correspondence S— O[S] is an isomorphism be-
tween these two lattices.

Proor. First we verify the assertions concerning standard elements. Let
s; and s» be standard. Then by an iterated use of (9) we get that for all
X, y€L ‘
xn[sus)Uy=xn[siU(sUN]=(Ens)ulxn(s:Up)]=
=(xnspuxns)uxny)=[xn(siUs)u(xny),

3 Acta Mathematica XIIi1—2
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that means, by definition, that s, Us: is standard. It is almost trivial that the
correspondence s— @, is a join-endomorphism. Indeed, owing to Lemma 2
and the standardness of s;U sy, the equality @, U ©,,= 0, is equivalent
to O(s]]u O[(se]] = O[(s: Usz]), and this is a special case of formula (4).
Further, if s;=%s2, then @, == @,,, for the kernels of the homomorphisms
induced by @, resp. @, are different (see Lemma 2).

Now we prove O, N Oy = O,. [f x=y (0, n 6,), then x=y (6,),
and so (xNp)Usi=xUy (s{= s1), on the other hand x=y (6,) holds as
well, and from this si=(xUy)nsi==(xny)nsi (@), hence with a suitable
s = s, the relation si=[(xny)nsi]Jus holds. Consequently, s = s1 is valid,
therefore s=s;nse and (xnp)us=xny)ul(xny)nsijus=xuUy. We have
proved the following: x=y (@, n B,) if and only if (xny)Us=xUy with
a suitable s € (81N sz). According to Lemma 2, this means that s;n s, is stand-
ard and @, N @,,=06,.,. Thus we have shown that the standard ele-
ments form a sublattice of L, the principal standard congruence relations
form a sublattice of @(L), and the correspondence s— ®; is an isomor-
phism. It follows now, since @ (L) is a distributive lattice, that the lattice of
standard elements is distributive.

Applying the results proved so far to the lattice of all ideals of L, we
get that the standard ideals form a sublattice of (L), the congruence relations
@5 form a sublattice of @(/(L)), and S— @y is an isomorphism. But we
need the same assertions for @[S] instead of @s. Therefore we prove a
lemma from which the desired conclusion will follow.

First we need some notions. Let ® be a congruence relation of L; &
defines in the natural way a homomorphism of /(L) under which /=]
(1, ] € I(L)) if and only if to any x €/ there exists a y € J such that x=y (@),
and conversely. That means: /=] if and only if the images of / and J
under the homomorphism L - L(®) are the same. This congruence relation
of I(L) we call the extension of @ to /(L). On the other hand, any con-
gruence relation @ of /(L) induces a congruence relation of L under which
x=y if and only if (x]==(p] (@). This we call the restriction of @ to L.
Now we may state

LEmMA 5. Let S be a standard ideal. Then g is the extension of @S]
to I(L) and O[S] is the restriction of Oy fo L.

PrOOF. Let ®[S] be the extension of @S] to I(L) and /=] (O[S));
we suppose /< /. Choosing a y€J we can find an x€/7 (y = x) with
x=y (O[S]), and so there exists an s., with xUs,, —y. The ideal S’ gen-
erated by the s,, (x and y run over the elements of / and J) satisfies
§'E S and 1y S’ =]. On the other hand, if /U S’=] with a suitable 'S S,
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then with y €/ it follows that y=sUx (s€ S8’,x €1, S is standard!), and so
xz=y (O[S]). Thus O [S]=0s. To show the second assertion, suppose
(a)==(b] (O5). Then there exists an S’ S S with (an b]uU S’ = (a U b]. It follows
that aub€(@nb]us, and since S is standard, we may find an s€¢ S with

COROLLARY. The correspondence ®[S]— Os is an isomorphism between
the lattice of all standard congruence relations of L and the lattice of all
principal standard congruence relations of I(L).

Combining Corollary of Lemma 5 with the facts we have proved above,
we get all the assertions of Theorem 3 with the exception of the statement
that the lattice of all standard ideals of L is closed under forming complete
join and is V-distributive.

Suppose the S, are standard ideals, S=V S., 7 is an arbitrary ideal and

x€IUS. Owing to Lemma | we may find s; € S,;, y € [ such that x = \,; 5:UY,
i==1

consequently,‘ X€ €/ Se; U1, We know already that \;’ S.; is a standard ideal,
i==1 =1

g

hence x=uUw, uf€ T/S‘,ég Sand » € . Thus, by condition (8") of Theorem 2,
i—1

S is a standard ideal.

Now we may apply formula (4) which compared with Lemma 3 gives
O[VS.] =VB[S.]. Thus the standard congruence relations form a sublattice
of ®(L) which is closed under form-
ing complete join. In @ (L) there holds
the V-distributive law and this is pre-
served under taking a sublattice which
is closed under forming complete join,
therefore the lattice of standard con-
gruence relations is V-distributive, and
then the same is true for the lattice
of standard ideals. Thus the proof of
Theorem 3 is completed.

Naturally arises the question: is
the complete meet of standard ideals
(if it exists) a standard ideal? We will
show by a counterexample that this
is not true in general. Let N be the
chain of all negative integers, and de-
note by 0,a,b,1 the elements of a
Boolean algebra of four elements and Fig. 3

3%
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form the direct product of N and this Boolean algebra. The lattice L is
formed by adding three further elements s,x,0 to this direct product
subject to

xn(n,b)y=0, xu(n b)=(,1), xu(n a)=(na),
sU(m a)=su(m b)=(n, 1), sn(ma)=x, sn(nb)—0t BEN)

The resulting partially ordered set is given by Fig. 3. It is easy to prove
that L is a lattice. Define s;=(—7, 1) (i==1,2,...). The principal ideals
(s;] are standard, while their complete meet (s] is not a standard ideal, for

(mo)nlsu(n a)l=(n,b),
[(n, &) ns}ul(n, &) n(n,a)l=0u(n, 0)=(n, 0),
and so (9) does not hold.
Owing to the definition, the following assertion is immediate:

LEMMA 6. Let the correspondence x —Xx be the homomorphism of a lat-
tice L onto a lattice L. If s is a standard element of L, then § is a standard
element of L.

COROLLARY. Let x—X be a homomorphism of L onto L, let S be an
ideal of L, and denote by S the homomorphic image of S under this homo-

morphism. If S is standard in L, then S is standard in L.

Proor OF THE . COROLLARY. Let @ be the congruence relation which
induces the homomorphism x-»X. Then the extension @ of @ to I(L)
(defined before Lemma 5) is a congruence relation of /(L) and (x]=(»](®)
(x,y€L) if and only if x=y (6). Hence the homomorphism X—X
(X € I(L)) induced by © is an extension of the homomorphism x—x and
carries S onto §. Thus we may apply Lemma 6 to /(L) and get the Corollary.

The converse of Lemma 6 is not true. One can find easily a lattice L,
a homomorphism x —x of L onto L and in L a standard element 5 such
that in L there is no standard element s with s— 3. As an example take the
lattice U (see § 3 of Chapter 1) and the homomorphism induced by ©,,.
In the homomorphic image of U (which is the Boolean algebra of four ele-
ments) the image of r is standard, while r is not standard and is not con-
gruent to any standard element (as a matter of fact, r forms alone a congru-
ence class under @,,). ‘

From the point of view of later applications it is of importance the

LEMMA 7. Any two standard congruence relations are permutable.

Proor. We have to prove that if S and T are standard ideals, x, y and
2z elements of the lattice with x=y (O[S]), y=2 (O[T]), then for a suitable
element u the relations x=u (@[T]), u=2z (BS]) hold.
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First we consider the case x = y = z. Then by condition (y”) of Theo-
rem 2, we get elements s€ 8 and f¢7 with x=ypuUs, y=2U0{f. We assert
that u =2z Us fulfils the requirements. Indeed, 2=zUs=u (@{S]) and be-
cause of uUft=2UsUt=pyUs=x we have u=uuUt=x (OT]).

In the general case consider the elements x,xUy, xUyuUz We have
x=xUy (O[S]) and xUy=xUyUuz (@[T]), therefore with a suitable ele-

the existence of a w with z=w (@[S]) and w=xUyuz (@[T]). The ele-
ment u==v n w fulfils the requirements, for t=vnw=vn(xnynz)=v(G[T))
and this, together with v==x (@|[T]), gives u=x (@[T]). Similarly, we
can prove u==z (®[S]), completing the proof of the lemma.

Let s be a standard element of the lattice L. Then from Lemma 2 it is
clear that L/(s]=[s). Indeed, for all x € L we have x=sUx (0,), and so any
element of L is congruent to a suitable element of [s), therefore L/(s]is a
homomorphic image of [s). But this homomorphism is an isomorphism, for
xz=y=sand x=y (O, implies x =yUs=y, i.e. x=).

To determine the factor lattice modulo a non-principal standard ideal
is not so simple A solution of this problem is given in

THEOREM 4. Let S be a standard ideal of the lattice L. Then the lattice
of all ideals of L/S is isomorphic to the interval {S, L] of I(L), and, conse-
quently, the interval [S, L} of I(L) determines L/S up to isomorphism.

PrOOF. We know from Lemma 5 that the extension of @S] to /(L) is
®y. Hence the homomorphism L— L/S induces in /(L) a homomorphism
I(Ly— I(L)/(S]. But, as we have remarked above, J(L)/(S]=¢[S, L] where the
interval [S, L] is taken in /(L). This, together with a theorem of KomaTu [17],
according to which every lattice is determined up to isomorphism by the
lattice of its ideals, we get the theorem.

§4. Additional properties of standard elements and ideals

In our paper [10] there is a lemma that states: in a distributive lattice
if the join and meet of two ideals are principal ideals, then the two ideals
themselves are principal. We now generalize this to standard ideals of arbi-
trary lattices:

LEMMA 8. Let | be an arbitrary and S a standard ideal of the lattice L.
If 1uS and In S are principal, then [ ifself is principal.

Proor. Let JuS==(a] and In S==(b]. By condition () of Theorem 2
we have a=sUx (s€§,x¢€l). We state that /=(xu b]. Indeed, suppose
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w=xUb and wel Then (@]2SuW]2SUu(xUubl28U(x]=/_(a], that is,
S u(al=Suxubl Further, (B]=S8nI28nW]2Sn{xubl=28n (b]==(b)
and so Sn(w]=Sn(xubdl. This two equalities imply (see condition (ii) of (¢")
of Theorem 2) that (w]==(xU0], and so w==xUb. Therefore, there are no
elements in / greater than x U b, that is, /==(x U b], completing the proof of
the lemma.

By means of a simple example one can show that under the hypothesis
of Lemma 8 § is not necessarily a principal ideal.

Since the ideals of a distributive lattice are standard, an exact analogue
of the lemma of [10] is the

COROLLARY. If the join and meet of two standard ideals are principal,
then both standard ideals are principal.

This corollary does not call for proof.

LEMMA O. Let s be a standard element of the lattice L and a an arbitrary
element of L. Then ans is a standard element of the lattice (a].

PrOOF. Any element of the ideal (a] may be written in the form anx
(x € L). Hence it is enough to prove that

xnanlsnau@nal=[xnan@snajulxna)nyna)l
Starting from the left member and applying (9) repeatedly, we get
xnanfsnayu@nal=Enanlsuynal=Enan{suy)=
=@nans)uxnany=[xnannajujxna)n(yna)
which was to be proved.

COROLLARY. Let S be a standard
a ideal and I an arbifrary ideal of the lat-
- tice L. Then Snl is a standard ideal of

the laftice 1.

Perhaps it is not worthless to note
that the conclusions of this lemma are
not valid for distributive elements. A
counterexample is the lattice of Fig. 4,
where d is a distributive element of the
lattice, but the element a nd is not a dis-
tributive element of the lattice (al.

Fig. 4 As we have seen, the neutrality of

the element n was defined in such a way

that for all x, y€ L the sublattice {n, x, y} is distributive. Though, in general,
the notion of standard elements does not coincide with the notion of ne-
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utral elements, we may hope the validity of a weaker assertion for stand-
ard elements. Indeed, the following analogue of the definition of neutral
elements is frue:

THEOREM 5. Lef s, and s, be standard elements of the lattice L. Then
the sublattice {s,, s, x} of L is distributive for all x € L.

Proor. Our proof is based upon Theorem II. According to this, we
have to prove the validity of (6), (7) and (8).

Condition (7) is valid, for it asserts the same as (9) since & or ¢ is
standard. As a consequence of condition (i) of (d) of Theorem 1, (6) holds
if @ is standard; otherwise & and ¢ are standard. In this case let us start
with the right member of (6), apply (9) for the elements a, auc for the
standard element & and then for @, b and the standard element ¢. We get

(augn@uby=[aucnalufl@auc)nbl=au(@nbyulcnb)y=au{cnb).

Finally, we prove (8). (8) is a symmetric function of its variables, therefore
we have to prove it for one permutation of its variables only. Using the
assertion of Theorem 3, according to which s,Us, and & ns, are standard,
further equality (9) and condition (i) of (J) of Theorem 1, we get

(8 NSYU (S NX)U (SN X)==(5: N 8) U[(s: Uss) N x] ==
=[sns)us, U s)Nsns)ux]=(sus)nsns)u x| =
== (5 US) N (S Ux) N (s UX),

and this is just (8). Thus the proof of Theorem 5 is completed.
Applying Theorem 5 to /(L) we get:

COROLLARY. Let 8, and S, be the standard ideals of the lattice L. Then
S, S, and an arbitrary ideal X of L generate a distributive sublattice of I(L).

We have got Theorem 5 as an analogue of the definition of neutral
elements (ideals). It is natural fo ask, whether or not it is possible to get
from Theorem 5 a new characterization of standard elements (ideals). That
should mean that in a lattice the standard elements form a (unique) maximal
subset for which the assertion of Theorem 5 is true. This is not tfrue in
general; not even in modular lattices. Consider the lattice V (see §3 of
Chapter I); there are in V only two standard elements: o and i. We may
enlarge the set {o,i} by the element p, and the assertion of Theorem 5 is
true for this enlarged set as well. (See Problem 2.)

Now consider the lattice L and let us fix an element s of L. We call
the mapping x—(xns, xUs) of L into Ly==(s] X[s) the natural mapping of
L into L,. We can obtain by means of this notion a new characterization of
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standard elements, which is a direct generalization of a theorem of G.
BIRKHOFF [5].

THEOREM 6. The natural mapping of the lattice L into the latfice L, is
a 'meet isomarphism if and only if s is a standard element. It is an isomor-
phism if and only if s is neutral.

Proor. The first part of this theorem is essentially condition (d) of
Theorem 1. Namely, condition (i) assures that the mapping is a meet-
homomorphism and (ii) that different elements have different images. The
second part of the theorem is equivalent to Theorem IIL

We remark that the idea of the proof of this theorem is due to BIRKHOFF
[5]. This theorem seems to be a good tool for proving the standardness of
an element,

COROLLARY. Let L be a bounded lattice. L,= L in the natural way (the
direct components are supposed to be ideals of L and (x,y)—xUy) if and
only if s is a neutral element having a complement, that is s is an element
of the center. In other words, L has a non-trivial direct decomposition if ond
only if its center has an element different from O and 1.

In connection with Theorem 5 the following problem arises:

PROBLEM 2. Is it possible to characterize the set of standard elements
as a maximal subset of the lattice L satisfying the condition of Theorem 5
and having some additional properties?

CHAPTER 1HI
STANDARD AND NEUTRAL ELEMENTS

§ 1. Relations between standard and neutral elements

We have mentioned in the Introduction some causes which required
the definition of standardness to be a generalization of neutrality and to
coincide with the same in modular lattices. It is obvious that our definition
fulfils this requirement, that is, the following assertions are valid:

LEMMA 10. All the neutral elements of the lattice L are standard. Further-
more, in modular lattices the two notions coincide. A standard element s is
neutral if and only if condition (i') of Theorem HI holds.

Proor. The first assertion is clear from the definitions. The second
assertion is a consequence of Theorem IV and we get the third statement
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by a simple comparison of the conditions of Theorem 1 (d) with those of

Theorem 111.
From these simple observations one can get a result of some interest

for neutral ideals.

LemMMA 11. Lef n be a neutral element of the lattice L. Then (n] is a
neutral ideal of L and conversely.

Proor. Every neutral element is standard, and so by Lemma 4, (n] is
standard. Then by Lemma 10 it is enough to prove that

@ndufy=alnhu(aln))  (LJ€IL)).

Let A=(njn(/uj) and B=((njnI)u((n]nJ). Since A2 B holds always,
it is enough to prove that a € A implies a € B. For some i€/ and j€] we
havea=iuj,andsoa=an(@up=nn(u)).But nn@u)=@ni)unnyj),
because n is neutral and (nni)u(nny) is an element of B, hence a € B holds
as well. This completes the proof of the first part of the lemma. The con-
verse statement is trivial,

It is of some interest that we could not find in the literature the asser-
tion of this lemma (in [6] it is stated only for modular lattices). In §3 of
this chapter we shall derive this lemma from a more general theorem, using
the deep theorem of ORE (or Lemma 12). We should like to point out that
a direct proof of this lemma through Theorem Il meets the same difficulty
as that mentioned in this paper as Problem 1.

From Lemma 10 it is clear

LEMMA 12. If an element s is standard in the laffice L as well as in ifs
dual, then s is neutral.

COROLLARY. n is neufral if and only if
xn(nuy)=xnnuxny),
xu{nny)=xunnxuy)
Jor all x,y¢ L.
Thus we see that from the five equalities which we have got from

Theorem I to be characteristic for the neutrality of an element, three may
be omitted.

LEMMA 13. Let s and n be elements of L such that n is neutral, s=n
and s is standard in (n). Then s is a standard element of L.

ProOOF. From Theorem 6 we know that x— (xnan,xUn) is an isomor-
phism between L and a sublattice of L.={(n]x[n). Under this isomorphism
s— (s, n). Since s is standard in (n] and n in (n], therefore s is standard in
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L.. Since the property of being standard is preserved under taking a sub-
lattice and under isomorphism, we get that s is standard in L.

If s is neutral in n, then — it is clear from the above proof — s is
neutral in L too, i.e.

CoROLLARY 1. Let s be a neutral element of (n] and n neutral in the
lattice L. Then s is a neutral element of L.*

Applying Lemma 13 to /(L) we get

COROLLARY 2. Let S and N be ideals of the lattice L, SS N such that
N is neutral in L and S is standard in N. Then S is a standard ideal of L.

Applying Corollary 1 to /(L) we get a theorem of HasHimoTO [14]:

COROLLARY 3. A neutral ideal of a neutral ideal is neutral in the whole
lattice.

It is easy to see that the same assertion is not true for standard ideals
or elements. As a counterexample take the lattice U and the elements p > g.
p is standard in U, ¢ is standard in (p}, but {¢] is not even a homomor-
phism kernel!

‘ProBLEM 3. We have seen in the Corollary of Lemma 12 that it is
possible to define the neutral elements with the aid of two equalities. Is it
possible to define neutrality by a single equality? (E.g.: is the neutrality of
n equivalent to the condition that (xny)u(nmu@Enx)=(xuy)nFunn
n{nux) holds for all x,y¢ L?)

ProBLEM 4. Let G be a finite group and L(G) the lattice of all sub-
groups of (. Characterize the standard elements of L(G) (the same problem
for neutral elements of L(G) has been solved by G. Zappa [35]).

§ 2. Standard elements in weakly modular lattices

Our aim in this section is to prove the coincidence of (distributive and)
standard and neutral elements in weakly modular lattices. This theorem con-
tains a part of Lemma 10, that has asserted the same in modular lattices.
There the proof was frivial, in consequence of the application of Theorem IV,
But in weakly modular lattices we are in lack of a theorem of this kind,
therefore the proof is not so simple.

* Added in proof (13 February 1961). The following assertion may be proved: Let
a and b be neutral elements of the lattice L, a == b and ¢ a standard (neutral) element of
,b . Then ¢ is a standard (neutral) element of L.
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THEOREM 7. In a weakly modular lattice L, an element d is distributive
if and only if it is neutfral.

ProOF. It follows easily from a theorem of ORE’s paper [25] that d is
distributive if and only if x=y (O@[(d]]}) is equivalent to [(xny)ud]n
n{xuy)y==xuy. It follows that the kernel of the homomorphism induced by
the congruence relation @[(d]] is (d]. Further, if x,y = d and x=y (O[]},
then x==y, because xUy=[(xny)ud]n(xuy)=xny. From these facts we
will use only the following:

() f a=b=d=c=e and d is a distributive element, then a,b5—c,e
implies ¢c==eg. :

Indeed, under the stated conditions, a,b—c,e implies c=e (O[(d]]),
and so c==e.

Now let & be a distributive element of the weakly modular lattice L.
First we prove that d is standard, that is, we prove the validity of (9).
Suppose (9) does not hold for a fixed couple x,y € L. Then

xn{duy)>@End)uxny).

Denote by a the left member of this inequality and by b the right member.
We prove that

(11) H,dn;-»ﬁ,
namely,

ddnx-.({dux)n(duy),b-a,b.

Indeed, because of dnx = b we have to prove for the validity of

d,dnx-L{@dux)n(@uy),b only dub=(dux)n{duy).

But dub=du(xnd)u(xny)=du(xny)=@Uux)n{duy), ford is distrib-
utive. Now, using the inequalities e ={(dux)n{duy) and a>b, we see
that b=0na and a=({dUx)n({@Uy)na are trivial. Thus

@duxn(duy),b-tab

and (11) is proved.
Next we verify that

(12) d,duy-a,b,
namely

d,duy-tdnx alsa,b.

To prove the first part of this statement, we have to show only and=dnx,
but and=dnxn(@uy)=dnx. The second part of the assertion is clear.
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Let us use the condition @ > & and the weak modularity of L: from
these it follows the existence of elements u, » for which

(13) a,b—uv, d=v<u=duy.

From (11) and (13) it follows d,dnx-»u, v, in contradiction to (¥). Thus
we have got a contradiction from a > b, so a==¥8, i.e. d is standard.

The second step of the proof is: using that d is standard, we prove
that it is neutral.

If this statement is not true, then by Lemma 10 we conclude the

existence of elements x,y of L such that
dn(xuy)>@nx)u(dny),
i.e. the condition (i) of Theorem Il does not hold. Putting s,=dn{xuy)
and s,=(d@nx)u(dny) let us suppose s, >s,. First we prove that
sUx>sUx and sUY>sUY.

Suppose that one of these does not hold, for instance, s,Ux:s,Ux; then
from s, > s, we have s, UXx==5, U x. We will see that it follows dnx, x—s,, S,
namely

an x,xul-—»szu(dnx),s.zuxf-»s},sw

To prove this it is enough to show that s, n[s; U (@nxX)] =s; and s, N (s UX) ==¢,
Indeed, sinfs;,u@nx))=sns,=s and s;N(UX)=sn(sUX)=s (we
have used s, Ux==s,Ux in this step). Again from s, >s, and from the weak
modularity it follows the existence of elements u,» with dnx=u<v=x
Therefore (see condition (y) of Theorem 1) v=uUd, with a suitable d, = d.
Then v=uuUd, =uu(@nx)==u, for we get from v=uud, that d, =v = x,
and hence d, = dnx. The inequality we have just proved is in contradiction
to the hypothesis » >wu. Thus we have proved that s Ux>sUXx, and in a
similar way one can prove s;Uy>S U,
Now, using s;Ux>s,Ux and Uy >s, Uy, we prove that

dn(sUx), Ux—>5Nn(SU00,s,
namely,
dn{s,Ux), UXx-5dN% X500 UEUY(50p)Ns, s .

From these dn(sUX),sUx—-dnx, x is clear. To verify dnx,x—»
45U, s U(xUy) we use the inequality dnx = (@nx)u(@ny)=s=sUy,
and so (@Nx)u(s,UY)=s,Uy, further xU(sUY)=sUu(xUy). To prove
$UP,sUEUY) --(Up)ns,s we have only to observe the inequality
Si=dn(xuy)=s,u(xuypy)==xuUy, and then [s;,U(xuY)]ns =s,.
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Before applying weak modularity we have to show that s, 55, n (s, U ).
Indeed, in case s;=s;n(s; Uy) it follows s, =s, Uy, and then s;UYy=s Uy,
which is a contradiction to s, Uy > s, Uy. From this we see that dn (s, U x)=—
==§,UXx is also impossible, for dn(sUx),s:Ux—>sN(s5:UY),s, and so
dn(s;Ux)=s,Ux implies s N (s, Uy)==s.. Now, using the weak modularity
and dN(sUx), e Ux—s5N(s:UY),s, it follows the existence of u, v such
thatd n (s, Ux)=u < v=s,Uxands, N (s, U),s—u, . It follows now u= (Qy)
in a similar way as in the first step of the proof, thus v=uUud' ({d =d).
But from v =s,Ux we have d' =dn(s;ux) for d=s >s. Consequently,
v=uUd =uuldn(s,Ux)]=u, a contradiction to » > u.

Thus we have verified the validity of the conditions of Theorem III,
thus d is neutral. The proof of Theorem 7 is completed.

CoroLLARY 1. In a weakly modular lattice every standard element is
neutral.

The assertion is clear from condition (J) of Theorem 1.

Apply this theorem to /(L):

CoroOLLARY 2. If I(L) is weakly modular, then any standard ideal of L
is neutral.

CoroLLARY 3. In a relatively complemented lattice L any standard element
is neutral.

CoRrOLLARY 4. In a modular lattice any standard element and ideal is
neutral.

Corollaries 3 and 4 are immediate consequences of Lemma IV.

Unfortunately, we cannot establish Theorem 7 for distributive ideals,
not even the more important Corollary 1 for standard ideals. A detailed discus-
sion of the proof shows that the idea of the proof essentially uses that dis-
tributive, resp. standard elements are dealt with and not distributive, resp.
standard ideals. It will be clear from §4 of this chapter that we cannot get
the results for ideals by a simple application of Theorem 7 to I{(L).

We shall now deal separately with (standard, i.e.) neutral elements of
a special class of weakly modular lattices. We intend to show that in relatively
complemented lattices the set of all neutral elements is again a relatively
complemented lattice. First we prove

LEMMA 14, Let a, b,c be neutral elements of a lattice L, and suppose
a < b<c If a relative complement d of b in the interval |[a, c] exists, then it
is also neutral and uniguely determined.

Proor. We know from Theorem 6 that we can embed L in L, == (b] x[b)
under the correspondence x — (xN b, x Ub). Under this d— (g, ¢), therefore d
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is neutral (for both components of d are neutral) in L,, and consequently it
is neutral in L. The unicity assertion is trivial.

COROLLARY 1. (BIRKHOFF.) Any complement of a neutral element is neutral.

COROLLARY 2. The neutral elements (if any) of a relatively complemented
lattice form a relatively complemented distributive sublattice.

We note that from Corollary 1 we do not get Lemma 14, only that d
is neutral in [a, c].

Lemma 14 is not true for standard elements. As an example take the
lattice U where o, p, i are standard, while (the unique) relative complement
of p in [o,{] is r which is not standard.

PrOBLEM 5. Is a distributive (or at least a standard) ideal of a weakly
modular lattice neutral?

§ 3. A neutrality condition for standard elements

The last statement of Lemma 10 gives a necessary and sufficient con-
dition for a standard element to be neutral. The condition is not trivial, for
it is a conclusion of the comparison of the deep Theorem III with con-
dition (d) of Theorem 1. But in the previous paragraph, when we wanted
to prove the coincidence of standard and neutral elements in weakly modular
lattices, we have seen that this condition is not easy to apply. Therefore we
set ourselves the aim of finding a sharper condition from which Corollary 1
of Theorem 7 may be easily derived. This is the content of

THEOREM 8. A standard element s of the lattice L is neuafral if and only
ifazbz=s=c=e and a,b—c,e imply c =e.

To prove the “only if”’ part of the theorem, suppose s is neutral. Then
the dual ideal [s) — as an ideal of the dual lattice [ — is standard. So it is
impossible that a congruence of the form c=e (®,) would hold in the dual
lattice 1, thus ¢ =-e.

Now we interrupt our proof to observe that the property () (stated in
the previous section) is characteristic for distributive elements. Indeed, if d
is not distributive, then there exist x, y with du(xny)<(@ux)n(@uy). We
prove that du(xny)=(d U x)n(duy) (O[(@]]). Indeed, d=dnxny (O[d]).
Joining both sides of this relation first with x, then with y, we get

dux=x (O[{d]]) and duy=y (O[{]).
Meeting the corresponding sides, it results
(@ux)n(@uy)=xny (O[dl)
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Finally, joining both sides with d, we reach (d U x) n (d U y)==d U (x n y) (O[(d]}),
as desired.

Now we prove the “if’”” part of Theorem 8 If s is not neutral, then s
is not distributive in the dual lattice L. We may apply the result just obtained
to get the existence of a=b=s=c=e in L with q,b—c¢,e. This is the
same as the required relation in L, completing the proof of Theorem 8.

From the proof we see that the fact that standard elements and not
ideals are dealt with, is again very essential.

Suppose that in the lattice L the following condition holds which is a
weakened form of weak modularity:

(14) whenever a>b=c>d and a b—cd, then ¢, d—a, b
with suitable elements a =aq, > 6, = b.

COROLLARY 1. If the lattice L satisfies (14), then every standard element
in L is neutral.

Proor. Suppose L satisfies (14) and s € L is standard, but not neutral.
Then, owing to Theorem 8 we can find elements a > & = s = ¢ > d such that
a,b—c,d. Now, applying (14), we infer the existence of a pair of elements
a;, b, such that a =a, >b, = b and c,d —a,, b,. Consequently, a,=b, (O,),
which is impossible, since a; > &, = s and s is standard.

Since condition (14) is a generalization of weak modularity, it follows
that the last corollary implies Corollary 1 of Theorem 8. We will prove by
means of a simple example that this new corollary is stronger than the former
one, that is, there exists a not weakly modular lattice L which satisfies (14).

Let L be the lattice defined in § 2 of Chapter II. We adjoin three new
elements: x,0, 1, subject to the following relations:

xUa==1, xna=0

for all a¢ L. We get a lattice H whose diagram is given in Fig. 5. In this
lattice 0, x— (2,0),(1,0) and despite this fact (2,0),(1,0)—u,» holds for
no u,ve€ L for which x = u >+ = 0. This can be seen from the fact that the
two different elements of the interval [0, x] are not congruent modulo @, o, 0 -
Consequently, H is not weakly modular. But condition (14) holds in H. Indeed,
within L it holds, for L is simple (see Lemma IV). The only remaining case
of interest is 1>a=b>c (a,b,c€ L), when 1,a— b,c always holds. But in
this case b, c—a, d where d is an arbitrary element with 1> d> a.

In this counterexample (14) holds and so does the dual of (14). It is
easy to show that any counterexample of this kind is infinite.

LEMMA 15. Lef L be a semi-discrete loftice in which (14) and its dual
hold. Then L is weakly modular.
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PROOF. Let a,b,c,d€L, a>b, c>d and dna=b, dua=c. Then
a,b—c,d If c=dua, then simply ¢,d—-a,b. If c<dUa, we choose an
element x with ¢ = x <dUa. Then x,dUa—>a,b->-c,d, i.e. x,dUa— ¢, d
and dUa >x = c>d. Using (14) we get ¢, d — u, v with suitable dUa = u >
>vp=x. But dua> x, therefore u=dUua, v=x, that is, ¢,d—x,dUa.
Trivially, x, dUa—a, b, and so ¢, d—a, b.

Fig. 5

In case a>b,c>d bUc=aand bnc = d, the relation a, b— c, d holds,
and then we can verify weak modularity by the dual of the above reasoning.
The general case a,b-"-c,d may be deduced using a simple induction on n.

We see that in Lemma 15, instead of the semi-discreteness of the

lattice L, we have used the following weaker property: if a > b, then there
exist x and y with a>x=b and a=y>b.

PROBLEM 6. Is (14) equivalent to weak modularity in finite lattices?
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§ 4. On the lattice of all ideals of a weakly modular lattice

In §2 the problem arose: why is it not possible to get the results of
Theorem 7 for distributive and standard ideals by a simple application of the
theorem to /(L). In general, a way of getting a theorem for standard ideals
is to prove the same first for standard elements. For instance, we got in this
way the coincidence of standard and neutral ideals in modular lattices.

Whenever we make a step of this kind we have to ponder over the
question: did we make a supposition on the lattice L which is not
preserved if we pass from L to I{L)? In case of modular lattices there is no
trouble, for if L is modular, then so is /(L). But this is not the case in
weakly modular lattices:

THEOREM 9. The lattice of all ideals of a weakly modular lattice is not
necessarily weakly modular.

PROOF. We have to construct a weakly modular lattice K such that
I(K) is not weakly modular. Consider the chain of non-negative integers
and take the direct product of this chain by the chain of two elements. The
elements of this lattice are of the form (n, 0) and (n, 1), where O and 1 are
the zero and unit elements of 2 and n is an arbitrary non-negative integer.
Further, we define the elements x, (n=1,2,...) satisfying the following
relations:

X, U(n—1, 1) =x,U(n,0)==(n,1),

X N(n—1, 1) =x,n(n,0)=(n—1,0).
Thus we have got a lattice L. Finally, we define three further elements
x, ¥, 1 subject to

xXny=xnz=ynz=1(0,0)\ (@#0, zeL)
Denote the partially ordered set of all these elements by K. The elements of
K are denoted by o in Fig. 6.

It is easy to see that K is a lattice. K is simple and so, by Lemma 1V,
weakly modular. All but two ideals of K are principal ideals, these excep-
tional ones are denoted by © in the diagram, thus the diagram of K, com-
pleted by these two elements, gives the diagram of /(K). Now, it is easy to
see that K is not weakly modular. Indeed, under the congruence relation
generated by the congruence of the two new elements, no two different
elements of K are congruent. While from the congruence of any two different
elements of K it follows the congruence of the two new elements, we have

considered K to be imbedded in /(K). The existence of the lattice K proves
Theorem 9.

4 Acta Mathematica Xl —2
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Some related unsolved problems are listed at the end of this section.

So far we could assure the weak modularity only of the lattice of all
ideals of a modular lattice. Naturally, the same is true for every weakly
modular lattice in which the ascending chain condition holds, because in this
case the lattice of all ideals is identical with (more precisely isomorphic to)
the original lattice. The following question arises: is it possible that the
lattice of all ideals of a relatively complemented lattice is weakly modular if
in the lattice the ascending chain condition does not hold? Is it possible

Fig. 6

that the ideal lattice of the same is relatively complemented? The interest of
this latter question is that in modular lattices the answer is always negative
as a consequence of a theorem of HasuimoTo [15]. Despite this, the follow-
ing assertion is true:

There exists a relatively complemented lattice L, not satisfying the
ascending chain condition, such that I(L) is relatively complemented. This
lattice may be chosen to be semi-modular.

To construct L, consider an infinite set . We say that the partition
p of H, which devides the set H into the disjoint subsets H,., is finite, if
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all but a finite number of the H, consist of one element, and every H, con-
sists of a finite number of elements. We denote by FP(H) the set of all
finite and by P(H) the set of all partitions of H.

It is clear that the join and meet of any two finite partitions are finite
again, and if a partition is smaller than a finite partition, then it is also
finite. It follows that FP(H) is an ideal of the lattice P(H). Now, it is easy
to prove that just the finite partitions are the elements of the lattice P(H)
which are inaccessible from below. Indeed, if p is a finite partition, then the
interval [e, p] of the lattice P(H) is finite, therefore p is inaccessible from
below. Now suppose p is not finite, and let {H.} be the corresponding parti-
tion of H (the H, are pairwise disjoint). Either infinitely many H, are con-
taining more than one element, or at least one H. contains an infinity of
elements. In the first case, assume that H,, H,, ... contain more than one

w
element. We define the partition p; to be the same as p on the set H \_\/11‘1’]-,
Je=it
while on the set QlHj let all the classes of p; consist of one element.
F=it+
Obviously, p, <p, < --- and Vp; = p, consequently, p is accessible from below.
In the second case, let H, be a set which contains infinitely many elements
{x1, X;, ...}. We define the partition p,: upon the set H\H, it is the same
as p, {x,, ..., x;} is one class, and all the x, (n>1i) form separate classes.
Again, py<p, <.+ and YV p;=p, so p is accessible from below.

It is also clear that every partition is the complete join of finite parti-
tions and, finally, it is well known (it follows trivially from Lemma III) that
P(H) is meet continuous. It follows from a theorem of Komatu [17] that P(H)
is isomorphic to the lattice of all ideals of FP(H).

Now we will prove that FP(H) satisfies the requirements. We have to
prove yet that in FP(H) the ascending chain condition does not hold, that
FP(H) and P(H) are relatively complemented, and finally that FP(H) is
semi-modular. The first of these assertions is trivial, since H is infinite. The
second and the third assertions have been proved in [25] for P(H), but these
properties are preserved under taking an ideal of the lattice, therefore these
hold in FP(H).

We could assure the weak modularity of the ideal lattice of a modular
lattice, for the modularity of a lattice may be defined by an equality. We
now show that if the weak modularity of a lattice is a consequence of the
fulfilment of a system of equalities, then the ideal lattice is also weakly
modular. First we prove a general theorem which will serve for other pur-
poses as well. .

To formulate the theorem we need two notions. Following ORE [25] we

4%
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§ 2. Neutral elements as elements with unique relative complements

A theorem of J. vON NEUMANN (see [6]) asserts that an element n of a
complemented modular lattice L is neutral if and only if its complement is
unique. In modular lattices the same assertion does not hold in general; the
element a of the lattice of Fig. 14 is uniquely complemented, but it is not
neutral. This observation is due to HALL (see [6]). Applying twice Ex. 2 of
p. 115 of [6] we get® that an element n of a complemented modular lattice

L is uniquely complemented if and only if it
is uniquely relatively complemented, that is, if
it has just one relative complement in any
interval containing n. In this way it is pos-
sible to generalize NEUMANN's theorem to ar-
bitrary modular lattices.

THEOREM 19. An element n of a modu-
lar lattice L is neutral if and only if it has at
most one relative complement in any inferval
containing it.

Proor. If n is neutral, then by condition

Fig. 14 (ii) of Theorem lII it obviously satisfies the
stated condition.

Let n be an element of the modular lattice L, and x, y arbitrary ele-
ments of L. The free modular lattice FML 3), generated by n, x, y, according
to a theorem of BIRKHOFF [6] is given in Fig. 15. If n satisfies the condition
of Theorem 19, then u=v, for u and » are the relative complements of ¢ in the
interval [anu, auu] It follows that the lattice generated by @, x and py must
be a homomorphic image of FML(3)(0.,). But FML(3)(0.,) is distributive
and it follows that n is neutral, as asserted.

CoroLLARY 1. (Theorem of NEUMANN.) In a complemented modular lat-
tice an element n is neutral if and only if it has precisely one complement.

Indeed, as we have remarked above, in complemented modular lattices
an element n is uniquely relatively complemented if and only if it is umque y
complemented. Hence the corollary.

COROLLARY 2. An element n of the modular lattice L is neutral if it is
neufral in every interval [nnx,nux] (x€L).

Corollary 2 is an immediate consequence of Theorem 19.

In weakly modular lattices Theorem 19 fails to be valid. In the lattice
of Fig. 16 the element a is uniquely relatively complemented, but not neutral.

¥ See also {32].
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Corollary 2 is obviously true in relatively complemented and in com-
plemented lattices. For if L is relatively complemented and n € L is neutral
in any [nnx,nUx] (x,y€L), then let a be a relative complement of n in
[nnxny,nuxuy]. Since n is neutral in [nna,nual, {n, x,y} is a distrib-
utive lattice, and so n is neutral. But Corollary 2 is not true in general.
Consider the lattice of Fig. 17. In this lattice @ is not neutral, but it is in
every interval of the form [anx, aUx]

PROBLEM 16. Is the assertion of Theorem 19 true in relatively comple-
mented lattices ?

ProBLEM 17. Is the assertion of Coroliary 2 of Theorem 19 true in
weakly modular lattices?

Note. The corresponding assertion for standard elements is not true.
If s¢L is locally standard (i. e. standard in every interval [snx, sux]) and
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L is weakly modular, it does not follow that s is standard, as shown by the
lattice of Fig. 18.

ProBLeEm 18. Call an element s of L a standard element of order two
if it is a standard element of a standard ideal of S. Do the standard elements
of order two form a sublattice of L? Characterize the standard elements of
order two, What can be said of the standard elements of higher order?

ReMARK. The following theorem may be useful: if s is a standard
element of order two of L, then there is a unique maximal standard ideal
S such that s is standard in S.

Fig. 16

Fig. 17 Fig. I8
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CHAPTER VI
IDEALS SATISFYING THE FIRST ISOMORPHISM THEOREM

§ 1. The case of relatively complemented lattices
with zero satisfying the ascending chain condition

In this section we want to prove the following theorem:

THEOREM 20. Let L be a relatively complemented lattice with zerc in
which the ascending chain condition holds. An ideal I of the laftice L satis-
fies the first isomorphism theorem, i. e.

TUK[I~K/InK
for all ideals K of L if and only if I is neutral.

Proor. If [ is neutral, then from Theorem 13 it follows that it satisfies
the first isomorphism theorem. Now let us suppose that the ideal 7 of the
relatively complemented lattice L with the ascending chain condition satisfies
the first isomorphism theorem. By the structure theorem of DILWORTH,
L==L,x--+Xx L, with simple lattices L;, and consequently, /=1 X--+ X I;
with [&L; (j==1,..., k). We prove that [ satisfies the first isomorphism
theorem if and only if every /; satisfies in L; the first isomorphism theorem.
This is an immediate consequence of the following identity:

L/I%lq/[l Xoewe X Lyfly.

Hence we have reduced the question to the case of simple relatively
complemented lattices. Instead of this we shall now consider a bit more
general class of lattices, which will lead not only to the proof of Theorem 20,
but at the same time to a generalization of it:

Lemma 17, Lef L be a complemented simple lattice. No principal ideal
of L except for (0] and (1] satisfies the first isomorphism theorem.

PrROOF. Let a€ L, and b the complement of a. Applying the first iso-
morphism theorem, we get

(a u b]/(a] = (b]/(a n b].

The left member is isomorphic to the lattice of one element (except a = 0)
and the right member is isomorphic to the principal ideal (b]. This is a con-
tradiction, unless a=0 or b==0, as stated,

Lemma 17, compared to the arguments we have made above (using
the structure theorem given in Corollary 4 of Theorem 11), leads to the fol-
lowing generalization of Theorem 20:
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THEOREM 21. Let L be a section complemented weakly modular lattice
with the ascending chain condition. An ideal I of L satisfies the first isomor-
phism theorem if and only if it is neatral.

CoROLLARY. Let [ be a section complemented weakly modular lattice
satisfying the ascending chain condition (for inslance, a finite relatively com-
plemented lattice) in which the first isomorphism theorem unrestrictedly holds.
Then I is a finite Boolean algebra.

In § 3 we shall show that the assertion of Theorem 20 holds in finite
modular lattices as well. But it is not already true for finite weakly modular
lattices. Fig. 17 shows a lattice L which is simple. The dual L of L has an
element s=£0, 1 which is locally standard® and thus it satisfies the first iso-
morphism theorem.

§ 2. A general theorem

In the following section we want to prove that the conclusion of Theo-
rem 20 holds in modular lattices of locally finite length with zero. In this
section we prove a general theorem which characterizes the ideals satisfying
the first isomorphism theorem in cerfain classes of lattices which are a little
more general than the class of finite lattices. The condition of this theorem
is rather difficult, but starting from this, we shall be able to solve the prob-
lem in modular lattices of locally finite length with zero.

First we turn our attention to proving two lemmas of preliminary character.

LEmMmA 18. Let L be a lattice of finite length and let L satisfy the
Jordan—Dedekind chain condition. Then L(®)==L (® ¢ O(L))implies O = w,
that is, no proper homomorphic image of L is isemorphic te L.

PROOF. Suppose @ =+ w and L(®)=x L. Then there exist a, b€ L such
that a>b and a==b (@). Let C be a maximal chain of length n such that
a,b€C. The image of C under @ is a maximal chain of L(®), and its
length is at most n—1, for the homomorphic images of « and b are the
same. From the isomorphism L =< L(®) it follows that the Jordan—Dedekind
chain condition holds in L(®), and consequently the length of L(®) is at
most n—1. Since the length of the original lattice is n, therefore this contra-
dicts the isomorphism of L and L(®).

COROLLARY. Let L be a lattice of finite length and suppose that every
homomorphic image of L satisfies the Jordan— Dedekind chain condition. Then
O, e O) and O = D, further L(O)y==L(D) imply @ = D.

9 See the definition in the Note after Problem 17.
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We remark that the conclusion of Lemma 18 does not hold if the
Jordan—Dedekind chain condition is not presupposed. An example is given by
Fig. 19. Let ® be the congruence relation @,,. Then @, >w and L(@.)~L.

A generalization of the first isomor-
phism theorem is a homomorphism theorem
which is always true:

LEMMA 19. Let [ and K be arbitrary
ideals of L. Then we have

K~K/InK~TUK]I.

SUPPLEMENT 1. A nafural congruence
relation O, of K under which K(O,)>~=K/InK
may be given in the following way: the ele- Fig. 19
ments a,b of K are congruent under ©, if
and only if there exist u,v€INK and aUb= x,=zx,=---=x,=anb such
that u, o — x5, % (i=1,2,...,n) within K.

SUPPLEMENT 2. A natural congruence relation ©, of K under which
K(®.)=>=1u K/l may be given as jollows: the elemenis a,b of K are con-
gruent under @, if and only if there exist u,v€l and aVb=y, =y, =
Z..-z=y.=anb such that u,v—y1,y; (i=1,2,...,n) within UK.

Without loss of generality we may suppose L=1/7U K. Consider the
congruence relation @[/]. This makes a partition of K into congruence classes
and, obviously, this partition of K is compatible. Consider the congruence
relation @* of K which induces the same partition on K. We assert that

1U K/l >~ K(O").
From the first general isomorphism theorem we get that it is enough to prove
that every congruence class of /U K modulo @[/} contains an element from K.
Indeed, let x € /U K, then with suitable y€/7 and 2€ K we have x=yUz.
We put t=xnynz (€1). Then y=t (O[I]), hence yuz=tuz=2z (O[/]),
and so x=xn(yUz)=xnz (O[I]). Thus xUz€K is congruent to 2 mo-
dulo O[/]. ,

On the other hand, denote @), the congruence relation of the lattice K
generated by /In K (i.e. ®,= O[/n K]on the lattice K). Obviously, a=05 (0,)
implies a=b(®"), that is, O,= @*. Thus K(O,) ~ K(O"). We have already
seen that /U K/~ K(®"), hence we have K~ K/KnI~ [IU K]/l which was
to be proved.

The assertion of the supplements is immediate if we compare the defi-
nitions of @&* and @, with that of @, and @, and with Theorem I and for-
mula (3).
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Now it will be easy to give the required characterization of the ideals
satisfying the first isomorphism theorem.

THEOREM 22. Suppose that every element a of L satisfies one of the
following conditions:

(a) [0,a] is a finite lattice;

(b) every homomorphic image of the lattice [0, a] satisfies the Jordan—
Dedekind chain condition.

Then an ideal I of the lattice L satisfies the first isomorphism theorem
with any principal ideal K== (k] if and only if whenever the weak projectivity
it v— X,y holds within IUK, where u,v €l and x,y€ K, x>y, then with
suitable elements w, z of In K the weak projectivity w, 2 — X,y holds within K.

Proor. From the conditions it follows that if K'=(k] is a principal
ideal, then for the lattice [0, k] the conclusion of Lemma 18 is true. Indeed,
if K satisfies condition (b) of Theorem 22, then the assertion follows from
Lemma 18. If K safisfies condition (a) of Theorem 22, then it is a finite
lattice. Let @, @ € G(K) and @ < ®. Then K(®D) consists of fewer elements
than K(0), thus K(®) == K(®) is impossible.

Now, in Lemma 19 we have seen that /U K// == K(®") and K/InK=>

of Lemma 10. Thus, if K safisfies the first isomorphism theorem, then from
the previous section and from ®,=®" it follows that &,== ®*. From con-
ditions (a) and (b) we conclude that the lattice L is discrete, that is, any
two elements a>b6 of L may be connected by a finite maximal chain. It
follows that two congruence relations, ®, and ®*, are the same if and only if
@, and @ collapse the same prime intervals. But if a covers b, then in
Supplement 1 of Lemma 19 we may take.n=1 and in Supplement 2 m =1,
and thus the coincidence of @, and & upon every prime interval is just
assured by the condition of this theorem.

Conversely, if the conditions of Theorem 22 hold, then the congruence
relations @, and @ are the same, that is, K(0,) == K(0"). Consequently, by
Lemma 19, we get JUK/I=>=K/In K, completing the proof of Theorem 22.

§ 3. Modular lattices of locally finite length with zero

The main result of this section is the following:

THEOREM 23. Lef L be a modular lattice of locally finite length with
zero. An ideal I of L satisfies the first isomorphism theorem if and only if it
is neutral.
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We prove a bit more than the assertion of the theorem, namely

COROLLARY. Let L be a modular lattice with zero which is of locally
finite length. The following four conditions on the ideal I of the lattice L are
equivalent:

(a) I satisfies the first isomorphism theorem, that is, for an arbitrary
ideal K of L :
UK/ I>~=K/InK;

(b) 1 satisfies the first isomorphism theorem for an arbitrary principal
ideal K== (k};

(¢) I is standard;

(d) 7 is neufral.

We prepare the proof of this theorem with four lemmas. Among these
the first is surely known, but we did not find in the literature. The most
interesting of these lemmas is the third (Lemma 22) which gives the structure
of an interesting free lattice.

LEMMA 20. Let L be a locally finife modular lattice and I an ideal of L.
A prime inferval p of L collapses under O[I] if and only if it is projective
to a prime interval g of I

PROOF. It is easy to derive this assertion from Theorem [ and formula (3).
A direct proof is the following: we define the relation @: a==0 (0) (a,b€ L)
if and only if there exists a sequence of elements qUb==y,> y;> -+ >J, =
==aNb such that each [y, 3] ((=0,1,...,n—1) is projective to a prime
interval of /. All the conditions of Lemma Il are trivially satisfied for @, thus
© is a congruence relation and @ == @[/] is also obvious. If a>b, then
n==1, hence the assertion.

Let L be a modular Ilattice of locally finite length. Let us fix an ideal
I and a prime interval p of L. By the previous lemma we can find prime
intervals ¢ in /7 such that ¢ <% p. Choose a ¢ such that n be as small as
possible. For the proof of Theorem 22 it will be useful to call this smallest
n the order of p relative to /. n=0 means that pS/ and p is of infinite
order if p does not collapse under @[/].

LeEmMmA 21. Let L be a modular lattice of locally finite length. An ideal
I of L is standard if and only if the orders of the prime intervals of L relative
to I are 0,1 or infinite.

Proor. If I is standard, then by condition (y”) of Theorem 2 the asser-
tion is obviously true.

Conversely, suppose the ideal [ of L satisfies the condition. Let & be
the relation defined in the proof of Lemma 20. If a=& (), then there exists
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& sequence of elements aUb=p >y > >y=0anb such that each
Iy, y] is projective to a prime interval [ai:,a] of I Because all the
Va1, yi] are of the order 1 or O relative to [, it follows that we may sup-
pose yiyUa;=y; Let x=Va,, then obviously y,Ux=1y,. This means that
I satisfies condition (y”) of Theorem 2 and, consequently, / is standard.

COROLLARY. An ideal I of a modular lattice L of locally finite length is

not standard if and only if there exists a prime interval p of L of order 2
relative to I ’

Fig. 20

The sublattice V (that is, the lattice of five elements which is modular
but not distributive) is called minimal if its length in L is 2.

Now suppose that / is a non-standard ideal of the modular lattice L
of locally finite length and consider a prime interval p of order 2, the
existence of which is guaranteed by Lemma 21. It is possible that we can
reach p from 7 in the way shown by Fig. 20. In this case the “turn” is
through a minimal V. If this is the case, then we call the zero element of
the minimal V a furning element. Consequently, if we can find to the ideal /
a turning element, then 7 is surely not standard. The most important point
of the proof of Theorem 22 is the converse of this statement. We cannot
prove directly this assertion. First we have to find the most general situation
which may occur in Fig. 20, that is, the corresponding free lattice.

Lemma 22, Let L be a modular lattice of locally finite length. I is a
non-standard ideal, p a prime interval of order 2 relative to I, q a prime
interval of I and q &> p, namely, b,a > f,e-~d,¢c, p=1[b,a] and g=1[d,c]
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The free modular lattice generated by the elements a,b,c,d and e, f is
the following:

e

Fig. 21

ReMARK. Simply to say, in Lemma 22 there is determined the free
modular lattice generated by two covering pairs of elements. It is interesting
the existence of this free lattice, for, in general, it is not allowed to prescribe
covering relations in a free lattice. :

ProOF. Consider the elements x=a ud, y=fn(aUc), z=>bUc, further
the elements a, b,c,d,e, f, bud, auc, bnd. We prove that from the modu-
larity and from the fact that the order of p relative to 7 is 2, finally from
the covering relations it follows that these elements form a sublattice of L
and all the joins and meets are the same as in Fig. 21 and these are con-
sequences of the hypotheses.

First we show that x, y and z generate a minimal V, and

xUy=yUz=2zUx=aUc¢, xnNy=ynz=znx=bud.

6 Acta Mathematica XII/1—2
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xUz==aUc is clear from the definitions. We have xUy={(aud)u
ulfn(@uc)]=(from aud=auc and from the modularity)==(auduf)n
N(auc)=(because auf=e)=(due)n(auc)=auc for c=e.We can get
yUz==aUc¢ in a similar way.

From x=aud it follows that the interval [bud, x] is a transpose of
[b, a], and so it is of length 1 (we excluded the case dua==dub, for this
implies dna>dnb, thus [dnb,dnal& ] is a transpose of [b, a] the order
of which relative to [ is 1). Similarly, [bud, z] is also of length 1. Finally,
[6,a] 2~ [f, e] 5> [y, auc), and so [y,auc] is also a prime interval.

A

d Fig. 22 b

We show that no two of x, y and 2z coincide. Suppose x = z. Because
of xUz==aUc we get x=2z==qaUc. Further, [bUd x] is a prime interval,
and so y=bud. In this case the diagram of the lattice (more precisely, a
part of it) is shown by Fig. 22. We see that anc=and is impossible, for
aUc=aud and aUc=x. Thus [and,anc] is a prime interval. Further,
from d=y we get and=anynd=>5bnd. We prove that [and,anc] is a
transpose of [b, a]. This will be a contradiction, for in this case the order of
[b, a] relative to [ is 1 contrary to the hypotheses.

We have to prove that bU(and)==56 and bu(anc)=-a. We have
bu(and)=({fromand=bnd)=>b;furtherbu(@anc)=({buc)na=zna=a.

The impossibility of x—y is very easy to prove, for if x==y, then
f=fn{aue)=y=x=aud=a, that is, e—=fUa—F, a contradiction. We
get a similar contradiction from y=2z.
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Of the remaining relations it is enough to prove anc=bnd. Indeed,
from anc==5bnc (which is surely true, otherwise the order of [b, a] relative
to I were 1) and from ync=d we get anc=bnc=(ynb)ync=(ync)n
nb=dnb. Thus the proof of Lemma 22 is completed.

Now we are able to prove the existence of turning elements.

LEMMA 23. Let L be a modular lattice of locally finite length. An ideal
I of L is non-standard if and only if there exists a turning element.

Proor. Using the notations of Lemma 21 and Lemma 22, consider the
prime intervals p =1[b, a] and ¢ =|d, c] the existence of which is assured by
Lemma 21. The sublattice of L generated by a,b,c,d and e, f is a homo-
morphic image of the free lattice of Lemma 22. Under this homomorphism,
the minimal V of the free lattice does not collapse. (Indeed, if the minimal
V collapsed, then both p and g would collapse.) Thus the minimal element
of the minimal V may serve as a turning element.

We remark that the only congruences of the free lattice of Lemma 22,
under which p does not collapse, are @y, @.,, O, and their joins.

Now we are prepared for proving Theorem 23.

PrROOF OF THEOREM 23. We prove the Corollary, for it is a stronger
assertion than the theorem.

(c) implies (d) — this is stated in Lemma 10.

(d) implies (a) — this was proved in Theorem 13.

(a) implies (b) — this is trivial.

Thus we have to prove that (b) implies (c).

For this reason, let us suppose that L is a modular lattice with zero
and of locally finite length, and 7 is an ideal satisfying

IUK/I~K/Knl

for all K=(k]. If (b) does not imply (c), then I is not standard, that is, by
Lemma 23 there exist turning elements in L. From the suppositions on L we
obtain the existence of the dimension function d(x). We denote from now
on by u a turning element for which d(u) is as small as possible. Finally,
we denote by p and g the prime intervals (see Lemmas 22 and 23) from
which the turning element u has been constructed.

Now we apply Theorem 21 to / and (a) We may do so, for every
interval [0, a] of L satisfies the Jordan—Dedekind chain condition, and the
same is true for any homomorphic image of [0, a]. U (a] contains the prime
interval p, the order of which relative to / in /U (a]is 2, for /U (a] contains
the whole minimal V because of xUyuUz=aucé€(@Jul. The order of p
relative to /n(a] in (a] is at most 2, for if it were 1, then the order of p rela-

6*
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tive to / in /U (a] would be also 1. Thus by Theorem 21 and Lemma 20
we can find a prime interval ¢, of /n(a} and prime intervals ¢,...,q.=p
(n=2) of (a] such that g¢,—» g, > -+~ > g, = p. Let the intervals be chosen
in such a way that n be the order of p relative to /n(a] in (a]. Then ¢, is
of order 2 relative to In(e] in (a]. It is trivial that the order of g, relative
to [ in JU(a] is also 2, otherwise it would be 1, and this would imply the
same in (a]. We may now apply Lemma 23 to ¢,, g, and /n(q}, to conclude
the existence of a turning element ». This turning element of /n(a] in (a]
is a turning element of / in the whole lattice, too, for ¢, is of order 2 rela-
tive to /. But the minimal V, the zero of which is the turning element , is
included in (a], therefore d(v)<d(a)—1. On the other hand, d{a)=d(u)+1,
thus d(v)<d(u). We have found a turning element of lower dimension than
u, a contradiction to the minimality of d(z). This contradiction proves the
Corollary of Theorem 22 and at the same time Theorem 22.

We should point out that as a consequence of Theorem 22 we get that
every ideal satisfying the first isomorphism theorem is a homomorphism
kernel in modular lattices with zero and of locally finite length. We have
obtained the same conclusion in section complemented weakly modular latti-
ces with ascending chain condition in § 1 of this chapter. Thus the following
problem arises:

ProBLEM 19. Give classes of lattices in which every ideal satisfying the
first isomorphism theorem is a homomorphism kernel. (Does the class of
weakly modular lattices serve for this purpose?)

REMARK. In general it is not true, see, for instance, the ideal (g] of the
lattice U.

ProBLEm 20. Does there exist a modular lattice L and an ideal 7 of L
such that / satisfies the first isomorphism theorem and despite this

a) [ is not a homomorphism kernel, or

b) 7 is not a neutral ideal?

§ 4. A characterization of standard ideals
by the first isomorphism theorem

In the Introduction we alluded fo the fact that the notion of standard
ideals is the best-possible one from the point of view of the first isomorphism
theorem,

To formulate precisely what this means we need some notions.

Let & be a class of ideals, i.e. if we are given a laftice L and an
ideal J of L, then we are able to determine whether 7¢ & or not. We say
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that & is of type f.=g. (e € A) if 1€ is equivalent to the fact that 7 is of
type fo=gs (¢ € A) in the sense of § 4 of Chapter Ill. We say that & satis-
fies the first isomorphism theorem if from I€ &, [ is an ideal of L it follows
that / satisfies the first isomorphism theorem with any other ideal K of L.
Finally, an ideal / of the lattice L is said to have the condition (s) if L,/I
is a sublattice of L/l under the natural mapping whenever IS L, CL, L, is
a sublattice of L. Again, & has property () if any of its ideals has it.

Only condition (%%) needs a little explanation. It essentially requires
that from the structure of L informations may be got about L/

For groups, (%) holds always (putting invariant subgroup instead of
ideal and subgroup for sublattice).

Now we may state

THEOREM 24. If the class & of ideals
1. is of type fo=ga;
2. satisfies the first isomorphism theorem;
3. has the property (%),
then & contains only standard ideals.

The proof is easy, we have only to observe that it is an easy conse-
quence of Theorem 10 that we may restrict ourselves to principal ideals. Now
if /=(d], then it may be easily proved that (%) of § 2 of Chapter Il is
equivalent to (#%). As it was proved in § 3 of Chapter III, it follows that &
contains only distributive ideals. Now if d were distributive but not standard,
then by Lemma 1 L would contain x,y with x=y, dux=dUuy, dnx=
=dny. By 1, (d]€d in {d, x, y} contradicting 2.

(Received 31 December 1959)
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