KONINKL. NEDERL. AKADEMIE VAN WETENSCHAPPEN - AMSTERDAM
Reprinted from Proceedings, Series A, 61, No. 5 and Indag. Math., 20, No. 5, 1958

MATHEMATICS

ON THE GENERALIZED BOOLEAN ALGEBRA GENERATED BY
A DISTRIBUTIVE LATTICE

BY

G. GRATZER anp E. T. SCHMIDT

(Communicated by Prof. J. F. Koksma at the meeting of June 28, 1958)

1. Indroduction. In this note our first aim is to prove the following
theorem of J. Hasamoro [5]1):

Theorem 1. To any distributive lattice L there exists a generalized
Boolean algebra 2) B having the properties

(1) L is a sublattice of B;

(2) ©(L) is ®) isomorphic to &(B);

(3) if the interval [a, b] of L is of finite length, then [a, b] has the
same length as an interval of B.

The importance of this theorem lies in the fact that it reduces the
examination of @(L), in case L is distributive, to the special case of a
generalized Boolean algebra, in which case this lattice was completely
characterized by Komatu {8].

We prove this theorem in two different ways. Both proofs make no use
of the Axiom of Choice, so we get two algebraic proofs of the embedda-
bility of a distributive lattice in a Boolean algebra.

The first proof is based on a construction of Mac NriLLE [7]. However,
as it was pointed out by PEREMANS [8], the proof of the correctness of
Mac Neille’s construction is not complete 4).

We shall start with completing Mac Neille’s proof, and then as an
easy consequence we shall get Theorem 1.

Our second proof constructs B from @(L). We prove that &(L) is

1} In our paper [4] we have proved all but the above purely lattice theorstical
theorems of J. Hashimoto’s paper in pure lattice theoretical way. Theorem 1 is
a combination of Theorems 8,3 and 8,5 of [5].

?) A Boolean ring is a commutative and associative ring of idempotent character-
istic two (a® = a, for all a). Let B be a Boolean ring and definea \ Ub =a + b + ab
and oMb = ab. We respect to these operations U, m, B becomes a relatively
complemented, distributive lattice with zero element; B is called a generalized
Boolean algebra. Furthermore, every generalized Boolean algebra may be constructed
in such a way. We should like to point out that if we define a 1\ b = ab in B, then
the only possible way for getting a lattice from B is the above described one.

%) ©B(L) denotes the lattice of all congruence relations of the lattice L {see [1]).

} PEREMANS writes that he has not been able to fill out the gap in the proof
of Mae Neille without assuming the embeddability.
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the lattice of all ideals of a generalized Boolean algebra. Our main tool
is the well known theorem of Komatu [6] (see in [1] and [2] too). We
shall make use of some results from [3]. This proof leads to the following
generalization of Theorem 1:

Theorem 2. The lattice of all congruence relations of a lattice L
is isomorphic to the lattice of all congruence relations of a suitable
generalized Boolean algebra if and only if every congruence relation of
the form %) @, has a complement in G(L).

In [3] we have proved that a distributive lattice satisfies the hypothesis
of Theorem 2, accordingly, Theorem 2 is actually a generalization of
Theorem 1.

2. The proof of Theorem 1. Let L denote a distributive lattice with
the elements a, b, ¢, .... We denote also by a, b, ¢, ... the generators of
B which is defined as the associative ring generated by the elements
@, b, ¢, ... with the defining relations 2a=0 for all a e L and ab=c if
¢=a b in L. Hence B consists of 0 (the zero element of B) and of all
finite sums Y a; (@, € L).

If L may be embedded—as a sublattice —in a generalized Boolean
algebra B;, then considering the subring B, of B, generated by L, from
the definition of B it follows that B, is a homomorphic image of B. The
kernel, JJ, of this homomorphism, contains all the elements of the form
a+b+anb+aub, for in B, the identity a+b+anNd+aUub=0 is
satisfled (this identifies the join operation of L with that of B,). The
subring 7, of B generated by the elements of the type a+b+aNbraUb
is an ideal (owing to the identity

clat+bra Ubranb)=catch-tca\Jehb+ca M ch,

which is a consequence of the distributivity of L). Obviously, J and
therefore I, does not contain elements of the form a (@ € L and a is not
equal to the zero o of L if it exists) or a+b {@,be L, a + by for Lis a
sublattice of B, and so @¢=0 or a=5 in B, is impossible. On the other
hand, if I does not contain elements of the above type, then —identifying
the elements of L with the generators of B/I,— L becomes a sublattice
of BJI,. Hence we get

L may be imbedded in o generalized Boolean algebra if and only if I,
does not contain elements of the form a {(a+0) and a+b {ab).

Now let us suppose that in case of a distributive lattice L the ideal I
contains an element x of the type a{+#0) or a+b (a+#5). Then there exists
3 finite number of elements o, and b; such that

=3 (a+b+a,ub+a;Nb).
i=1

%) O, denotes the congruence relation induced by a = b, in other words, the
minimal congruence relation @ with a = b{(@).
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Let D be the sublattice of L generated by these a; and b;. By the con-
struetion of D and from the italicized assertion it follows that D can
neither be embedded in a generalized Boolean algebra (for x € I;)). But
D is finite so we have got a contradiction ¢).

Thus we have proved the embeddability of distributive lattices in
generalized Boolean algebras.

Let B denote the generalized Boolean algebra B/I,, if L has no zero
element; otherwise let B be the homomorphic image of B/L, obtained
by adjoining the new relation 0=0. We prove that B fulfils the require-
ments of Theorem 1.

Property (1) was already proved in the previous paragraphs.

Property (3) may be proved directly by a little computation, but we
can avoid it by remarking that if (3) failed to be true in the distributive
lattice L, then it would not be valid even in some finite sublattice of L,
a contradiction ).

In proving (2) we shall make use of the following lemma of Mac
NeiLLE [7]:

Lemma 1. Every element z of B may be written in a standard
n
form z= 3 a, where a,<a,<...<a, {(#;¢L).
i=1
Proof.?) The case n=1 is trivial. We use induction on =, that is,
we suppose that a,<...<a,. By a repeated use of the identity

at+bt+taUubtanb=0,
we get

T=ay Nyt (g Uag) Nagt(a UagUdy) Nay+...+(a, Ua,U ... Ua,),

completing the proof.
We use Lemma 1 in order to prove

Lemma 2. Let I,J be two ideals of B such that I D J. There exists
an equality of the form a=0 or a=5% (a, b € L), which holds in B/I but
not in B}J.

Proof. Let®) zel\J and let z = iai {a;< ... <un,) be of standard

form. We may assume that a, ¢.J andza,l1 +ay ¢J. Indeed, there exists a
least a; with a; ¢J, for a, € J implies  €J, a contradiction. If a,+a, €/,
then we consider x+a,+a, and proceed thus until we get an element of
the required form or a contradiction to x e I\J.

%) We have supposed that the reader is familiar with Theorem 1 in case of a
finite distributive lattice. Then B may be constructed as the Boolean algebra of
all subsets of the set of the meet-irreducible elements of L. The embedding is
a — {x; x is mest-irreducible, = = a}. Conditions (1)-(3) may be easily verified
{naturally without transfinite methods), but we shall refer only to (1) and (3).

7y This proof is that of [7].

8) \ denotes the set-theoretical difference.
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If n is odd, then in B/I a new equality is a;= 0, for 0 =x=ua,=na,=aq,.
In case »n is even, then a,=a, is a required one which is valid for
O0=12=2x0y=0;-+0a, These identities fail to be true in B}J for a,¢J and
a,+ay ¢J were supposed.

Obviously, a congruence relation @ in L induces a congruence relation
@ in B, if we identify the generators a, b of B if and only if a = b (0).
The relations @ and @ coincide on L. Thus different congruence relations
of L may be extended to different congruence relations of B. In order
to complete the proof of (2) it remains only to show that different con-
gruence relations of B are different on L. But this is an immediate
consequence of Lemma 2. Thus the proof of Theorem 1 is completed.

Let us note that the special case J=(0) of Lemma 2 has been proved
by Mac NeiLrLe [7]. This special case leads to the following important
assertion:

Corollary. (Theorem of Mac Neille). B is the smallest generalized
Boolean algebra in which L may be embedded, that is, no sublattice or
homomorphic image of B contains L as a sublattice.

3. The proof of Theorem 2. First we recall some definitions.

Let H be a complete lattice. The subset {z,} of H is called a directed
set if given x, and z; some x, satisfies z,<z, and x3<z,. It follows
readily that every finite subset of {x,} has upper bounds within {z,}.
If {z,} is a directed set and | #,=, then we write z, { z. If, for a fixed z,

x, 4 @ implies that some z, equals x, then we say that xz is 4 -inaccessible ?)
(or x is inaccessible from below).

If {x,} is a subset of H, then the subset [x,] is called the natural directed
extension of {x,}, if it consists of all finite joins of the =z, Naturally,
[z,] is a directed set.

First of all we prove the following

Lemma 3. Let L be a lattice (or an arbitrary algebra with finitary
operations 1°). The element @ of @(L) is 1 -inaccessible if and only if

it is of the form @ = \/ @

by *
Proof. Let &= \/ @M, and 6,41 6. Since g, =8, (\/ 8,), for some
finite subset & of the O, we have the relation o, =25, (\/ ©i). Let

@ e {6,} be an upper bound for the 6} (3,j=1, 2, ...). Then a;, = b, (D)
(¢=1,2,...,n). Consequently, ®> 6. On the other hand ® ¢ {6,} and
so D<@, it follows that &= 6.

Now let @ be 4 -inaccessible. Obviously, & = \ 6,, hence the

a=b{e
natural directed extension of these 6, accesses ©@. Thus 6 = \/ @.,‘,,‘

and the proof of Lemma 3 is completed

%} See [2].
1%} In the sense of [1].
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Now we are able to prove Theorem 2.

Let L be a (not necessarily distributive) lattice and let us suppose
that there exists a generalized Boolean algebra B with &(L) ~ O(B).
As it is well known, @(B) is isomorphic to the lattice B of all ideals of B.
By Lemma 3, the 4 -inaccessible elements of @(L) are of the form

\7} O,,,. and it is well known that the 4 -inaccessible elements of B
i=1
are just the principal ideals of B 1!). Hence under any isomorphism

O(L) = B the elements of the form \n/ Oy, correspond to the principal
i=1

ideals of B, for under isomorphism the 4 -inaccessibility is preserved.
Consequently, if we prove that in B any principal ideal of B has a comple-
ment, then we know the same for the elements of &(L) of the form
\?,l/ O,,,, hence, in particular, for all @,,
i=1

Let (a] be a principal ideal of the generalized Boolean algebra B.
Define K as the set of all x satisfying ¢ M x=0. From the distributivity
of B we get that K is an ideal, while (¢] n K=0 is obvious. Let u be
arbitrary in B and u, the relative complement of @ N % in the interval
[0, u]. Because of @ M wu,=0 it follows u, e K. Furthermore v N a € {a},
hence u=u, U (uNa)e K U(a]. Thus, K is the complement of (a] in B.

Now, we suppose that in @(L) every ©,, has a complement &;,. We
prove that both &, N 6, and O, N @, are 4 -inaccessible for all
a,b,¢,de L. We may suppose a<b, c<d. There is a chain

C=Ty< Xy < ... <H,y=d

such that for every ¢ either x,_, = x,(0,) or z, =x,_;(0,) (see [3]).
Let us denote by p; the intervals of the first type and by g¢; those of
the second type. Obviously,

%
V 0, UV 0, =0, and®) 6,0 6,
i=1 je=1
(for all j). We have

%
OuNBy=0,nN (\/ @m U V @qj) =(Op N V @m) U \/ (@, N @qj) =_\./1@3?g
and in the same way we get

!
@;b N @cd = \/ @aj )
j=1
and our agsertion follows by Lemma 3.
We prove that the 4 -inaccessible elements of @(L) form a relatively

complemented sublattice with zero element. From the identity
V Oy NV @%dj =V (@“ibi n @";‘31)
i H i

11y See in [6] or also in [1] and [2].
%) w denotes the zero of G(L).
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it follows the property of being a sublattice. w =6, , is an element of this
sublattice. The relative complementedness may be proved easily, for let

n m
v @ai-bo' <V @cjdi’
i=1

i=1

then the relative complement of \/ 6,, in the interval [w, V O] is

n m
4
/\ @a‘b, N \/ @c,d,- ’
i=1 j=1

the 4 -inaccessibility of which may be proved from the result of the
previous paragraph by an easy induction on n-m.

Now, we turn to the theorem of Komaru [6] in order to prove that
the generalized Boolean algebra B of the 4 -inaccessible elements of
O(L) satisfies the condition @(B) =~ G(L).

Komatu’s theorem (see [6], or in [1] and [2], too) asserts: Let K be
a lattice. H is the lattice of all ideals of a suitable lattice if and only if
the following conditions are satisfied: (i) H is complete; (ii) every element
of H is join of 4 -inaccessible elements; (iii) ,  « implies z, "yt 2 N y;
(iv) the 4 -inaccessible elements of H form a sublattice L. Furthermore,
if (i)—(iv) are satisfied then H is the lattice of all ideals of L.

Conditions (i)-(iii) hold in ®(L) (this was proved in [2], but in this
special case this may be readily verified owing to Lemma 3, to the
distributivity of @(L) and to Birkhoff’s theorem —see [2], p. 23 —which
assures (i)). Hence it follows that @(L) is isomorphic to the lattice of all
ideals of B, completing the proof of Theorem 2.

As immediate consequences of Theorem 2 we have

Corollary 1. Let L be a lattice. There exists a Boolean algebra B
with @(L) ~ ©@(B) if and only if every congruence relation of the form
04, has a complement in @(L) and for some u, v € L, 6,, is the greatest
element of G(L).

Corollary 2. Let L be a distributive lattice. There exists a Boolean
algebra B with ©(L) o~ 6©(B) if and only if L has a least and a greatest
element.

Corollary 1 is obvious. Corollary 2 is a consequence of Corollary 1,
for in a distributive lattice all @, in @ (L) are complemented (see [3])
and if 6, (u<wv, u, v e L) is the greatest element of O(L) and e.g. x<u,
then 6,, N 6, =w (see [3]), a contradiction.

Let us remark that a distributive lattice L with the zero element o
(if L has no zero, we adjoin it to L) may be easily embedded in the
generalized Boolean algebra B of the 4 -inaccessible elements of &(L).
Indeed, the correspondence a — @, is an isomorphism and carries L
into a subset of B which is a sublattice (these assertions follow from the
following identities of [3]: @y, U 0, =0 ,0;; O N O,=06,,.,).
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Finally, we mention the following question:

What is a necessary and sufficient condition for &(L) to be isomorphic
to the lattice of all ideals of a suitable lattice? 13} Is the following condition
suitable: all congruence relations of the form 6, are separable (in the
sense of [3])? Since every congruence relation having a complement is
separable, this condition is a natural generalization of that of Theorem 2.

13) Naturally, the condition is equivalent—owing to Komatu’s theorem—to the

n
following trivial one: @, N 6, may be written in the form V @a‘.b,'
i=1
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