
SLIM SEMIMODULAR LATTICES. I. A VISUAL APPROACH

GÁBOR CZÉDLI AND E. TAMÁS SCHMIDT

Abstract. A finite lattice L is called slim if no three join-irreducible elements
of L form an antichain. Slim lattices are planar. Slim semimodular lattices

play the main role in [3], where lattice theory is applied to a purely group
theoretical problem.

After exploring some easy properties of slim lattices and slim semimodular
lattices, we give two visual structure theorems for slim semimodular lattices.

1. Introduction

By a slim lattice we mean a finite lattice M such that J(M ), the poset (partially
ordered set) of its non-zero join-irreducible elements, contains no three-element
antichain. In virtue of R.P. Dilworth [4], a finite lattice M is slim iff J(M ) is the
union of two chains. By Lemma 6 of [3], slim lattices are planar. So, they are
relatively simple objects. A lattice L is called (upper) semimodular, if b ∨ c covers
or equals a∨ c for all a, b, c ∈ L with a ≺ b. Because of their links to combinatorics
and geometry, these lattices constitute an important branch of Lattice Theory; see
M. Stern [11] for an overview.

Semimodular lattices have recently proved to be useful in strengthening a clas-
sical group theoretical result, the Jordan-Hölder theorem. Namely, G. Grätzer and
J. B. Nation [9] have recently pointed out that given two composition series of a
group, there is a matching between their factors such that the corresponding factors
are isomorphic because of a very specific reason: they are related by the composite
of a down-perspectivity with an up-perspectivity. In [3], this matching is shown
to be unique. The main role in [3] is played by slim semimodular lattices, due to
the fact that any two finite maximal chains of a semimodular lattice generate a
join-subsemilattice that is a slim semimodular lattice.

As it has been pointed out by G. Grätzer and E. Knapp [6] (see Proposition 9
later), planar semimodular lattices can easily be obtained from slim ones. This way
slim semimodular lattices play an important role in a series of papers by G. Grätzer
and E. Knapp [6]–[8] on the Congruence Lattice Representation problem.

The above-mentioned developments motivate a separate study of slim semimod-
ular lattices. Our main results, the twin Theorems 11 and 12, are constructive
visual structure theorems of these lattices. While it seems to be difficult to provide
various examples of small (and, preferably, planar) semimodular lattices when one
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is getting acquainted with Lattice Theory, this should not be a problem after The-
orems 11 and 12. Some easy results on slim lattices and slim semimodular lattices
are also surveyed or achieved.

All lattices occurring in the present paper are assumed to be finite. We will rely,
sometimes only implicitly, on the rigorous study of planar lattices by D. Kelly and
I. Rival [10].

2. Definitions and elementary facts

A finite lattice L is called planar, if it has a planar diagram, that is a diagram
in which the edges are non-horizontal straight lines that may intersect only at
their endpoints. A planar lattice is finite by definition. Although always a fixed
planar diagram is kept in mind, our statements will be valid no matter which planar
diagram is considered. The edges of the (fixed) planar diagram divide the plane into
regions. The minimal regions are called cells. The notion of cells are exemplified by
the five-element non-distributive lattices: N5 has only one cell while M3 has two.
Note that a planar lattice has no cell iff it is a chain. L is said to be a 4-cell lattice,
if it is planar and each cell is surrounded by exactly four edges. Then for each cell
there are a, b ∈ L, called the left corner and the right corner of the cell, such that
the cell is surrounded by its lower edges a∧ b ≺ a and a∧ b ≺ b and its upper edges
a ≺ a ∨ b and b ≺ a ∨ b, and a is on the left of b. The elements a ∧ b and a ∨ b are
called the bottom and the top of the cell, respectively. The meaning of an opposite
edge of a 4-cell is self-explanatory; for example, the edge a ∧ b ≺ b is opposite to
the edge a ≺ a ∨ b. By a covering square we mean a subset {a ∧ b, a, b, a∨ b} such
that a ∧ b ≺ a, a ∧ b ≺ b, a ≺ a ∨ b and b ≺ a ∨ b. Note that 4-cells are covering
squares but, as it is exemplified by M3, not conversely. For a ∈ L, the principal
ideal [0, a] = {x ∈ L : x ≤ a} and the principal filter [a, 1] will be denoted by ↓a
and ↑a, respectively.

The left boundary and the right boundary of L are denoted by Bleft(L) and
Bright(L), respectively. Their meaning should be clear, or see D. Kelly and I. Ri-
val [10] for a rigorous technical definition. Note that Bleft(L) and Bright(L) are
maximal chains in L. The common name for Bleft(L) and Bright(L) is boundary
chain. The union B(L) := Bleft(L) ∪ Bright(L) of the boundary chains is said to be
the boundary of L.

Proposition 1 ([3] and, mainly, G. Grätzer and E. Knapp [6]). For every finite
lattice L, the following five conditions are equivalent:

• L is a slim semimodular lattice;
• L is a slim semimodular 4-cell lattice;
• L is a planar semimodular lattice without cover-preserving M3-sublattices;
• L is a planar semimodular lattice in which 4-cells and covering squares are

the same.
• L is a 4-cell lattice in which no two distinct 4-cells the same bottom.

Proof. The equivalence of the first four conditions is stated in Lemma 7 of [3], whose
proof heavily relies on G. Grätzer and E. Knapp [6]. Note that third condition is
clearly equivalent with the definition of a slim semimodular lattice given in [6].

The first four conditions imply the fifth one by Lemma 7 of [6].
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Assume the fifth condition. Then L is semimodular by Lemma 5 of [6]. If L had
a cover-preserving M3, then it would clearly have two distinct 4-cells with the same
bottom. Hence the third condition follows. �

Semimodularity is not assumed in the next seven statements.

Lemma 2. Each element of a slim lattice L has at most two covers.

The particular case when L is a slim semimodular lattice is just Lemma 6 of G.
Grätzer and E. Knapp [8].

Proof of Lemma 2. Assume that u ∈ L is covered by three distinct elements, v1,
v2 and v3. Then we can choose an element pi ∈

(
J(L) ∩ ↓vi

)
\ ↓u, for i ∈ {1, 2, 3}.

Since vi = u∨pi, we conclude that {p1, p2, p3} is a three-element antichain in J(L),
a contradiction. �

Let us recall the following lemma, which is visually clear.

Lemma 3 (Lemma 1.2 of D. Kelly and I. Rival [10]). Let x ≤ y in a planar lattice
L. If x and y are on different sides of a maximal chain C in L, then there is a
z ∈ C such that x ≤ z ≤ y.

We will also need the following lemma.

Lemma 4. If L is a planar lattice, a and b belong to the same boundary chain of
L and a ≺ b, then either a is meet-irreducible or b is join-irreducible.

Proof. Suppose the contrary, and let a, b ∈ Bleft(L) with a ≺ b. Then there are
elements a′ and b′ in L such that a ≺ b′ ‖ b and b � a′ ‖ a. Let A = ↓a ∩ Bleft(L)
and B = ↑a∩Bleft(L); they are chains. Extend {a, b′} to a maximal chain C of ↑a.
The maximal chains B and C of ↑a surround a region R of L. By Lemma 1.3 of
D. Kelly and I. Rival [10], a is the least element of R. Hence a′ /∈ R, whence b and
a′ are on different sides of the maximal chain A ∪ C. Lemma 3 yields an element
x ∈ A∪C such that x ∈ [a′, b] = {a, b}. This is a contradiction, because a′ /∈ A∪C
and b /∈ A ∪ C. �

Proposition 5 (Lemmas 5 and 6 in [3]). • Slim lattices are planar.
• Let E = {0 = e0 ≺ e1 ≺ · · · ≺ en} and F = {0 = f0 ≺ f1 ≺ · · · ≺ fm} be

non-empty chains of a finite lattice L such that J(L) ⊆ E ∪F . Then L has
a planar diagram such that Bleft(L) = E ∪ ↑en and Bright(L) = F ∪ ↑fm.

• If e is a maximal element of J(L), then ↑e is a chain and ↑e ⊂ B(L).

Let us call a finite lattice L linearly indecomposable, if for each x ∈ L \ {0, 1}
there is a y ∈ L such that x and y are incomparable. It follows easily from Lemma
1.3 of D. Kelly and I. Rival [10] that, for an arbitrary planar lattice L, L is linearly
indecomposable iff Bleft(L) ∩ Bright(L) = {0, 1}.

Lemma 6. If L is a slim lattice, then, for every planar diagram, J(L) ⊆ B(L).

Proof. By way of contradiction, we assume that p ∈ J(L) \ B(L). Let q stand for
the unique lower cover of p. Let u be the greatest element of ↓p ∩ Bleft(L), and let
u+ stand for its upper cover in Bleft(L). Similarly, v denotes the greatest element
of ↓p ∩ Bright(L), and let v+ ∈ Bright(L) such that v ≺ v+ . Since u+ 6≤ p and
p 6= u ∈ Bleft(L), the equation u = u+ ∧ p shows that u is meet-reducible. Hence
Lemma 4 yields that u+ ∈ J(L), and v+ ∈ J(L) follows similarly.
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Figure 1. A contour C and a slim lattice L

If we had p < u+, then u ≤ q < p < u+ would contradict u ≺ u+. Hence p ‖ u+,
and the same reasoning yields that p ‖ v+ . Since L is slim, {p, u+, v+} is not a
three-element antichain, we conclude that either u+ = v+ or, say, u+ < v+. If
u+ = v+, then L is linearly decomposable at u+, and u+ 6 ‖ p is a contradiction. If
u+ < v+, then the join-irreducibility of v+ gives that u+ ≤ v < p, a contradiction
again. �

Lemma 7. Let L be a slim lattice. Then B(L) is uniquely determined. If, in
addition, L is linearly indecomposable, then even the boundary chains of L are
uniquely determined.

Proof. If c ∈ L is comparable with any other element of L, then c belongs to all
boundary chains, since they are maximal chains. Thus, we can assume that L is
linearly indecomposable and |L| ≥ 3.

Since L is linearly indecomposable, it has exactly two atoms by Lemma 2. Let
a1 and b1 be these atoms. They must belong to different boundary chains. Now
we have a choice: let, say, a1 belong to Bleft(L). We intend to show that no more
choice has remained and Bleft(L) = {0 ≺ a1 ≺ a2 ≺ · · · ≺ 1} and Bright(L) = {0 ≺
b1 ≺ b2 ≺ · · · ≺ 1} are uniquely defined. (Note that these boundary chains may
have different length.)

We prove by induction on k that, say, ak is uniquely determined. Assume that
k > 1 and ak−1 is uniquely determined. If ak−1 is meet-irreducible, then it has a
unique cover y. Since Bleft(L) is a maximal chain, ak = y.

Next, assume that ak−1 is meet-reducible. Then it has exactly two covers, x and
y by Lemma 2. We know from Proposition 1 that L is planar, so there is a left
boundary chain and it contains x or y. Invoking Lemma 4 we infer that x or y is
join-irreducible. If both x and y are join-irreducible, then they are on the boundary
by Lemma 6, but they belong to different boundary chains, because x ‖ y. Their
unique lower cover, the common ak−1, belongs to both boundary chains. Hence L
is linearly decomposable at ak−1, a contradiction. Consequently, exactly one of the
elements x and y is join-irreducible. This element is ak by Lemma 6. �

The boundary B(L) of a planar lattice L is a poset. Note that B(L) is a (planar)
lattice, but not a sublattice of L in general. By a contour we mean a fixed planar
diagram of a planar lattice M such that M = B(M ). For a planar lattice L, we say
that the contour of L is arbitrary, if L has the following property:

• for each contour C that is order-isomorphic to the boundary of L in some
planar diagram, L has a planar diagram in which B(L) is congruent to C
in the Euclidean metric.
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We say that L satisfies the Jordan-Hölder chain condition, if all of its maximal
chains have the same length. It is well-known that finite semimodular lattices
satisfy this condition. This allows us to speak of the height h(x) of an element in
a finite semimodular lattice: it is the length of any maximal chain of [0, x].

While C and L in Figure 1 indicate that the contour of a lattice is not arbitrary
in general, we have the following statement.

Proposition 8. Let L be a finite lattice satisfying the Jordan-Hölder chain condi-
tion. Then the contour of L is arbitrary.

Proof. We prove the statement by induction on |L|. We can assume that |L| ≥ 4,
L is linearly indecomposable, and the statement holds for all lattices with less than
|L| elements. Consider a planar diagram of L, and let C be an arbitrary contour
that is order isomorphic with B(L); let ϕ : B(L) → C be an order-isomorphism.
By Theorem 2.5 of D. Kelly and I. Rival [10], we can choose a doubly irreducible
element b ∈ L such that b ∈ Bleft(L). Since Bleft(L) is a maximal chain, the unique
lower cover a and the unique upper cover c of b belong to Bleft(L). By the chain
condition and the assumption on linear indecomposability, the cell containing a, b, c
is a 4-cell with left corner b. Let d denote the right corner of this cell. Removing
b from the diagram, we get a planar diagram of the sublattice L′ = L \ {b} such
that a, d, c ∈ Bleft(L′). If d /∈ Bright(L), then we obtain a new contour C′ from
C by moving ϕ(b) slightly, horizontally towards the interior of the polygon C and
keeping other vertices unchanged. If d ∈ Bright(L), then, to obtain C′, we move
ϕ(b) to ϕ(d). By the induction hypothesis, L′ has a diagram whose boundary is
congruent with C′. Clearly, if we put ϕ(b) back to C′, we get a planar diagram of L
whose boundary is congruent with C. �

Let L be a planar semimodular lattice, and let C4(L) be the collection of all
4-cells of L (with respect to a fixed planar diagram). For each 4-cell S, we insert
nS ≥ 0 new elements cS,1, . . . , cS,nS , called “eyes”, into the interior of S such that
0S ≺ cS,i ≺ 1S for i = 1, . . . , nS. This way we obtain a new lattice, which is
called an anti-slimming of L. If n =

∑
S∈C4(L) nS , then we speak of an n-step

anti-slimming. This terminology is motivated by G. Grätzer and E. Knapp [6]. For
example, M3 is a 1-step anti-slimming of the four-element Boolean lattice.

Proposition 9 (G. Grätzer and E. Knapp [6]). Every anti-slimming of a planar
semimodular lattice is a planar semimodular lattice. Conversely, each planar semi-
modular lattice is an anti-slimming of a slim semimodular lattice.

The above statement shows that, in a sense, the description of planar semimod-
ular lattices reduces to that of slim semimodular lattices. The rest of the paper is
devoted only to slim semimodular lattices.

3. Forks, corners, and visual constructions

Let d be a doubly irreducible element of a slim semimodular lattice L. Then
d is on a boundary chain of L by Lemma 6. Clearly, the unique lower cover d−

and the unique upper cover d+ of d belong to the same boundary chain. If d− is
meet-reducible and d+ is join-reducible, then the doubly irreducible element d is
called a weak corner of L. It is clear by Lemma 2 that d− has exactly two upper
covers, provided that d is a weak corner. This motivates the following definition: by
a corner of L we mean a weak corner d such that d+ has exactly two lower covers.
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Figure 2. Weak corner and corner

For example, the grey-filled element d of L2 is a weak corner of L2, see Figure 2,
while the black-filled element is a corner of L3. (It will be evident by Proposition 10
or Theorem 11 that the lattices in Figures 2, 3, 5, 6 and 7 are semimodular, but
we do not need this fact now.)

A corner or a weak corner can be removed and a sublattice remains. The reverse
procedure will be called adding a weak corner and adding a corner, respectively.
More exactly, if L is a slim semimodular lattice, a ≺ b ≺ c are elements of one of
its boundary chains and a is meet-irreducible, then we can add a new element d to
L such that a ≺ d ≺ c; we say that the lattice L∪{d} is obtained from L by adding
a weak corner. If, in addition, c ∈ J(L), then we say that L∪ {d} is obtained from
L by adding a corner. For example, L2 in Figure 2 is obtained from L1 by adding
a weak corner, while L3 is is obtained from L2 by adding a corner.

Proposition 10. • If we add a weak corner (or, in particular, a corner) to
a slim semimodular lattice, then we obtain a slim semimodular lattice.

• If we remove a weak corner (or, in particular, a corner) from a slim semi-
modular lattice, then we obtain a slim semimodular lattice.

• Each slim semimodular lattice can be obtained from a chain by adding weak
corners, one by one, in a finite number of steps.

Proof. Clearly, if L′ is obtained from a 4-cell lattice L by adding a weak corner,
then L′ is again a 4-cell lattice. If L has no two distinct 4-cells with a common
bottom, then neither has L′. Hence the first part of the statement follows from
Proposition 1.

The second part follows analogously.
To prove the third part by induction on the size, let L be a slim semimodular

lattice. We know that L is planar, and we can assume that it is not a chain.
By Theorem 2.5 of D. Kelly and I. Rival [10], L has a doubly irreducible element
d ∈ Bright(L) \ {0, 1}. We can assume that d /∈ Bleft(L), because otherwise L
would be linearly decomposable at d and the induction hypothesis would apply
to ↓d and ↑d. Clearly, d belongs to a unique 4-cell, which is a covering square
S = {a = b ∧ d, b, d, c = b ∨ d}. Removing d from L means that S is removed from
the set of 4-cells. Hence

(1) K = L \ {d} is a slim semimodular lattice

by Proposition 1. By the induction hypothesis, K can be obtained from a chain
by adding weak corners finitely many times. One of the upper covers of a, namely
d, is removed, whence d is a meet-irreducible element in K by Lemma 2. So, L is
obtained from K by adding a weak corner. �
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Figure 3. S7 (on the left) and S9 (on the right)

Figure 4. The downward-going procedure

Usually, adding a corner results in a more aesthetic diagram than adding a weak
corner, see Figure 2. Unfortunately, we cannot drop “weak” from Proposition 10.
Indeed, the lattice S7 depicted in Figure 3, which has a crucial importance in this
paper, cannot be obtained from a chain by adding corners. We fix the notation
of its elements according to Figure 3. The only meet-irreducible but join-reducible
element of S7 will be called the middle element of S7, usually denoted by s. The
lower covers of s are denoted by v1 and v2. The upper cover of s is the top of this
S7, it is denoted by t. The double irreducible cover of vi is denoted by wi.

We are now in the position of giving one of the crucial definitions. Let S be a
4-cell of a slim modular lattice L. Then S is a covering square {a = b1 ∧ b2, b1, b2,
c = b1 ∨ b2}. We change L to a new lattice L′ as follows.

Firstly, we replace S by a copy of S7. This way we get three new 4-cells instead
of S.

Secondly, as long as there is a chain u ≺ v ≺ w such that v is a new element and
T = {x = u ∧ z, z, u, w = z ∨ u} is a 4-cell in the original lattice L but x ≺ z at
the present stage, see Figure 4, we insert a new element y such that x ≺ y ≺ z and
y ≺ v. (This way we get two 4-cells instead of T .) When this “downward-going”
procedure terminates, we obtain L′. The collection of all new elements, which is a
poset, will be called a fork. We say that L′ is obtained from L by adding a fork to
L (at the 4-cell S), see Figure 5 for an illustration. If we add several forks to L one
by one, then we simply speak of adding forks to L.

Theorem 11. Each slim semimodular lattice can be obtain from a chain by using
the following two operations

• adding a fork
• adding a corner

finitely many times. Moreover, the class of slim semimodular lattices is closed with
respect to these operations.

Notice that none of the two operations can be omitted from Theorem 11. For
example, S9 in Figure 3 cannot be obtained from a distributive lattice by adding
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Figure 5. Adding a fork to L

fork(s). Similarly, S7 cannot be obtained from a distributive lattice by adding
corner(s).

A slim lattice L is called a rectangular lattice, if J(L) is the union of two disjoint
chains C and D such that every element of C is incomparable with all elements of
D. Note that rectangular lattices are at least four-element. Although the definition
of rectangular lattices given by G. Grätzer and E. Knapp [7] is different from ours,
for slim lattices the two definitions are the same. The advantage of starting from
a rectangular slim lattice is that rectangular lattices can be depicted in a very
aesthetic “rectangular” way; see several figures in [7] or see the lattice on the right-
hand side of Figure 7. A chain with more than one element is called a nontrivial
chain.

Theorem 12. Let L be a slim semimodular lattice consisting of at least three
elements. Then L can be obtained from the direct product of two nontrivial finite
chains such that

• first we add finitely many forks one by one,
• and then we remove corners, one by one, finitely many times.

4. Proofs and further lemmas

The proofs of Theorems 11 and 12 require some lemmas. Two lower covers of
an element are called neighboring if one of them is immediately to the right of the
other one in a fixed planar diagram.

Lemma 13. Let x and y be two neighboring lower covers of z in a 4-cell lattice.
Then {x ∧ y, x, y, z} is a 4-cell.

Although this lemma looks quite evident visually, we give a formal rigorous proof
in the style of D. Kelly and I. Rival [10].

Proof. Let b := x∧y, and assume that y is on the right of x. Let D be the rightmost
chain between b and x. That is, we consider the interval [b, x], which is a region
by Lemma 1.5 of D. Kelly and I. Rival [10]), and D is the right boundary of this
interval. Similarly, let E be the leftmost chain between b and y. Choose maximal
chains D′ and E′ such that D′ ⊇ D ∪ {z} and E′ ⊇ E ∪ {z}. By the definition of
a meet, D ∩ E = {b} = E ∩ ↓x. This together with Lemma 3 easily implies that
every element of D \ {b} is on the left-hand side of E′. Similarly, every element of
E \ {b} is on the right-hand side of D′. Hence D ∪ {z} and E ∪ {z} are the left
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Figure 6. Constructing an S7 in the proof of Lemma 15

and right boundary chains of a region T , respectively, and the intersection of these
boundary chains of T is {b, z}.

We now suppose, by way of contradiction, that there is an element u in the
interior of T . Since b and z are the least and the greatest elements of T by Lemma
1.3 of D. Kelly and I. Rival [10]), we know that b < u < z. Observe that u 6< x,
because otherwise taking a maximal chain from b to u inside T and continuing it
from u to x inside T we would get a new maximal chain from b to x on the right of
D, a contradiction. Similarly, u 6< y. Therefore, if we take a maximal chain from u
to z inside T , then the last but one element of this chain is a lower cover of z strictly
on the right of x and strictly on the left of y. This contradicts the assumption that
y is an immediate right neighbor of x. Therefore, T is a cell. Hence it is a 4-cell,
because L is a 4-cell lattice. �

Lemma 14. Let L be a slim semimodular lattice. Let t be an element of L such
that t has at least three lower covers, and suppose that t is minimal with respect to
this property. Then t is the top of a cover-preserving S7 sublattice.

Proof. Since L is planar by Proposition 1, we fix a planar diagram of L. Let
x1, x2, x3 be three neighboring lower covers of t such that xi+1 is immediately to
the right of xi, for i = 1, 2. Lemma 13 gives us two 4-cells, Q1 = {b1, x1, x2, t} and
Q2 = {b2, x2, x3, t}, see Figure 6. The Jordan-Hölder condition gives h(t) − 1 =
h(x1) = h(x2) = h(x3) = h(b1) + 1 = h(b2) + 1. So, if we had b1 ≤ x3, then x1,
x2 and x3 would be three distinct covers of b1, which would contradict Lemma 2.
Hence b1 6≤ x3 and b2 6≤ x1. In particular, b1 6= b2. Since t was minimal with more
than two lower covers, b1 and b2 are the only lower covers of x2. Let b = b1 ∧ b2.
Lemma 13 yields that Q3 := {b, b1, b2, x2} is a covering square.

Finally, knowing that Q1, Q2, and Q3 are covering squares, it is routine to check
that {b, b1, b2, x1, x2, x3, t} is a cover-preserving S7 sublattice of L. �

Lemma 15. Let L be a slim semimodular lattice. Then L is distributive if and
only if S7 is not a cover-preserving sublattice of L.

Proof. The “only if” part trivially follows from the fact that S7 is non-distributive.
Conversely, assume that L is a slim semimodular non-distributive lattice We

know from Lemma 3 of G. Grätzer and E. Knapp [6] that L is not modular. But
L is semimodular, so Corollary IV.2.3 of G. Grätzer [5] implies that L is not du-
ally (=lower) semimodular. There exist two distinct 4-cells with the same top,
because otherwise L would be dually semimodular by the dual of Proposition 1.
Consequently, there is an element t ∈ L with at least three lower covers. Hence
Lemma 14 applies. �
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Figure 7. Weak and strong forks

Lemma 16. Every slim distributive lattice is dually slim.

Proof. Lemma 14 together with distributivity imply that no element has three or
more lower covers. Hence no two distinct 4-cells have the same top, and the lattice
is dually slim by the dual of Proposition 1. �

In a semimodular lattice L, let s be the middle element of a cover-preserving S7

such that the top t of this S7 is minimal. (Note that there can be several cover-
preserving S7 sublattices with minimal top, even with the same top.) As usual,
see Figure 3, the left and the right lower covers of s are denoted by v1 and v2,
respectively. Define

F = F (s) := {x ∈ L : x ≤ s and the interval [x, s] is a chain},
Fi = Fi(s) := F ∩ ↓vi (i = 1, 2), and

K = K(s) := L \ F.

F defined above is called the weak fork determined by the middle element s. The
strong fork determined by s is defined as

F ∗ = F ∗(s) := {x ∈ F : x = s or x is meet-reducible}.
For an illustration in a slim semimodular lattice and in a slim semimodular rectan-
gular lattice, see Figure 7. Let us summarize the terminology: s determines a weak
fork or a strong fork (always with adjective), but we add a fork (without adjective)
to L. If we add finitely many forks one by one, then we speak of adding forks. For
i = 1, 2, let

F ∗
i := F ∗ ∩ ↓vi, f∗

i :=
∧

F ∗
i , fi =

∧
Fi.

Lemma 17. ↓s is a slim and dually slim distributive sublattice of L.

Proof. Since t was minimal, Lemmas 15 and 16 apply. �
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The following lemma justifies the appearance of Figure 7.

Lemma 18. For i = 1, 2, Fi is the chain [fi, vi] and F ∗
i is the chain [f∗

i , vi].
Further, F is the disjoint union of F1, F2 and {s} while F ∗ is the disjoint union
of F ∗

1 , F ∗
2 and {s}.

Proof. If x ∈ F1 ∩ F2, then v1, v2 ∈ [x, s] shows that [x, s] is not a chain, whence
x /∈ F , a contradiction. This shows that the union F1 ∪F2 ∪{s} is a disjoint union,
and therefore the same holds for F ∗

1 ∪ F ∗
2 ∪ {s}. Note that s has only two lower

covers: v1 and v2. So, if x ∈ F \ {s}, then x ≤ v1 or x ≤ v2 implies x ∈ F1 ∪ F2.
Hence F ⊆ F1 ∪ F2 ∪ {s}, while the converse inclusion is trivial. This also yields
that F ∗ = F ∗

1 ∪ F ∗
2 ∪ {s}.

Suppose, by way of contradiction, that F1 is not a chain. Then there are x, y ∈ F1

such that x ‖ y. Let z = x ∨ y, and consider an arbitrary w ∈ [x, z]. Since w ≤ v1

and [w, s] ⊆ [x, s], we obtain that [w, s] is a chain and w ∈ F1. In particular, z ∈ F1

and there is an x′ with x ≤ x′ ≺ z such that x′ ∈ F1. Similarly, there is an y′

with y ≤ y′ ≺ z such that y′ ∈ F1. Clearly, z = x′ ∨ y′. We know that neither of
x′, y′, z is in ↓v2, because otherwise v1 and v2 would be two incomparable elements
in the chain, say, [x′, s]. Hence the distributivity of ↓s, see Lemma 17, yields that
z ∧ v2 ≺ z ∧ s = z, and z has three distinct lower covers: x′, y′ and z ∧ v2. Hence
Lemma 14 yields a cover-preserving S7 in ↓s, which contradicts the minimality of
t (or Lemmas 15 and 17). Thus, F1 is a chain. So is F2, and so are their subsets
F ∗

1 and F ∗
2 .

Since Fi is a chain, its smallest element is fi. Hence Fi ⊆ [fi, vi]. Conversely,
if z ∈ [fi, vi], then [z, s] ⊆ [fi, s] yields that [z, s] is a chain, whence z ∈ Fi. This
shows that Fi = [fi, vi].

Finally, it suffices to prove that

(2) F ∗
i is a filter of Fi.

Clearly, vi, the greatest element of Fi, belongs to F ∗
i . Suppose that x ∈ F ∗

i \ {vi},
y ∈ Fi and x ≺ y; we have to show that y ∈ F ∗

i , that is, y is meet-reducible or y = s.
We can assume that y 6= s. Since x is meet-reducible and [x, s] is a chain, there
is an a ∈ L \ [x, s] such that x ≺ a. Let b = a ∨ y; it covers y by semimodularity.
Notice that b 6≤ s, because otherwise a ≤ s, which is not the case. Hence y = b ∧ s
shows that y is meet-reducible. Thus, y ∈ F ∗

i . �

The notation introduced right before Lemma 17 are still fixed.

Lemma 19. f1, f2 ∈ J(L).

Proof. Assume, by way of contradiction, that, say, f1 is join-reducible. Since ↓s
is distributive by Lemma 17, f1 ∧ v2 ≺ f1. Hence f1 has a lower cover a ≺ f1

such that a 6= f1 ∧ v2. We know that [a, s] is not a chain, because a /∈ F . Hence
there are u1, u2 ∈ [a, s] such that u1 ‖ u2. If u1 is comparable with all elements of
F1∪{a, s}, which is a maximal chain in [a, s], then, by the maximality of this chain,
u1 ∈ F1 ∪ {a, s}. Therefore either u1 or u2 is incomparable with some element of
F1 ∪ {a, s}.

Consequently, we can choose a maximal element y ∈ F1 ∪ {a, s} such that y
is incomparable with some element of [a, s]. Clearly, y ∈ F1. Let y+ denote the
unique upper cover of y in F1∪{s}. Choose a maximal element x ∈ [a, s] such that
x ‖ y. The maximality of y yields that x < y+, and then the maximality of x gives
that x ≺ y+.
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If x < z ≤ s, then the maximality of y implies that z is comparable with all
elements of the chain [y+, s] ∪ {x}, which is a maximal chain in [x, s], so z ∈
[y+, s]∪{x}. This shows that [x, s] is a chain, whence x ∈ F . Since F1 is a chain by
Lemma 18, y ∈ F1 and x ‖ y, we obtain that x /∈ F1. Clearly, x 6= s. Consequently,
x ∈ F2 = [f2, v2]. This yields that a ≤ x ≤ v2. Therefore, a ≤ f1 ∧ v2. This
together with a ≺ f1 and f1 ∧ v2 ≺ f1 imply a = f1 ∧ v2, a contradiction. �

Lemma 20. K = L \ F is sublattice of L, and it is a slim semimodular lattice.
Moreover, L can be obtained from K by adding a fork and then adding |F \ F ∗|
corners.

Proof. Suppose a1, a2 ∈ K but a1∨a2 /∈ K. Then a1∨a2 ∈ F , so a1 and a2 belong
to ↓s, which is a distributive lattice by Lemma 17. Since F = F1∪F2∪{s}, there is
an i ∈ {1, 2} such that fi ≤ a1 ∨ a2 ≤ s. Since fi is join-irreducible by Lemma 19,
there is a j ∈ {1, 2} such that fi ≤ aj ≤ s. Then aj ∈ Fi ∪ {s} ⊆ F contradicts
aj ∈ K. This shows that K is closed with respect to joins.

Suppose, seeking for a contradiction, that K is not closed with respect to meets.
Then we can choose a maximal element z such that z ∈ F and z is the meet of
some a, b ∈ K. Since s is meet-irreducible, we can assume that z ∈ F1. Since
v1 = x ∧ y clearly implies s ∈ {x, y} and s /∈ K, we can also assume that z < v1.
We know that z is meet-reducible, so it has exactly two covers by Lemma 2. One
of its covers, denoted by z+ is in the chain F1. The other cover c of z is not in F1,
because z ∈ F1 and F1 is a chain. Let, say a ≥ c. Then b ≥ z+, because the other
possibility would lead to z = a ∧ b ≥ c ∧ c = c.

Let d := c ∨ z+. Then z+ ≺ d by semimodularity. We have d ∈ K, because
otherwise z, d ∈ F and z ≤ c ≤ d would imply c ∈ F . We also have d 6≤ b, because
otherwise z = a ∧ b ≥ c. Using the covering z+ ≺ d and the relation z+ ≤ b, we
obtain z+ = d ∧ b. Since d, b ∈ K, this contradicts the maximality of z. Thus, K
is a sublattice of L.

The next plan is to omit the minimal element(s) of F \ F ∗ one by one, and to
show that this procedure preserve semimodularity and slimness. So, assume that
F ∗ ⊂ F , and, say, f1 < f∗

1 . Then, by definition and Lemma 19, f1 is a doubly
irreducible element. Let f−

1 and f+
1 be its unique lower cover and upper cover,

respectively. If f−
1 was meet-irreducible, then [f−

1 , s] = {f−
1 } ∪ [f1, s] would be a

chain and f−
1 would belong to F1 = [f1, v1], a contradiction. Hence f−

1 is meet-
reducible. If f+

1 was join-irreducible, then the distributivity of ↓s (by Lemma 17)
would imply f+

1 ∧ v2 ≺ f+
1 , whence f1 = f+

1 ∧ v2 ≤ v2 ≤ s, so v1, v2 ∈ [f1, s] would
contradict the fact that [f1, s] is a chain. Hence f+

1 is join-reducible, and f1 is a
weak corner. In fact, for i = 1, 2,

(3) fi is a corner of L, provided fi < f∗
i ,

by Lemma 17 and the dual of Lemma 2.
Let c denote the upper cover of f−

1 distinct from f1; note that c ≺ f+
1 . Since the

distributivity of ↓s gives f+
1 ∧ v2 ≺ f+

1 , f1 6≤ v2 and f+
1 has only two lower covers,

we conclude that c = f+
1 ∧ v2 ≤ v2. Let L′ := L \ {f1}; it is a slim semimodular

lattice by Proposition 10. Since c, the only lower cover of f+
1 in L′, is below v2,

the weak fork determined by s in L′ is F \ {f1} but the strong fork determined by
s remains the same. Repeating this procedure in |F \F ∗| steps we arrive at a slim
semimodular sublattice of L in which the weak fork and the strong fork determined
by s are the same.
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Therefore, by changing the notation if necessary, we can assume that

F = F ∗.

We claim that K = L \ F = L \ F ∗ is a slim semimodular lattice and, in addition,
L can be obtained from K by adding a fork.

We start from F1 = F ∗
1 = {f∗

1 = z1 ≺ · · · ≺ zn = v1}, where n ∈ N; see Figure 7
with n = 3. Define xi = zi ∧ v2. Since v2 ≺ s, the distributivity of ↓s yields that
xi ≺ zi and xi ≺ xi+1, that is, Ti := {xi, zi, xi+1, zi+1} is a covering square for
1 ≤ i < n. By Lemma 2, f∗

1 = z1 has a unique upper cover y1 outside F ∗
1 . Define

yi = zi ∨ y1 for 1 < i ≤ n. Although the yi are not in ↓s, the semimodularity of
L yields that Pi := {zi, yi, zi+1, yi+1} is a covering square for 1 ≤ i < n. Covering
squares of L are 4-cells.

Clearly, when we delete the elements of F ∗
1 , then, for each i ∈ {1, . . . , n}, two

4-cells, Ti and Pi, are replaced by a single 4-cell, {xi, yi, xi+1, yi+1}. The same
happens when we delete the elements of F ∗

2 . Finally, when we delete the middle
element s, then we get a single 4-cell instead of three old ones. This shows that L\F ∗

remains a 4-cell lattice. The bottom of each new 4-cell is the bottom of some old
4-cell. Thus, no two distinct 4-cells of K have the same bottom, and Proposition 1
implies that K is a slim semimodular lattice. Finally, the consideration above
shows that L can be obtained from K by adding back the (strong) fork we have
just deleted. �

Proof of Theorem 11. By Proposition 10, the class Ssm of all slim semimodular
lattices is closed with respect to adding a corner. When we add a fork, then all
the new cells are 4-cells, no two new cells have the same bottom, and if a new has
the same bottom as an old cell, then the old cell is deleted. Hence Proposition 1
implies that Ssm is closed with respect to adding a fork.

We have to prove that each L ∈ Ssm can be obtained from a chain by the
two permitted operations. We prove this by induction on |L|. We can assume that
|L| ≥ 3 and the statement holds for every slim semimodular lattice with size smaller
than |L|.

If L happens to be distributive, then Theorem 2.5 of D. Kelly and I. Rival [10]
allows us to choose a doubly irreducible element d ∈ Bright(L) \ {0, 1}. Lemma 2
together with its dual and Lemma 16 yield that d is a corner of L. Consider the
sublattice K = L \ {d}. It is a slim semimodular (in fact, distributive) lattice
by (1). So, the induction hypothesis yields that K can be obtained by the two
permitted operations. The same holds for L, because L is obtained from K by
adding a corner.

Thus, we can assume that L is not distributive. By Lemma 15, we can choose
a cover-preserving S7 sublattice with minimal top. This determines a weak fork
F , see right before Lemma 17. Then K = L \ F is a slim semimodular lattice by
Proposition 20. So, the induction hypothesis implies that K can be obtained from a
chain by the two permitted operations. The same holds for L by Proposition 20. �

The proof of Theorem 12 is divided into the following two lemmas, both being
of separate interest.

Lemma 21. Let L be a slim semimodular lattice consisting of at least three el-
ements. Then L can be obtained from a rectangular slim semimodular lattice by
removing a corner finitely many times.
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Proof. Let L0 be a slim semimodular lattice of length n ≥ 2, that is, of size at least
3. If we add corners to L0, each after each, then we obtain a slim semimodular lattice
L of the same length by Theorem 11. However, Lemma 6 yields that |L| ≤ 22n.
Hence the procedure of adding new and new corners terminates in a finite number
of steps. So we can assume that L is a slim semimodular lattice such that no corner
can be added to L; we have to show that L is rectangular.

Let c1 and d1 be the largest element of Bleft(L) ∩ J(L) and Bright(L) ∩ J(L),
respectively. Define C = Bleft(L) ∩ ↓c1 and D = Bright(L) ∩ ↓d1.

We claim that J(L) = (C∪D)\{0}. Lemma 6 implies that J(L) ⊆ (C∪D)\{0}.
Assume, by way of contradiction, that the converse inclusion fails. Then some
element of, say, C \ {0} is join-reducible; let x be the largest such element. Let
x− ∈ Bleft(L) and x+ ∈ Bleft(L) be the lower cover and the upper cover of x on the
left boundary, respectively. Then x+ ∈ J(L) by the maximality of x, and Lemma 4
yields that x− is meet-irreducible. Hence we can add a corner d to L such that
x− ≺ d ≺ x+, a contradiction. This shows that J(L) = (C ∪ D) \ {0}.

Clearly, L is not a chain, because otherwise a corner could be added to it.
Therefore, C 6= D.

Assume, seeking for a contradiction, that C ∩ D 6= {0}. If x ≺ y ∈ C ∩ D
and x ∈ C, then x ∈ C ∩ D, because otherwise y would not be join-irreducible.
Therefore, there is an atom a ∈ C ∩D. Since a belongs to both boundary chains, a
is the only atom in L. Hence 0 is meet-irreducible. Let a+ be the unique cover of a
in C. It is join-irreducible, because a is the only atom. Hence we can add a corner
d to L such that 0 ≺ d ≺ a+, a contradiction. This shows that C ∩ D = {0}.

Next, by way of contradiction, we suppose that L is not rectangular. Then, up
to C-D symmetry, there is a minimal y ∈ D such that (C \ {0}) ∩ ↓y 6= ∅. Let
x ∈ (C \ {0}) ∩ ↓y. Since y is not an atom, it has a unique lower cover y− ∈ D.
Since x 6≤ y−, we have y = x∨ y−, which contradicts y ∈ D ⊆ J(L). Consequently,
L is rectangular. �

Lemma 22. Each rectangular slim semimodular lattice L can be obtained from the
direct product of two nontrivial chains by adding a fork finitely many times.

Proof. We prove the lemma by induction on L. If there is no cover-preserving
S7 sublattice in L, then L is distributive by Lemma 15. Moreover, since J(L)
determines L in this case, L is the direct product of two chains and there is nothing
to do.

Next, we assume that L contains a cover-preserving S7 sublattice. Choose one
with minimal top t, see Figure 7. Besides the notation of Figure 3, the bottom
element of this S7 is denoted by b. Let C = Bleft(L)∩J(L) and D = Bright(L)∩J(L).
Observe that

(4) C ∪ {0} and D ∪ {0} are ideals in L.

Indeed, if c ∈ C, x ≤ c, and x /∈ C ∪ {0}, then d ≤ x for some d ∈ D and d ≤ c
would contradict the rectangularity of L. Hence C ∪ {0} is an ideal, and so is
D ∪ {0}.

For x ∈ L, let cx and dx denote the largest element of (C ∪ {0}) ∩ ↓x and
(D ∪ {0}) ∩ ↓x, respectively. Note that the mappings ϕC : L → C ∪ {0}, x 7→ cx

and ϕD : L → D ∪ {0}, x 7→ dx are order-preserving. Further, x = cx ∨ dx.
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Let q and r be distinct upper covers of an arbitrary element a ∈ L, and let
b = q ∨ r. Then {a, q, r, b} is a covering square, and we assert that

(5) ca < cb and da < db.

Indeed, let c+
a and d+

a be the (unique) covers of ca and da in C and D, respectively.
They exist, because otherwise a could not have two distinct covers. We infer from
semimodularity that c+

a ∨ da and ca ∨ d+
a are covers of a = ca ∨ da, and clearly they

are the only covers of a. Hence, up to q-r symmetry, q = c+
a ∨ da and r = ca ∨ d+

a .
This gives b = q ∨ r = c+

a ∨ d+
a , implying (5).

Let X be a maximal chain that includes {b, v1, s}. Then cs, like any element of
Bleft(L), is on the left of X and v2 is on the right of X. If we had cs ≤ v2, then
Lemma 3 and v1 ‖ v2 would imply cs ≤ v1 ∧ v2 = b, whence cs ≤ cb, although (5)
applied to {b, v1, v2, s} gives cb < cs. Therefore, cs 6≤ v2. However, cs < s and s
has only two lower covers, v1 and v2, whence cs ≤ v1. This implies that cs ≤ cv1 .
The reverse inequality also holds, because ϕC is order-preserving. Hence cs = cv1 .
So, applying (5) to the covering squares {b, v1, v2, s} and {v1, w1, s, t}, see Figure 7,
and using C-D symmetry, we conclude that

(6) cb < cs = cv1 < ct and db < ds = dv2 < dt.

The minimality of t together with Lemma 15 yield that ↓s is a distributive lattice.
Since b∧cs ∈ C by (4), we get that b∧cs ≤ cb. The reverse inequality is evident, so
we get that b∧ cs = cb. On the other hand, cs = cv1 ≤ v1, b ≺ v1 and cs 6≤ b by (6).
Therefore, b∨ cs = v1. So, the distributivity of ↓s yield that cb ≺ cs. By (6), there
are a unique c̃ ∈ C and a unique d̃ ∈ D such that cs ≺ c̃ ≤ ct and ds ≺ d̃ ≤ dt.
Taking the C-D symmetry into account, (6) strengthens to

(7) cb ≺ cv1 = cs ≺ c̃ ≤ ct and db ≺ dv2 = ds ≺ d̃ ≤ dt.

Since L is rectangular, we know that c ‖ d for all c ∈ C and d ∈ D. Hence we
easily obtain that [cs, s] and [cd, s] are chains. This means that cs and ds belong
to the weak fork F = F (s). Since cs ∈ J(L), its only lower cover is cb. From
v1, v2 ∈ [cb, s] we infer that cb /∈ F . Hence cs = f1, the least element of F1.
Since s ∧ c̃ = cs indicates that cs is meet-reducible, cs = f1 = f∗

1 by (2). Similarly,
ds = f2 = f∗

2 . Therefore, F coincides with the strong fork F ∗. Thus, by Lemma 20,
L can be obtained from the slim semimodular lattice K = L \F ∗ by adding a fork.

Finally, we claim that

(8) J(K) = J(L) \ {cs, ds}.

This will clearly imply that K is rectangular, whence the induction hypothesis
applies to it. To prove (8), it suffices to show that, for all x ∈ K, cx 6= cs and
dx 6= ds. Suppose the contrary. Then, say, cx = cs for some x ∈ K. Let y := x ∧ s
and z := y ∨ c̃. Observe that y 6= s, because otherwise s < x would lead to t ≤ x,
yielding ct ≤ cx = cs, contradicting (7). Hence y ∈ [cs, v1] = [f1, v1] = F1, and y
has a unique cover y+ in the chain F1 ∪ {s} = [cs, s]. On the other hand, c̃ 6≤ y,
because otherwise c̃ ≤ cy ≤ cx = cs would contradict (7) again. Hence y ≺ z by
semimodularity. Note that c̃ 6≤ s implies that z 6≤ s. Hence z and y+ are distinct,
so they are the only covers of y by Lemma 2. Clearly, y < x follows from y ≤ x,
x ∈ K, and y ∈ F . Consequently, one of the two covers of y is less than or equal
to x. However, y+ ≤ x would lead to y+ ≤ x ∧ s = y < y+, a contradiction. The
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other possibility, z ≤ x, would lead to c̃ ≤ cz ≤ cx = cs, contradicting (7). Thus,
we have shown that cx 6= cs, while dx 6= ds follows by symmetry. �

Proof of Theorem 12. Lemmas 21 and 22. �
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