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Abstract. In [4] we proved the following structure theorem: every planar semimodular
lattice is a special gluing, a patchwork of special intervals, called patch lattices, shown in
Figure 1. In this paper we characterize these patch lattices by invertible (0, 1)-matrices (see
Theorem 2) and show that this structure theorem has a counterpart in the matrix theory
(see Theorem 5). This gives hope that the theory of planar semimodular lattices can be
traced back to matrix theory. We study the method of the transition to matrices in the
planar case, which hopefully opens the way to handle higher dimensions easily to get a
similar structure theorem.

1. Introduction

My conjecture is that the semimodular lattices have the following structure the-
orem: every semimodular lattice is the patchwork of patch lattices. I hope that this
paper gives a guidance to solve the Conjecture 2 (probably via matrices), see at
the and of this paper. This would be the first structure theorem of this kind in
the theory of finite semimodular lattices. In the class of distributive lattices a good
example is the Rubik’s cube (this gave the idea to define the patchwork construc-
tion), where 27 small ”unit” cubes are glued together by faces (we obtain every
finite distributive lattices on this way from ”unit” cubes). Our goal is to extend
this construction to all semimodular lattice.

Mainly we study the two-dimensional case, but in many places we discuss the
higher dimensional cases too order to clarify some basic concepts. You finde more
reults in [17] and [18].

1.1. Source lattices. The width w(P ) of a (finite) order P is defined to be max{n:
P has an n-element antichain}. As usual, J(L) stands for the order of all nonzero
join-irreducible elements of L. Dim(L) = w(J(L)), consequently 2-dimensional
means that the width of the order of join-irreducible elements is two. Cn denotes
the chain 0 < 1 < .... < n−1 of natural numbers. We define the source in subsection
2.3.

Date: January 20, 2016.
2000 Mathematics Subject Classification: Primary: 06C10, Secondary: 06B15.
Key words and phrases: Lattice, semimodular, embedding, gluing, cover-preserving, matrix.

1
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Figure 1. A patchwork in the two-dimensional case
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Figure 2. Patchwork of two patch lattices

Let us take the lattice N7, the seven-element semimodular but not modular
lattice. This is a special source lattice (an ”elementary particle”), which is the
smallest non distributive building stone of the 2D semimodular lattices.

Source lattices in higher dimensional cases, [17] are special join-homomorphic
images of the direct powers of C3 and C2, which are the following semimodular
lattices:

Ln,k = (C3
n−k × C2

k)/Φ,

where Φ is the cover-preserving join-congruence which has only one non-trivial
congruence class T ( called beret), this contains the dual atoms and the unit element.
Every non-modular semimodular lattice contains as sublattice a source lattice Ln,k.
Then L2,0 ' N7 and L3,3 ' M3.

Two dimensional source lattices are: L2,0
∼= N7, L2,1

∼= C2
2 and L2,2

∼= C2. In
Figure 3 we see L3,0. It is easy t see that Ln,k is a filter of Ln,0.
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s

Figure 3. 3D source lattice, L3,0.

1.2. Patch lattices. Patch lattices are the building stones (”atoms”) of the 2D
semimodular lattices, see [4].

How can we derive the patch lattices from boolean lattices? This is the nesting,
which is the following procedure: let L be a semimodular lattice and let I be an
interval of L isomorphic to the 22-boolean lattice. We call this a 2-cell or covering
square, see in section 2. On the other hand let us take the lattice N7 and the four-
element sublattice {a, b, 0, 1} (see in Figure 3 and Figure 4,(II) the black marked
circles) which is isomorphic to the 22-boolean lattice and it is called the skeleton,
Sk(N7) of N7. There is an isomorphism to an isomorphism of Sk(N7) onto an
interval I ′ of a semimodular lattice L1 = L ∪ I such that I and I ′ have the same
bounds. There is a second construction which produces (IV ) in Figure 3 from
(III). We can repeat this construction for L1 and a 2-cell then we get L2, and so
on, we get Ln.

On this way we get from the L0
∼= 22 boolean lattice first N7, these are the patch

lattices. L0 is a sublattice of Ln this is the skeleton of Ln Let us remark that the
dual atoms of the skeleton are dual atoms of the patch lattices, see in Figure 6.

Lemma 1. Every patch lattice has a skeleton.

In [4] paper we used for nesting ”adding fork to L”. Fork is the order {c, d, e, 1}.
In Figure 4 (V) and Figure 5 we see the nesting.

The two-dimensional semimodular lattices can be characterized by (0, 1)-matrices,
ML, which determines L. The patch lattices are the semimodular lattices which
are determined by special non singular (invertible) (0, 1)-matrices.

1.2.1. The building tool: patchwork. Let L and K be 2-dimensional lattices with
the skeletons {a∧ b, a, b, a∨ b} resp. {c∧ d, c, d, c∨ d}. The Hall-Dilworth gluing of
L and K is called patching if L ∩ K ⊂ [a ∧ b, b] and [c, c ∨ d], ( gluing over edges,
[a ∧ b, b] and [c, c ∨ d] are one-dimensional).

The following structure theorem was proved by G. Czédli and E. T. Schmidt
[4].

Theorem 1. Every two-dimensional semimodular lattice is the patchwork of patch
lattices.
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Figure 4. An example of nesting in the 2D case
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Figure 5. An other example of nesting in the 2D case

The structure of 2D semimodular lattices:

source lattices (”elementary particle”)
⇓ nesting (spec. embedding)
patch lattices (”atoms”)
⇓ patching (spec. gluing)
semimodular lattices

Remark. Similar theorem holds for planar semimodular lattices in this case
the lattices Mn are patch lattices of dimension n.

1.3. Rectangular lattices. Rectangular lattices were introduced by Grätzer-
Knapp [13] for planar semimodular lattices. This notion is an important tool by
description (by the structure theorem, Grätzer-Knapp) of planar semimodular lat-
tices. We define the rectangular lattices for arbitrary dimension.
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Figure 6. A Hall-Dilworth gluing which is not a patchwork

Definition 1. A rectangular lattice L is a finite semimodular lattice in which J(L)
is the disjoint sum of chains Ci.

Geometric lattices are rectangular. In [10] we introduced the almost geometric
lattices these are lattices in which J(L) is the disjoint (cardinal) sum of at most two
element chains. In the class of finite distributive lattices the rectangular lattices are
the the direct products of chains. The lattices M3[Cn] are modular, non distributive,
rectangular 3D lattices, see in [16]). In Figure 14 is presented M3[C5].

To every 2D semimodular lattice L we assign a (0, 1)-matrix ML in which every
row/column contains at most one ”1” entry, see subsection 2.4. Let M be a square
matrix such that in the last row and last column the entries are zeros. Deleting the
last row and last column we get the the restricted matrix of M−. Conversely, if N
is a square matrix and we add a new last row and last column with zero entries
this is called the augmented matrix of N+. We will see that if N = [1] then N+ is
the (augmented) matrix of N7.

Since the matrices seem to the best tool to handle the semimodular lattices and
in [4] we don’t speak on matrices we define here additionally the patch matrices
and extend Theorem 2 with condition (3).

Definition 2. A patch matrix is a square (0, 1)-matrix in which every row/column
except the last row/column contains exactly one non-zero entry and in the last
row/column all entries are 0.

The following theorem is from [3], condition (3) is new.

Theorem 2. Let L be a 2D rectangular semimodular lattice. The following three
conditions are equivalent:

(1) L is a patch lattice, i.e. a nested four-element boolean lattice,
(2) L has two dual atoms p and q such that p ∧ q = 0 (then 0, p, q, 1 is the

skeleton of L),
(3) ML is a patch matrix.
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The proof is in Section 3. The restricted matrix of ML is a special non-singular
(invertible) matrix. More equivalent conditions see in [4]

In the two and three dimensional cases dim(Sk(Lm,0)) = dim(Lm,0).

2. Transition from lattice to matrix.

2.1. Cover-preserving join-homomorphism. There is a trivial “representa-
tion theorem for finite lattices: each of them is a join-homomorphic image of a
finite distributive lattice D. This follows from the fact that the finite free join
semilattices with zero are the finite Boolean lattices.

The semimodular lattices are are very special join-homomorphic images of finite
distributive lattices.

A planar lattice is called slim if every covering square is an interval. Now let
L and K be finite lattices. A join-homomorphism ϕ : L → K is said to be cover-
preserving iff it preserves the cvering relation �. Similarly, a joincongruence Φ of
L is called cover-preserving if the natural join-homomorphism L → L/Φ, x 7→ [x]Φ
is cover-preserving.

Theorem 3. (Manfred Stern’s theorem, [19]) Each finite semimodular lattice L is a
cover-preserving join-homomorphic image of the direct product D = C1×C2×...×Ck

of finite chains.

In recent years it was found that this theorem has many interesting consequences.
The direct product of n-chains can be considered as an n-dimensional rectan-
gular shape, especially a boolean lattice with 2n-elements is a n -dimensional
cube, the direct product of two chains is geometrically a plain. This leads to a
geometrical approach of the semimodular lattices, [17].

In a semimodular lattice the maximal chains have the same length. Assume
that L is semimodular lattice and a, b, u, v ∈ D, L = ϕ(D) and u ≤ a ≺ b ≤ v.
In this case ϕ has a special property. If E is a maximal chain of between u and
v and a, b ∈ E, ϕ(a) = ϕ(b) and F is an other maximal chain between u and v ,
then there exist c, d ∈ F, c ≺ d such that ϕ(c) = ϕ(d). This property is just the
cover-preserving property (this is not the usual form).

In [1] we proved:

Lemma 2. Let Φ be a join-congruence of a finite semimodular lattice M . Then Φ
is cover-preserving if and only if for any covering square S = {a ∧ b, a, b, a ∨ b} if
a ∧ b 6≡ a (Φ) and a ∧ b 6≡ b (Φ) then a ≡ a ∨ b (Φ) implies b ≡ a ∨ b (Φ).

Stern’s theorem was rediscovered by G. Czédli and E. T. Schmidt [1], see the
following theorem (Stern’s result was well-hidden in his book):

Theorem 4. Each finite semimodular lattice L is a cover-preserving join-homo-
morphic image of the direct product of finite chains, C1, C2, ..., Cn , these are max-
imal subchains of L, n = Dim(L) = w(J(L)) such that J(L) ⊆ C1 ∪ C2 ∪ ... ∪ Cn.

Let us recall the main result from Grätzer and Knapp [13]:
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Corollary 1. (Grätzer and Knapp [13]) Each finite planar semimodular lattice can
be obtained from a cover-preserving join-homomorphic image of the direct product of
two finite chains and adding doubly irreducible elements to the interiors of covering
squares.

2.2. The grid.

Definition 3. A grid of a semimodular lattice L is G = C1 ×C2 × ...×Cn, where
the Ci-s are maximal subchains of L, J(L) ⊆ C1 ∪ C2 ∪ ... ∪ Cn, n = dim(L).

Observe that a grid can be considered as a coordinate system (in physics is called
reference frame). If we consider a semimodular lattice L then we choose a grid G
(i.e. the maximal chains C1, C2, ...Cn) and fix them.

By [1] L is the cover-preserving join-homomorphic image of G.
Remark 1. Let D1, D2, ...Dn, n = dim(L) be subchains of L such that J(L) =

D1 ∪ D2 ∪ ... ∪ Dn then G = D1 × ... × Dn is called a (lower) grid of L.

2.3. The source. To describe the cover-preserving join- congruences of a distribu-
tive lattice G we need the notion of source elements of G. Czédli and E. T. Schmidt
[3]. Let Θ be a cover-preserving join-congruence of G.

Definition 4. An element s ∈ G is called a source element of Θ if there is a t, t ≺ s
such that s ≡ t (Θ) and for every prime quotient u/v s/t ↘ u/v, and s 6= u imply
u 6≡ v (Θ). The set SΘ of all source elements of Θ is the source of Θ.

Lemma 3. Let x be an arbitrary lower cover of a source element s of Θ. Then
x ≡ s (Θ). If s/x ↘ v/z, s 6= v, then v 6≡ z (Θ).

Proof. Let s be a source element of Θ then s ≡ t (Θ) for some t, t ≺ s. If x ≺ s
and x 6= t then {x ∧ t, x, t, s} form a covering square. Then x 6≡ x ∧ t (Θ). This
implies x ∧ t 6≡ t (Θ), so have x ≡ s (Θ).

To prove that v 6≡ z (Θ), we may assume that v ≺ s. Take t, t ≺ s, then we
have three (pairwise different) lower covers of s, namely x, v, t.

These generate an eight-element covering boolean lattice in which s ≡ t (Θ),
s ≡ x (Θ) and s ≡ v (Θ).

By the choice of t we know that v 6≡ v ∧ t (Θ), x 6≡ x ∧ t (Θ) and z 6≡ x ∧ t ∧ v
(Θ). It follows that x 6≡ t (Θ), otherwise by the transitivity x 6≡ v (Θ). This
implies t ∧ x 6≡ t ∧ x ∧ v (Θ) . Take the covering square {x ∧ v ∧ t, z, t ∧ x, x} then
by Lemma 2 z 6≡ x (Θ), which implies z 6≡ v (Θ). �

The following results are proved in [17]. The source S satisfies an independence
property:

Definition 5. Two elements s1 and s2 of a 2D-distributive lattice are s-independent
if x ≺ s1, y ≺ s2 then s1/x, s2/y are not perspective, s1/x 6∼ s2/y. A subset S is
s-independent iff every pair {s1, s2} is s-independent.

Remark. In the 2D case every s-independent subset is the source of some cover-
preserving join-congruence. In higher dimensional cases this is not true, we need
an other property too, the shower property [17].
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Lemma 4. Every row/column contains at most one source element.

The semimodular lattice L is determined by (G, Θ) or (G, S), where S is an
s-independent subset and therefore we write:

L = L(G, S).

Let Θ be a cover-preserving join-congruence of an 2-dimensional grid G and let
S be the source of Θ. Take S and the set of all lower covers of the source elements
s′i ≺ s (i ∈ {1, 2, 3}). Then we have the following set of prime intervals of G:

P = {[s′i, s]|, s ∈ S}.

Let ΘS be the join congruence generated by this set of prime intervals, i.e. for
a prime interval [a, b] a ≡ b (ΘS) if and only if there is a s ∈ S prime interval
[s′i, s] such that [a, b] is upper perspective to a [s′i, s]. Then Θ = ΘS (if S is an
s-independent set then ΘS .

It is easy to prove that in the 2D case every s-independent subset S determinate
a cover-preserving join-congruence Θ.

Lemma 5. Let G be a 2-dimensional grid, i.e. the direct product of two chains.
Let S be an s-independent subset of G. Then there exists a cover-preserving join-
congruence Θ of G with the source S.

The meet of two cover-preserving join-congruence is in generally not cover-
preserving.

Θs denotes the cover-preserving join-congruence determined by s, see in Figure
7. The source of Θs is {s}.

ba

0

C C
1 2

s

Figure 7. The join-congruence Θs
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2.4. The matrix. To every semimodular lattices we can assigne (0, 1)-matrices
played the role of barcodes.

Let L be a 2D semimodular lattice. By Theorem 2 we have a grid G = Ck
n (which

will be fixed) and a cover-preserving join-congruence Θ of G such that G/Θ ∼= L. In
Figure 7 the source S of Θ has four elements. Put 1 into a cell if its top element is in
S, otherwise put zero. What we get is an n×n matrix, ML, which determines L (if
you like you can turn this grid with 45 degrees to see the matrix in the traditional
form). (The matrix ML was originaly mentioned in [18] and first published in [8])
We assume tht the planar diagram is fixed. We fix the WO-direction in the ”plain”
and the rotation is negative. On possible matrices see [2].

The following matrix is a matrix for N7:

MN7 =
∣∣∣∣
1 0
0 0

∣∣∣∣

2
1

2
3

4
5

6

1

3
4
5
6

1
1 1

1

0

Figure 8. A grid and four source elements

Take the following example, given on Figure 8. A source and the corresponding
matrix is an n×n (0, 1)-matrix, where every row/column contains at most 1 entry,
the source elements are s1 = (6, 2), s2 = (5, 6), s3 = (4, 3), s4 = (2, 5):

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
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For the same lattice there is an another possibility to get a matrix:
∣∣∣∣
6 5 4 2
2 6 3 5

∣∣∣∣

3. The proof of Theorem 2

Proof. (1) and (2) are equivalent, see in [4]
(2) ⇒ (3). Let L be a 2D semimodular lattice of length n with two dual atoms

p and q such that p ∧ q = 0, i.e. 0, p, q, 1 is the skeleton. J(L) is the set of all x
0 < x ≤ p, 0 < x ≤ q. Let C1 = {x; 0 < x ≤ p}∪{1} and C2 = {y; 0 < y ≤ q}∪{1}.
C1 ≈ C2 ≈ Cn−1. Let’s translate to matrices.

G = C1×C2 ≈ Cn−1×Cn−1 is a grid of L (w write the elements of G in the form
(x, y), x, y ∈ Cn−1) and the cover-preserving join-homomorphism is ϕ : (x, y) ⇒
x ∨ y. Θ denotes the induced cover-preserving join-congruence of G.

〈n, 0〉 ∧ 〈0, n〉 = 0 and 〈n, 0〉 ∨ 〈0, n〉 = 1. Let p = 〈n, 0〉 and q = 〈0, n〉. The last
row rep. last column of the grid doesn’t contain any source element (this would
change the order in J(G)). In G/Θ p, q are dual atoms and therefore 〈n, 1〉 ≡ 〈n, n〉
(Θ) and 〈1, n〉 ≡ 〈n, n〉 (Θ), which means all other rows/columns must contain a
source element, otherwise the meet of p and q would not be 0, i.e. the restricted
matrx is invertible.

(3) ⇒ (2). Let L be a 2D semimodular lattice and assume that ML is a patch
matrix. The every row rep. column contains ”1” entry, i.e. a source element. If
G is the grid then (n, 1) ≡ (n, n)(Θ), (1, n) ≡ (n, n)(Θ) but (n, 1) 6≡ (n, 0)(Θ),
(n, 1) 6≡ (0, n)(Θ). In the factor lattice G/Θ ∼= L, p = (n, 0), q = (0, n) are dual
atoms and p ∧ q = 0. �

4. Patch matrices

We consider first (0, 1)-matrices, in which every row/column has at most one
non zero entry, i.e. ”1”. A n× n square matrix M = [ai,j ] of this kind is invertible
if every row/column contains exactly one ”1”. Obviously, every (0, 1)-non-singular
matrix is determined by a permutation.

Take a patch matrix, i.e. an (n + 1) × (n + 1) matrix N , where the last row
and the last column contains only zeros and the remaining n × n matrix is a non-
singular matrix M then N = Ma will be called the augmented M . If M = [1] then
the corresponding augmented matrix is:

N =
[
1 0
0 0

]
.

Definition 6. A block of a matrix M = [ai,j ], 1 ≤ i, j ≤ n is a square submatrix
in the form [ai,j ], i ∈ {s, s + 1, s + 2, ..., s + k} and j ∈ {t, t + 1, t + 2, ..., t + k} for
some s, t, k.
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0
1 1

2 2
3 3

Figure 9. Two patch lattices and the matrices

See in Figure 10, the rows/columns of the block are consecutive rows/columns
of the given matrix.

Definition 7. A block matrix is a system of blocks of a matrix such that the (set
theoretical) meet of two blocks does not contain any entry and every entry is of a
block.

Visually, we have a partition of rectangles (blocks). Let us remark that this
definition is not the usual definition. In Figure 10 we have two 4 × 4-blocks, one
2 × 2-block and the remaining ”0” entries are 1 × 1-blocks, i.e. trivial boxes.

Let M1 and M2 two augmented non-singular submatrices as blocks of a matrix
N . If M1 ∩ M2 6= ∅, i.e. it contains an entry then there are two possibilities,
presented in Figure 11 resp. Figure 12 (the blocks can have different sizes). Then
M1 ∪ M2 span a block M . In all other cases we have a row or column with more
then one entry ”1”. These are the vertical and horizontal sum of M1 and M2 (see
[17]): M1 +v M2 resp. M1 +h M2 (these are the generated boxes).

We formulate the following easy Theorem (the corresponding theorem to Theo-
rem 1):

Theorem 5. Every (0, 1)-matrix M , in which every row/column has at most one
non zero entry, is a block matrix where the blocks are patch matrices and some
1 × 1-matrices (with ”0” entries), (i.e. it is the patchwork of patch matrices).
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Figure 10. A matrix with three non-trivial blocks

Proof. Let M be a (0, 1)-matrix in which every row/column has at most one non
zero entry. Take the left most 2 × 2-submatrix M1 which is an augmented non
singular matrices, i.e. has the form given in Figure 10 and 11. If this is a maximal
augmented invertible matrix then this is a block. Otherwise, this is not a maximal
augmented non singular matrix then there is an other augmented non singular
matrix M2 such that M1 ∩ M2 6= ∅. This implies that M1 +v M2 or M1 +v M2

exists. These operations are the nesting of matrices. On this way we get a maximal
augmented non singular matrix. We consider as blocks the maximal augmented
non singular (k × k)- matrices. The remaining entries form 1 × 1 blocks with ”0”
entries.

Intuitively, we have the ”1” entries in the plain, some areas are ”den-
sity areas” of these entries, these generate a block which is a maxi-
mal augmented non singular matrix; the ”isolated ”1”-s are one-element
blocks.

�

Hopefully Theorem 5 allow (planar) semimodular lattices to deal with matrices.

We get in this case:

MK =
∣∣∣∣
1 0
0 1

∣∣∣∣

Conjecture 1. Theorem 5 implies Theorem 2.

Problem 1. Establish the connection between Theorem 5 and Theorem 2.

In Figre 13 you can see a block matrix and the corresponding patchwork.

5. Outlook

Theorem 1 is a similar structure theorem of 2D semimodular lattice. I hope
similar theorem holds for all semimodular lattices, see more results in [17].
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Figure 11. Horizontal sum of blocks, +h
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The two restricted matrices

Figure 12. Vertical sum of blocks, +v

The skeleton, Sk(L) of a n-dimensional semimodular lattice is a 2n-element
boolean sublattice, which contains 0, 1. The ”building stones” of the structure
theorem are special rectangular lattices (in most cases the surface of the diagram
is a rectangular shape), we get these from Boolean lattices.

The following 3D rectangular lattices are the patch lattices: C3, M3, [17]. .
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Figure 13. The lattice K and the patching of K

Definition 8. A semimodular lattice is a patchwork lattice if the dual atoms of the
skeleton are dual atoms of L.

Problem 2. Characterize the patch lattices as nested boolean lattices in the 3D
case.

The direct product G = C1 × C2 × C3, where C1, C2 and C3 are chains can
be considered as a 3D hypermatrix (this is a generalization of the matrix to a
n1 × n2 × n3 array of elements: square cuboid), this has a row and two columns.
G contains covering cubes, these are called 3-cells. The source elements are top
element of the cells, see Figure 8. The 3D hypermatrix of type 23 or 33 [ai,j,k] is a
source hypermatrix if a1,1,1 = 1 and all other entries are zero.

Problem 3. Characterize the the hypermatrices of patch lattices.

The ”building tool” is a kind of gluing, the patchwork construction, [17]. It
is related to the Hall-Dilworth gluing and S-glued sum (Ch. Herrmann [15]), for
instance in the 3-dimensional case we glue together cubes (i.e. 23 Boolean lattices)
over faces, see in Figure 2. Another example is the Rubik cube, the 27 small cubes
(”unit cubes”) contact with each other along their sides.

I am convinced that the following conjecture is true and can be traced back to
(0, 1)-hypermatices.

Conjecture 2. Every finite semimodular lattice R is the patchwork of patch lat-
tices.

Some remarks on modular lattices
If R is a rectangular lattice and doesn’t contain M3 (i.e. is diamand free) and

we draw the diagram ”properly” we get geometricaly a rectangular shape. If R is
modular but not distributive then then we get the lattice presented in Figure 14.
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Figure 14. M3[C5] a 3D modular rectangular cube, the harlequin

In Figure 14 is the patchwork of the modular lattice M3[Cn] ([16]), where the
patch lattices (components) are isomorphic to M3 or C2

2,
You will be surprised to discover that the non modular case in many respects is

similar to the distributive case, while the modular case is quite different. In many
aspects the diamond, M3 is the ”daredevil” of the theory of semimodular lattices.

Additional results can be found on my website.
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