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Abstract. The present paper aims to depositing bases of a geometrical ap-
proach, we formulate a conjecture, a structure theorem of semimodular lat-
tices, which generalize the the results given in [4] for planar semimodular lat-
tices which asserts, that every planar semimodular lattice is the patchwork of
special intervals as show in Figure 1. We examine the structure of the higher-
dimensional semimodular lattices and we point out what are the difficulties in
higher dimensions. Our goal is laying the ground.

The ”building stones” of the structure theorem are special rectangular
lattices (in most cases the surface of the diagram is a rectangular shape), we
get these from Boolean lattices, i.e. from n-dimensional cubes.

The ”building tool” is a kind of gluing, the patchwork construction. It
is related to the Hall-Dilworth gluing and S-glued sum (Ch. Herrmann [13]),
for instance in the 3-dimensional case we glue together cubes (i.e. 2n Boolean
lattices) over faces, see in Figure 2. Another example is the Rubik cube, the
27 small cubes (”unit cubes”) contact with each other along their sides.

As technical tool we use special block matrices.

1. Introduction

1.1. Distributive lattices. A finite distributive lattice D has dimension n if n is
the largest natural number such that D contains as sublattice a 2n-element Boolean
lattice. The n-dimensional Boolean lattice is - geometrically - an n-dimensional
cube. Cn denotes the chain 0 < 1 < .... < n− 1 of natural numbers. (C2)k is called
the k-dimensional ”unit”- cube. The finite distributive lattices have an almost
trivial structure theorem. The ”building stones” are the ”unit” Bolean lattices, i.e.
the ”unit” cubes and the ”building tool” is the Hall-Dilworth gluing. They are
glued together by faces.

Theorem 1. We obtain every n-dimensional finite distributive lattice D if we glue
together 2k, k ≤ n ”unit” cubes by faces.

See in Figure 2.

Figure 1. A patchwork in the two-dimensional case
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Figure 2. A distributive lattice as glued sum of ”unit” cubes (3D patchwork)

Is there a similar theorem for semimodular lattices? We guess the answer is yes.
Consider first the 2-dimensional semimodular lattices (the dimension is defined in
Section 3, two-dimensional is a to planar lattice which does not contain M3).

1.2. Two-dimensional semimodular lattices.

1.2.1. The boulding stones: patch lattices. The width w(P ) of a (finite) poset P is
defined to be max{n: P has an n-element antichain}. 2-dimensional means that
the width of the order of join-irreducible elements is two. How can we derive the
patch lattices from boolean lattices? This is the nesting (see [4], here we called this
procedure adding forks), which is the following procedure: let L be a semimodular
lattice and let I be an interval of L isomorphic to the 22-boolean lattice. We call
this a 2-cell (or covering square, see in section 2). On the other hand let us take the
lattice N7 (the seven-element semimodular but not modular lattice) and the four-
element sublattice {a, b, c, d} (see in Figure 3 and Figure 4,(II) the black marked
circles) which is isomorphic to the 22-boolean lattice and it is called the skeleton,
Sk(N7) of N7. There is an isomorphism ϕ : N7 −→ I . We extend this isomorphism
to an embedding of N7 into I . It is easy to extend this poset to a semimodular
lattice L1. We can repeat this construction for L1 and a 2-cell then we get L2, and
so on. Let us remark that the dual atoms of the skeleton are dual atoms of the
patch lattices, see in Figure 6. On this way we get from the 22 boolean lattice first
N7. See [4], in this paper we use for nesting ”adding fork to L”. Fork is the poset
{c, d, e, 1}. In Figure 3 (V) and Figure 4 we see the nesting. Patch lattices are all
2-dimensional semimodular lattices which are obtained by this method.

The two-dimensional semimodular lattices can be characterized by (0, 1)-matrices.
The patch lattices are the semimodular lattices which are determined by non sin-
gular (invertible) (0, 1)-matrices.
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Figure 3. The nesting in the 2D case
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Figure 4. The nesting in the 2D case

1.2.2. The boulding tool: patchwork. Every 2D patch lattice has a skeleton, if you
draw ”properly” you see the contour in Figure 7.

Let L and K be 2-dimensional lattices with the skeletons {a ∧ b, a, b, a ∨ b}
resp. {c ∧ d, c, d, c ∨ d}. The Hall-Dilworth gluing of L and K is called patching
if L ∩ K ⊂ [a ∧ b, b] and [c, c ∨ d], ( gluing over edges, [a ∧ b, b] and [c, c ∨ d] are
one-dimensional).

The following structure theorem was proved by G. Czédli and E. T. Schmidt
[4].

Theorem 2. Every two-dimensional semimodular lattices is the patchwork of patch
lattices.

Remark. Similar theorem holds for planar semimodular lattices.
Source lattices are special join-homomorphic images of the direct powers of C3,

Lk,0, ( L2,0 ' N7). Then we use a sequence of embeddings of source lattices, the
nesting (adding forks in [4]). We get the patch lattices.

We apply patching (a special gluing) of patch lattices. In the two-dimensional
case we have the following construction:

source lattices (elementary particle)
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Figure 5. A Hall-Dilworth gluing which is not a patchwork

⇓ nesting (spec. embedding)
patch lattices (atoms)
⇓ patching (spec. gluing)
semimodular lattices

1.3. The n-dimensional case. We formulate the following conjecture: every finite
semimodular lattice R is the patchwork of patch lattices (see Conjecture 2 in Section
11).

Here we deal mainly with the three-dimensional case, the higher dimensional
cases are similar. We must clarify the concepts: dimension, source lattice, patch
lattice, patchwork for arbitrary semimodular lattice.

To every semimodular lattice we assigne a matrix (hypermatrix in the higher
dimensional case). This matrix is the ”barcode” of the lattice. It seems to
me that the matrices are the best tools to handle the semimodular lattices.

This paper is the first step to prove a structure theorem of semimodular lattices.

a b

c

1

e

Figure 6. Patchwork of two patch lattices
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Figure 7. The contour of a 2D patch lattice

2. Cover-preserving join-homomorphism

There is a trivial “representation theorem” for finite lattices: each of them is
a join-homomorphic image of a finite distributive lattice D. We denote this join-
homomorphism by ϕ and Φ is the induced join-congruence of D. This follows
from the fact that the finite free join semilattices (with zero) are the finite Boolean
lattices.

The semimodular lattices are are very special join-homomorphic images of finite
distributive lattices.

Theorem 3. (Manfred Stern’s theorem, [20]) Each finite semimodular lattice L is
a cover-preserving join-homomorphic image of the direct product of finite chains,
D = C1 × C2 × ... × Ck, i.e. L = ϕ(D).

In recent years it was found that this theorem has many interesting consequences.
The direct product of n-chains can be considered as an n-dimensional rectangu-
lar shape, especially a boolean lattice with 2n-elements is a n -dimensional cube,
the direct product of two chains is a plain. This leads to a geometrical approach
of the semimodular lattices.

In a semimodular lattice the maximal chains have the same length. Assume
that L is semimodular lattice and a, b, u, v ∈ D, L = ϕ(D) and u ≤ a ≺ b ≤ v.
In this case ϕ has a special property. If E is a maximal chain of between u and
v and a, b ∈ E, ϕ(a) = ϕ(b) and F is an other maximal chain between u and v ,
then there exit c, d ∈ F, c ≺ d such that ϕ(c) = ϕ(d). This property is just the
cover-preserving property (this is not the usual form).

A sublattice {a1 ∧ a2, a1, a2, a1 ∨ a2} of a lattice is called a covering sqare if
a1 ∧ a2 ≺ ai ≺ a1 ∨ a2 for i = 1, 2. A planar lattice is called slim if every covering
square is an interval. Now let L and K be finite lattices. A join-homomorphism
ϕ : L → K is said to be cover-preserving iff it preserves the relation �. Similarly, a
join-congruence Φ of L is called cover-preserving if the natural join-homomorphism
L → L/Φ, x 7→ [x]Φ is cover-preserving. As usual, J(L) stands for the poset of all
nonzero join-irreducible elements of L. For a poset P , H(P ) denotes the lattice of
all hereditary subsets (order ideals) of P .

In [1] we proved:
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Lemma 1. Let Φ be a join-congruence of a finite semimodular lattice M . Then Φ
is cover-preserving if and only if for any covering square S = {a ∧ b, a, b, a ∨ b} if
a ∧ b 6≡ a (Φ) and a ∧ b 6≡ b (Φ) then a ≡ a ∨ b (Φ) implies b ≡ a ∨ b (Φ).

Stern’s theorem was rediscovered by G. Czédli and E. T. Schmidt [1], see the
following two theorems (Stern’s result was well-hidden in his book):

Theorem 4. Each finite semimodular lattice L is a cover-preserving join-homo-
morphic image of the direct product of w(J(L)) finite chains.

This direct product is the direct power of a chain C which length is the length
of L.

Corollary 1. The cover-preserving join-homomorphic images of finite distributive
lattices are exactly the finite semimodular lattices.

Theorem 5. Every finite semimodular lattice L is a cover-preserving join-homo-
morphic image of the unique distributive lattice D determined by J(D) ∼= J(L).
Moreover, the restriction of an appropriate cover-preserving join-homomorphism
from D onto L is a J(D) → J(L) order isomorphism.

In this theorem D is H(J(L)). Let us recall the main result from Grätzer and
Knapp [11]:

Theorem 6. (Grätzer and Knapp [11]) Each finite planar semimodular lattice can
be obtained from a cover-preserving join-homomorphic image of the direct product of
two finite chains via adding doubly irreducible elements to the interiors of covering
squares.

3. Dimension concepts

The width of J(L) is called the dimension of a semimodular lattice L and will
be denoted by dim(L). If we say L is a n-dimensional semimodular lattice this
means n = dim(L). The ˇ2-dimensional (dim(L) = 2) semimodular lattices are
the slim semimodular lattices. (Slim semimodular lattices are the diamond-free
planar semimodular lattices.)

An other dimension concept is Dim(L). m = Dim(L) is the greatest integer
such that L contains a sublattice isomorphic to the 2m-element boolean lattice. If L
is a distributive lattice then dim(L) = Dim(L). On the other hand Dim(M3) = 2
and dim(M3) = 3. An other example, Dim(N7) = dim(N7) = 2

The third concept is the Kuroš-Ore dimension dimKO(L) of L this is the minimal
number of join-irreducible elements needed to span the unit element of L.

4. The source

To describe the cover-preserving join- congruences of a distributive lattice G we
need the notion of source elements of G. Czédli and E. T. Schmidt [15]. Let Θ be
a cover-preserving join-congruence of G.

Definition 1. An element s ∈ G is called a source element of Θ if there is a t, t ≺ s
such that s ≡ t (Θ) and for every prime quotient u/v if s/t ↘ u/v, s 6= u imply
u 6≡ v (Θ). The set SΘ of all source elements of Θ is the source of Θ.

Lemma 2. of Let x be an arbitrary lower cover of a source element s of Θ. Then
x ≡ s (Θ). If s/x ↘ v/z, s 6= v, then v 6≡ z (Θ).
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Proof. Let s be a source element of Θ then s ≡ t (Θ) for some t, t ≺ s. If x ≺ s
and x 6= t then {x ∧ t, x, t, s} form a covering square. Then x 6≡ x ∧ t (Θ). This
implies x ∧ t 6≡ t (Θ). By Lemma 1 we have x ≡ s (Θ).

To prove that v 6≡ z (Θ), we may assume that v ≺ s. Take t, t ≺ s, then we
have three (pairwise different) lower covers of s, namely .x, v, t. These generate an
eight-element boolean lattice in which By the choice of t we know that v 6≡ v ∧ t
(Θ), x 6≡ x ∧ t (Θ) and z 6≡ x ∧ t ∧ v (Θ). It follows that x 6≡ t (Θ), otherwise by
the transitivity x 6≡ v (Θ). �

The following results are proved in [15]. The source S satisfies an independence
property:

Definition 2. Two elements s1 and s2 of a distributive lattice are s-independent
if x ≺ s1, y ≺ s2 then s1/x, s2/y are not perspective, s1/x 6∼ s2/y. A subset S is
s-independent iff every pair {s1, s2} is s-independent.

The direct product G = C1 × C2 × C3, where C1, C2 and C3 are chains can
be considered as a 3D hypermatrix (this is a generalization of the matrix to a
n1 × n2 × n3 array of elements: square cuboid), this has a row and two columns.
G contains covering cubes, these are called 3-cells. the source elements are top
element of the cells, see Figure 8.

0

s

Figure 8. The cover-preserving join congruence determined by a
source element s

Lemma 3. Every row/column contains at most one source element.

The semimodular lattice L is determined by (G, Θ) or (G, S), where S is an
s-independent subset and therefore we write:

L = L(G, S).

Determined means, if L 6∼= L′ then S 6∼= S′ (order isomorphic subsets of G).
Let Θ be a cover-preserving join-congruence of an n-dimensional grid G and let

S be the source of Θ. Take S and the set of all lower covers of the source elements
s′i ≺ s (i ∈ {1, 2, 3}). Then we have the following set of primintervals of G:

P = {[s′i, s]|, s ∈ S}.
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Let ΘS be the join conguence generated by this set of primintervals, i.e. for a
priminterval [a, b] a ≡ b (ΘS) if and only if there is a s ∈ S printerval [s′i, s] such
that [a, b] is upper perspective to a [s′i, s]. Then Θ = ΘS (if S is an s-independent
set then ΘS is generally not a cover-preserving join-congruence).

It is easy to prove that in the 2D case every s-independent subset S determinate
a cover-preserving join-congruence Θ.

Lemma 4. Let G be a 2-dimensional grid, i.e. the direct product of two chains.
Let S be an s-independent subset of G. Then there exsists a cover-preserving join-
congruences Θ of G with the source S.

The meet of two cover-preserving join-congruence is in generally not cover-
preserving.

Θs denotes the cover-preserving join-congruence determined by s, see in Figure
8. The source of Θs is {s}.

In the 3-dimensional case the source satisfies the following property:

(3D). If s1, s2 are source elements s1 ≺ s1 ∨ s2, s2 ≺ s1 ∨ s2 and let a be the
smallest element such that s1 ∨ s2 = (s1 ∧ s2) ∨ a then there is a source element
s3 ∈ S such that s3 ≥ a.

4.1. Shower condition. (Shower) The shower condition: (1, 1, 1, ...., 1) shower
head. if (x1, 1, 1, ...., 1), x1 < 1 and (1, 2, 1, ...., 1), x2) < 1 are source elements, then
(1, 1, 1, .., xi, .., 1), xi < 1 is a source element for all i.

Problem 1. Characterize the source of a cover-preservig join-congruence of a n-
dimensional semimodular lattice.

In other words: let S be a subset of a grid G (i.e. the direct prodct of chains).
Under which conditions is S the source of a semimodular lattice?

Conjecture 1. A subset S of G is the source of a cover-preserving join-congruence
iff S is s-independent and satisfies (3D).

Problem 2. Prove that S is the source of a cover-preservig join-congruence Θ iff
Θ =

⋃
Θs.

In Figure 10 we see the non trivial cover-preserving join-congruences of the 3D
cube. (D)and (E) are lattice congruences.

By Theorem 1 every finite distributive lattice is the putchwork if cubes. There-
fore a 3D grid G is the patchwork of 3D cubes. We want to describe the cover-
preseving join-cogruences of G. On Figure 10 we have a row of G. In the given
example the first cube has the cover-preserving join-cogruence (A) in Figure 8.
This can be uniqualt extend to the given row, we get the CAAA sequence. If (O)
denotes the zero congruence then for the following sequences are possible: A..BO,
A..AO..O, BO..O, CAAA, CA..AB, DDDDD, EEEEE. On this way we can descibe
the cover-preserving join-cogruences.

Figure 10 gives an illustration to the condition (3D) in C2 × C2 × C5. This is a
row of a 3D hypermatrix.
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A B C

D E

Figure 9. The cover-preserving join-congruences of the cube

A

C

A

A

leading  cube

Figure 10. A cover-preserving join-congruence of C2 × C2 × C5

5. The grid and the matrices

5.1. The 2D case.

Definition 3. The (upper) grid of a semimodular lattice L is G = G = C1 ×C2 ×
...×Cn, where the Ci-s are subchains of L, J(L) ⊆ C1 ∪C2 ∪ ...∪Cn, n = dim(L).

By [1] L is the cover-preserving join-homomorphic image of G.
Let D1, D2, ...Dn, n = dim(L) be subchains of L such that J(L) = D1 ∪ D2 ∪

... ∪ Dn then G = D1 × ... × Dn is called a (lower) grid of L.
Observe that a grid can be considered as a coordinate system. We define three

important subsets of a grid, The 2D case is given in Figure 11.

Definition 4. In a grid G = C1 × C2 × ... × Cn we define the following subsets:
(1) I(G) is the order of all inside elements, i.e. coordinates are greather then

1,
(2) M(G) is the lower margin, the order of all reducible elements where at least

one of the coordinates is join-ireducible,
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(3) J0(G) denotes the order of all join-irreducible elemens and zero.

Obviously, I(G)∪M(G)∪J0(G) = G. Let s = (x1, x2, ..., xn) be a source element
of the grid G = Ck

n. If every coordinate xi ≥ 2 then s∗ = (x1−2, x2−2, ..., xn−2) ∈
G. The interval [s∗, s] is isomorphic to C3

n, is called the forecourt of s. In Figure
11 the dotted lines represents M(G), the thick lines represents J0(G)

This means: if Ci = ci,0 < ci,1 < ... < ci,k then there is an i such that xi = ci,1,
i.e. this coordinate is join-irreducible. If we factorize by Θs then the J(G)will be
changed. If s is join irreducible then Θs is a lattice congruence.

2
1

2
3

4
5

6

1

3
4
5
6

Figure 11. The decomposition of a 2D grid

1
1 1

2

2 2

Figure 12. The decomposition of a 3D grid



12 E.TAMÁS SCHMIDT

5.2. The matrix of a cover-preserving join-congruence in the 2D case. Let
L be a semimodular lattice. By Theorem 1 we have a grid G = Ck

n and a cover-
preserving join-congruence Θ of G such that G/Θ ∼= L. In Figure 12 the source S

of Θ has four elements. Put 1 into a cell if its top element is in S, otherwise put
zero. What we get is an n × n matrix, ML, which determines L (if you like you
can turn this grid with 45 degrees to see the matrix in the traditional form). The
7 element semimodular, non modular lattice N7 has the matrix

MN7 =
∣∣∣∣
1 0
0 0

∣∣∣∣

Let M be a square matrix such that in the last row and last column the entries
are zeros. Delete the last row and last column we get the the restricted matrix
of M−. Conversely, if N is a square matrix and we add a new last row and last
column with zero entries this is called the augmented matrix of N+. If N = [1]
then N+ is the (augmented) matrix of N7.

Take the following example in the 2-dimensional case. A source and the corre-
sponding matrix is a n×n (0, 1)-matrix, where every row/column contains at most
1 entry, the source elements are s1 = (6, 2), s2 = (3, 6), s3 = (4, 3), s4 = (2, 5):

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣

Remark 1. Such a n × n-matrix is determined by two inccreasing sequences
S = (n1, n2, ..., nk) and T = (m1, m2, ..., mk) of natural numbers and a permutation
Π(n−k). This means that in the given matrix the n1-th, the n2-th,..., the nk-th rows

2
1

2
3

4
5

6

1

3
4
5
6

1
1 1

1

0

Figure 13. A grid and four sours elements
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are the zero rows and similary m1-th, the m2-th,..., the mk-th are the zero columns.
Delite all zero row and zero column it remains a (n − k) × (n − k)- submatix. In
every row/column of this submatrix there is exactly one non-zeto entry (the ”1”),
i.e. this submatrix is determined by a p n1-th, the n2-th,..., the nk-thermutation.
In the given example above the fifth row is the only one zero row, i.e. S = (4),
T = (3) and Π4 = (1254)(3) in cyclic form.

Particuary important are the lattices S = (n), T = (n) and Πn−1, these are the
patch lattices, see in Section 8.

Remark 2. There is an other way to define a matrix using the coordinates of
the source elements: ∣∣∣∣

6 5 4 2
2 6 3 5

∣∣∣∣

5.3. The 3D case. The hypermatrix of M3 is a (0, 1)-matrix of type 3 × 3 × 3:
[ai,j,k], a1,1,1 = 1 and ai,j,k = 0 otherwise.

A column C(3)i,j is {ai,j,k; k = 1, 2, ..., n} of a 3 × 3 × 3 matrix: [ai,j,k] and
similarly,

C(1)i,k is {ai,j,k; j = 1, 2, ..., n},
C(2)i,j is {aj,k; i = 1, 2, ..., n}.
We use (0, 1)-hypermatrices, where every row/column contains at most one entry

1. See Czédli, Schmidt [3], Czédli [6], Czédli, Ozsvárt, Udvari [7].
I(G) = {(x1, x2, x3)|x1 ≥ 2, x2 ≥ 2, x3 ≥ 2}, inside of G. G/Θs non modular,
M(G) = {(x1, x2, x3)}, lower margin of G, one of the coordinates is 0 and one

of the coordinates is 1. Θs is an ordering relation of J(G),
J0(G) the set of join-irreducile elements and zero. Θs is a lattice congruence,
Mod(G) = {x = (x1, x2, x3)|x /∈ I(G), x /∈ M(G), x /∈ J0(G)} the modular part

of G, G/Θs modular,
See in Figure 12.

6. Rectangular lattices

Rectangular lattices were introduced by Grätzer-Knapp [11] for planar semi-
modular lattices. This notion is an important tool by the description of planar
semimodular lattices. We define the rectangular lattices for arbitrary dimension.

Definition 5. A rectangular lattice L is a finite semimodular lattice in which J(L)
is the disjoint sum of chains Ci.

Geometric lattices are rectangular. In [8] we introduced the almost geometric
lattices these are lattices in which J(L) is the disjoint (cardinal) sum of at most two
element chains. In the class of finite distributive lattices the rectangular lattices are
the the direct products of chains. The lattices M3[Cn] are modular, non distributive,
rectangular lattices. In Figure 14 is presented M3[C5].

Definition 6. The inner skeleton of a 3D semimodular lattice is sublattice which
is an eight-element boolean lattice and contains 0 and 1.

The inner skeleton of L will be denoted by Sk(L). The inner skeleton of a 2D
semimodular lattice is a four-element boolean lattice which contains 0 and 1. That
the 3-dimensional lattice R looks like to Figure 16, i.e. to a rectangular shape means
that R contains an inner skeleton, in this case this means that dim(R) = Dim(R).
It is easy to see that Sk(R) = Sk(GR) = Sk(GR).
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Rectangular lattices have a different role, they are packing boxes of semimodular lattices. In

[19] we proved, every finite semimodular lattice L can be extended to a rectangular lattice L̂, such

that the posets of of join-irreducible elements of L and L̂ have the same width, L and L̂ have the

same length.

In the following section we consider special rectangular lattices.

7. Source lattices as the elementary particles

The source lattices are the ”smallest” building stones (elementary
particles) of the semimodular lattices.

Consider the following semimodular lattices:

Ln,k = (C3
n × C2

k)/Φ, k + n = m

which are called the m-dimensional source lattices. Φ is the cover-preserving join-
congruence of a source lattice which has only one non-trivial congruence class T
called beret, this contains the dual atoms and the unit element. Every non-modular
semimodular lattice contains as sublattice a source lattice Lm,0 for some m > 1.

Two dimensional: L2,0
∼= N7, L2,1

∼= C2
2 and L2,2

∼= C2.
Three dimensional: L3,0 = C3

3/Φ is non-modular, see in Figure 10, it has
a inner skeleton. L3,1, see in Figure 15, it is non-modular and has only an outer
skeleton L3,2 is presented in Figure 16 this has a skeleton. The lattice L3,3 is
isomorphic to M3, this means that the source element s is in the margin, M(G).
L0,3

∼= M3.
L3,3 is a dual ideal of L3,2 and L3,2 dual ideal of L3,1 which is a dual ideal of

L3,0.
The m-dimensional case, m > 3. Lm,0 is non modular, Lm,m ' Mm. In all other

cases we have non -modular lattices.
A four dimensional: L4,4 in Figure 19.
Source lattice are the lattices Lm,0 and its dual ideals.
Observe that Lm,k is in only one case (!) a modular non-distributive lattice if

m = 3. k = m, which gives M3.

Figure 14. M3[C4] a 3D rectangular, modular lattice
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G

a

d

b c

Figure 15. N7

s

Figure 16. The source lattice L3,0 and the inner skeleton

a

s

Figure 17. L3,1

Let us remark that dim(Lm,0) = Dim(Lm,0) = dimKO(Lm,0), but for M3 =
L3,3 this is not true. These lattices have skeletons, dim(Sk(Lm,0)) = dim(Lm,0).

The restricted hypermatrix of Ln,0 is a hypermatrix where a1,1,...,1 = 1 and all
other entries are zero.
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s

g
h

e

a

b

d

f
c

 = (0, 0, 1)

Figure 18. L3,1 as a dual ideal of L3,0

Figure 19. L3,2 and the skeleton

Figure 20. L4,4 and the inner skeleton

The source lattice is the image of the forecourt of the source element.

8. Patch lattices as the atoms

8.1. The two-dimensional case. The concept of patch lattices was originally
introduced in the planar case in [4]. These are nested source lattices, see in sub-
section 1.2. First of all we consider the matrices of the 2D semimodular lattices.
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Take the construction in subsection 1.2 we started with N7. The matrix of N7 is
the following 2 × 2 matrix:

MN7 =
∣∣∣∣
1 0
0 0

∣∣∣∣
This belongs to the lower grid of N7. The restricted matrix is the 1 × 1 matrix

[1], which is obviousy a non singular (invertible) matrix. The second step is that
we take a 2-cell and insert into this interval N7. Then the new grid is G = C3 ×C3,
i.e we have a 4×4 matrix, as in Figure 3 and Figure 4. The corresponding matrices
are in Figure 21. These are again non singular matrices of type 3 × 3.

Lemma 5. ( [4]) Let L be a 2D rectangular semimodular lattice. The following
three conditions are equvivalent:

(1) L is a nested boolean lattice,
(2) the dual atoms of the skeleton, a and b are dual atoms of L,
(3) is a square 0, 1-matrix in which every row/column except the last row/column

contains exactly one non-zero entrie and in the last row/column all entries
are 0.

We can define the 2D patch lattices as follows:

Definition 7. A rectangilar lattice L ls a patch lattice if the dual atoms of the
skeleton, are dual atoms of L.

Every source lattice R = Lm,0 has a skeleton Sk(R). The dual atoms of Sk(R)
are dual atoms of R. Modular but not distributive 2D patch lattice does not exist.

8.2. The three-dimensional case. There are several ways to introduce the patch
lattice in the 3D case, I propose the following:

An 3-dimensional semimodular lattice P is called patch lattice if its hypermatrix
every row and column except the last row and last columns contains a non zero
entry and satisfies some additional properties (see Problem 1).

We can define the nesting in the 3D case too but it seems very complieted.
This is the nesting, which is the following procedure: let L be a semimodular

lattice and let I be an interval of L isomorphic to the 2n-boolean lattice. We
call this an n-cell. On the other hand let us take the source lattice Ln,k and the
skeleton, Sk(Ln,k) which is isomorphic to the 2n-boolean lattice, i.e. there is an
isomorphism ϕ : Sk(Ln,k) −→ I . We extend this isomorphism to an embedding of
Ln,k into I . It is easy to extend this poset to a semimodular lattice. We can repeat
this construction for L1 and get L2, and so on.

M3 is a 3D patch lattice which is not a nested lattice. The restricted hypermatrix
M3 is the 1× 1× 1 hypermatrix with the entry 1.

Problem 3. Give a description of nesting in the 3D case.

The description seems to me very complicatid.

Problem 4. Is M3 the only one 3D patch lattice which is not a nested boolean
lattice?

Remark. The hypermatrix MP of a patch lattce P satisfies an additional con-
dition (3D).



18 E.TAMÁS SCHMIDT
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1
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Figure 21. Two 2D patch lattices with the sources and the matrices

1 2 34 56
7

Figure 22. The Fano plain

Lemma 6. The (hyper)matrix MP of a patch lattice P is a (hyper)patchmatrix.

Proof. Let P be a patch lattice represented by the source, P = P(G, S). The dual
atoms of the skeleton are dual atoms of P , which means every row/column - except
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1

p

q

r

u

t

s

0

Figure 23. A 3D patch lattice the Edelman-Jaison lattice

Figure 24. The source of the Edelman-Jaison lattice

the last row and last column - contains a source element. Therefore, in the matrix
representation every row/column there is an entry 1. �

Remark. Let R be a 3-dimensional rectangular semimodular lattice. If we have
3 disjoint chains C1, C2 and C3 then rectangular means that J(R) is the disjoint
sum of these chains. How does it looks like R? The first answer is, visually we see
Figure 25, if you draw ”properly”. The direct product G = C1 ×C2 ×C3 is such a
lattice. There is an other lattice of this type: this is M3[Cn], see Figure 14 (here as
patchwork of covering squares and M3-s). It is interesting that this is modular.

9. Patchwork

9.1. Patching. The idea is the following: In Figure 25 are some examples of 3D
patchings. The cubes are the skeletons of the patch lattices. The gluing is over
subintervalls of the faces. 2D patchwork see in Flgure 1.

To define the patchwork construction (a special gluing) we need a dimension.
We have seen in Section 2 there are different dimension concepts in semimodular
lattices. We take here Dim(L).

Let K and L be semimodular lattices, let F be a filter of K, and I be an ideal
of L. We consider these as geometric shapes (e.g. cubes), K and I are adhesive
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a

1

0

0

0
0

0

0
1

Figure 25. A 3D patch lattice with the skeleton and the hypermatrix

Figure 26. The contour of a 3D rectangular semimodular lattice,
a cuboid.

faces, which are isomorphic. Then we can form the the lattice G, the well-known
Hall-Dilworth gluing of K and L over F and I . Assume that Dim(K), Dim(L),
Dim(F ), Dim(I) are defined. We call the gluing G the patching of K and L if:

(Dim) Dim(I) < min(Dim(K),Dim(L)).

Then G is the patching of K and L. See in Figure 2, the cubes are the skeletons
(as an example A ' M3, B ' L3,0). We consider the general case. Let S be
a semimodular lattice. Let {Bi} be a system of intervals of S - called blocks if
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Figure 27. Some example of 3D patching

⋃
Bi = L and if Bi ∩ Bj 6= ∅, i 6= j, then the union, Bi ∪ Bj is the Hall-Dilworth

gluing satisfying (DID) (i.e. the gluing is via an edge or a face.
If K1, K2 and K3 are face (2-dimensional) of blocks such that (see in Figure 1)

K1 ∩ K2 is an ideal of K2 and similarly K1 ∩ K3 is an ideal of K3. then this is a
patching system.

In Figure 6 we see a Hall-Dilworth gluing which is not a patchwork.

10. Block matrices

The 2-dimensional case. We consider first (0, 1)-matrices, in which every
row/column has at most one non zero entry, i.e. ”1”. A n × n square matrix
M = [ai,j ] of this kind is non singular (or non singular) if every row/column
contains exactly one ”1”. Obviously, every (0, 1)-non singular matrix is determined
by a permutation.

Take a patch matrix, i.e. a (n + 1) × (n + 1) matrix N , where the last row
and the last column contains only zeros and the remaining n × n matrix is an non
singular matrix M then N = Ma will be called the augmented M . If M = [1] then
the corresponding augmented matrix is:

N =
[
1 0
0 0

]
.

We don’t write the matrices in the usual form, we use the following ”table” notation,
see in Figure 15.
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Figure 28. A 3-dimensonal patchwork

Definition 8. A block of a matrix M = [ai,j ], 1 ≤ i, j ≤ n is a square submatrix
in the form [ai,j ], i ∈ {s, s + 1, s + 2, ..., s + k} and j ∈ {t, t + 1, t + 2, ..., t + k} for
some s, t, k.

See in Figure 25, the rows/columns of the block are consecutive rows/columns
of the given matrix (geometrically it is a convex rectangular).

Definition 9. A block matrix is a system of blocks of a matrix such that the (set
theoretical) meet of two blocks does not contain any entry and every entry is in a
block.

Visually, we have a partition of rectangles (blocks). Let us remark that this
definition is not the usual definition. In Figure 25 we have two 4 × 4-blocks, one
2 × 2-block and the remaining ”0” entries are 1 × 1-blocks, i.e. trivial boxes.

Let M1 and M2 two augmented non singular submatrix as blocks of a matrix N .
If M1 ∩M2 6= ∅, i.e. it contains an entry then there are two possibilities, presented
in Figure 17 resp. Figure 18(the blocks can have different sizes). Then M1 ∪ M2

span a block M (convex hull). In all other cases we have a row or column with
more then one entry ”1”. These are the vertical and horizontal sum of M1 and M2

(see [16]): M1 +v M2 resp. M1 +h M2 (these are the generated boxes i.e. the convex
rectangular hulls).

We formulate the following easy, almost trivial lemma:
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Lemma 7. Every (0, 1)-matrix M , in which every row/column has at most one
non zero entry, is a block matrix where the blocks are patch matrices and some
1 × 1-matrices (with ”0” entries), (i.e. it is the patcwork of patch matrices).
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0 0 0
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0

0 0

0 0

0

0
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0

0
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0

00

0

0 0

0 0

0

Figure 29. A matrix with three non-trivial blocks

Proof. Let M be a (0, 1)-matrix in which every row/column has at most one non
zero entry. Take the left most 2× 2-submatrix M1 which is an augmented non sin-
gular matrices, i.e. has the form given in Figure 24. If this is a maximal augmented
non singular matrix then this a block. Otherwise, this is not a maximal augmented
non singular matrix then there is an other augmented non singular matrix M2 such
that M1∩M2 6= ∅. This implies that M1+v M2 or M1+v M2 exists. On this way we
get a maximal augmented non singular matrix. We consider as blocks the maximal
augmented non singular (k× k)- matrices. The remaining entries form 1× 1 blocks
with ”0” entries.

Intuitively, we have the ”1” entries in the plain, some areas are ”den-
sity areas” of these entries, these generate a block which is a maxi-
mal augmented non singular matrix; the ”isolated ”1”-s are one-element
blocks.

�

Remark. The given matrix M has a block system, where the blocks with more
one entry are maximal augmented non singular matrices. To make the picture more
spectacular we can color the blocks and we obtain a ”patchwork” of blocks, i.e. of
augmented non singular matrices.

10.1. The three-dimensional case, hypermatrices. We define the 3-dimensional
hyper boxes and as partial operation we take the convex hull as ”convex rectangular
sub-hypetmatrices. Then we take the system of maximal boxes. This determines a
patchwork of the given lattice.

Definition 10. A block of a 3D hypermatrix M = [ai,j,k], 1 ≤ i, j ≤ n is a 3D sub-
hypermatrix in the form [ai,j,k], i ∈ {s, s+1, s+2, ..., s+l}, j ∈ {t, t+1, t+2, ..., t+l}
j ∈ {k, k + 1, k + 2, ..., k + l}for some s, t, k, l.

See in Figure 22, the rows/columns of the block are consecutive rows/columns
of the given matrix (geometrically it is a convex rectangular). A block hypermatrix
is a system of blocks such that the (set theoretical) meet of two blocks does not
contain any entry and every entry is in a block (let us remark that this definition
is not the usual definition of block marices).
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Figure 30. Horizontal sum of blocks, +h
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Figure 31. Vertical sum of blocks, +v

11. The structure theorem (conjecture)

The following theorem was proved for two-dimensional lattices by G. Cédli and
E. T. Schmidt in [4]:

Theorem 7. Every finite two-dimensional semimodular lattice R is the patchwork
of patch lattices.

Conjecture 2. Every finite semimodular lattice R is the patchwork of patch lat-
tices.

Problem 5. Establish the connection between the patchwork of block matrices and
patchwork of 2D semimodular lattices. Prove that Theore 7 follows from Lemma 7.

Remarks to the 2D case. Let K be a two-dimensional semimodular lattice,
see Figure 31. We my assume that K is rectangular [12]. Take the source S and the
matrix MK derived from the lower grid (G, S). This is a (0, 1)-matrix and every
row/column contains at most one non zero entry. By Lemma 4 MK has blocks wich
are matrices of patch lattices and some 1 × 1-matrices (with ”0” entries). We get
a patch system of K (Figure 31). The ”1” entries give the source, which determine
a cover-preserving join congruence Θ. Applay this to the blocks we get the patch
lattices (in the example the Li-s), see in Figure 32. All ”unit squers” of the matrix
which do’nt below to a block we put 0 entrie. Such a ”unit squer” vanish if we
factotize or gives a 1 × 1 block.
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In the 2D case the form the surce which is a s-independent subset and therefore
the restriction of a s-inependent to an interval is again s-indpendent subset, i.e. the
blocks determine patch lattice.

In Figure 32 we see 3 semimodular lattices L1 = N7, L2N7 and L3 = C2
2 patched

together.

K

Figure 32. The lattice K
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00
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0
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1

B3
0

L

L1

2

L3

K

Figure 33. Patching of matrices and K

Remarks to the 3D case.
By 3-dimensional lattices we use hypermatrices. We begin again with a 3-

dimensional semimodular lattice K and then we take its cube-hypermatrix MK .
Every row/column of MK contains at most one non-zero entry (which is an ”1”
and form the poset S, the source elements. Every block must satisfy the condition
(3D).

We define in the 3D case the patch lattice as a nested Boolean lattice.
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Problem 6. Characterize the hypermatrices of 3D patch lattices.

The difficulties makes the condition (3D), see Figure 33. L has a source S =
{s1, s2, s3}, it satisfis (3D). The lattice L is the Hall-Dilworth gluing of two lattices
(cubes), A and B. The restriction of S to A is not a soure, (DC) is not satisfied,
we need a new source element s4 and delete s3. The s4 is the projection of s3 to A
(s3 and s4 are not s-independent).

s
s

a=s

1

2

3

4
s

B

A

L

Figure 34. Hall-Dilworth and the condition (3D)

12. Appendix: modular lattices.

Finally we give an example of a patchwork of modular lattices. The Fano plane
is a seven-dimensional modular lattice, dim(F ) = 7, (Dim(F ) = dimKO(F ) = 3).

31
24

56
7

b

1 2 3
4

56
7 a

Figure 35. Patchwork of Fano planes and M3 × C2
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