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Abstract. In [3] we proved that every planar semimodular lattice is a special gluing,
called patchwork of special intervals, called patch lattices, show in Figure 1. In this paper
we characterize these patch lattices with invertible (0, 1)-matrices. This gives hope that the
theory if planar semimodular lattices can be traced back to matrix theory.

1. Introduction

Mainly we deal the two-dimensional case, but in many places we discuss the
higher dimensional cases too.

Figure 1. A patchwork in the two-dimensional case
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Figure 2. Patchwork of two patch lattices

1.1. Source lattices. The width w(P ) of a (finite) order P is defined to be max{n:
P has an n-element antichain}. As usual, J(L) stands for the order of all nonzero
join-irreducible elements of L. Dim(L) = w(J(L)), consequently 2-dimensional
means that the width of the order of join-irreducible elements is two. Cn denotes
the chain 0 < 1 < .... < n−1 of natural numbers. We define the source in subsection
2.3.

Let us take the lattice N7, the seven-element semimodular but not modular
lattice. This is a source lattice (elementary particle), which is the smallest non
distributive building stone of the 2D semimodular lattices.

Remark. Source lattices in higher dimensional cases are special join-homomorphic
images of the direct powers of C3 and C2, whics are the following semimodular lat-
tices:

Ln,k = (C3
n−k × C2

k)/Φ,.

Φ is the cover-preserving join-congruence which has only one non-trivial congruence
class T ( called beret), this contains the dual atoms and the unit element. Every
non-modular semimodular lattice contains as sublattice a source lattice Ln,k. Then
L2,0 ' N7 and L3,3 ' M3.

Two dimensional source lattices are: L2,0
∼= N7, L2,1

∼= C2
2 and L2,2

∼= C2. In
Figure 14 we see L3,0. Ln,k is a filter of Ln,0.

1.2. Patch lattices. Patch lattices are the boulding stones (atoms) of the 2D
semimodular lattices, see [3].

How can we derive the patch lattices from boolean lattices? This is the nesting,
which is the following procedure: let L be a semimodular lattice and let I be an
interval of L isomorphic to the 22-boolean lattice. We call this a 2-cell or covering
square, see in section 2. On the other hand let us take the lattice N7 and the four-
element sublattice {a, b, c, d} (see in Figure 3 and Figure 4,(II) the black marked
circles) which is isomorphic to the 22-boolean lattice and it is called the skeleton,
Sk(N7) of N7. There is an isomorphism ϕ : Sk(N7) −→ I . We extend this
isomorphism to an embedding of N7 into I . It is easy to extend this order to a
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semimodular lattice L1. We can repeat this construction for L1 and a 2-cell then
we get L2, and so on, we get Ln.

On this way we get from the L0
∼= 22 boolean lattice first N7, these are the patch

lattices. L0 is a sublattice of Ln this is the skeleton of Ln Let us remark that the
dual atoms of the skeleton are dual atoms of the patch lattices, see in Figure 6.

Lemma 1. Every patch lattice has a skeleton.

In [3] paper we used for nesting ”adding fork to L”. Fork is the order {c, d, e, 1}.
In Figure 3 (V) and Figure 4 we see the nesting.

The two-dimensional semimodular lattices can be characterized by (0, 1)-matrices,
ML, which determines L

The patch lattices are the semimodular lattices which are determined by special
non singular (invertible) (0, 1)-matrices.
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Figure 3. The nesting in the 2D case
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Figure 4. The nesting in the 2D case
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Figure 5. A Hall-Dilworth gluing which is not a patchwork

1.2.1. The building tool: patchwork. Let L and K be 2-dimensional lattices with
the skeletons {a∧ b, a, b, a∨ b} resp. {c∧ d, c, d, c∨ d}. The Hall-Dilworth gluing of
L and K is called patching if L ∩ K ⊂ [a ∧ b, b] and [c, c ∨ d], ( gluing over edges,
[a ∧ b, b] and [c, c ∨ d] are one-dimensional).

The following structure theorem was proved by G. Czédli and E. T. Schmidt
[3].

Theorem 1. Every two-dimensional semimodular lattice is the patchwork of patch
lattices.

The structure of 2D semimodular lattices:

source lattices (elementary particle)
⇓ nesting (spec. embedding)

patch lattices (atoms)
⇓ patching (spec. gluing)
semimodular lattices

Remark. Similar theorem holds for planar semimodular lattices in this case
the lattices Mn are patch lattices of dimension n.

1.3. Rectangular lattices. Rectangular lattices were introduced by Grätzer-
Knapp [9] for planar semimodular lattices. This notion is an important tool by
the description of planar semimodular lattices. We define the rectangular lattices
for arbitrary dimension.

Definition 1. A rectangular lattice L is a finite semimodular lattice in which J(L)
is the disjoint sum of chains Ci.

Geometric lattices are rectangular. In [6] we introduced the almost geometric
lattices these are lattices in which J(L) is the disjoint (cardinal) sum of at most two
element chains. In the class of finite distributive lattices the rectangular lattices are
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the the direct products of chains. The lattices M3[Cn] are modular, non distributive,
rectangular 3D lattices.

To every 2D semimodular lattice L we assign a (0, 1)-matrix ML in which every
row/column contains at most one ”1” entrie, see subsection 2.4. Let M be a square
matrix such that in the last row and last column the entries are zeros. Delete the
last row and last column we get the the restricted matrix of M−. Conversely, if N
is a square matrix and we add a new last row and last column with zero entries
this is called the augmented matrix of N+. If N = [1] then N+ is the (augmented)
matrix of N7.

Definition 2. A patch matrix is a square (0, 1)-matrix in which every row/column
except the last row/column contains exactly one non-zero entrie and in the last
row/column all entries are 0.

Theorem 2. Let L be a 2D rectangular semimodular lattice. The following three
conditions are equivalent:

(1) is a patch lattice, i.e. a nested four-element boolean lattice,
(2) L has two dual atoms p and q such that p ∧ q = 0 (then 0, p, q, 1 is the

skeleton of L),
(3) ML is a patch matrix

The restriced matrix of ML is a special non-singular (invertible) matrix.
More equivalent conditions see in [3]

Corollary 1. The number of non-distributive patch lattices of length n is (n− 2)!.

In the two and three dimensional cases dim(Sk(Lm,0)) = dim(Lm,0).

2. Translation from lattice to matrix.

2.1. Cover-preserving join-homomorphism. There is a trivial “representa-
tion theorem for finite lattices: each of them is a join-homomorphic image of a
finite distributive lattice D. This follows from the fact that the finite free join
semilattices with zero are the finite Boolean lattices.

The semimodular lattices are are very special join-homomorphic images of finite
distributive lattices.

Theorem 3. (Manfred Stern’s theorem, [13]) Each finite semimodular lattice L is
a cover-preserving join-homomorphic image of the direct product of finite chains,
D = C1 × C2 × ... × Ck.

In recent years it was found that this theorem has many interesting consequences.
The direct product of n-chains can be considered as an n-dimensional rectangu-
lar shape, especially a boolean lattice with 2n-elements is a n -dimensional cube,
the direct product of two chains is a plain. This leads to a geometrical approach
of the semimodular lattices, [12].

In a semimodular lattice the maximal chains have the same length. Assume
that L is semimodular lattice and a, b, u, v ∈ D, L = ϕ(D) and u ≤ a ≺ b ≤ v.
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In this case ϕ has a special property. If E is a maximal chain of between u and
v and a, b ∈ E, ϕ(a) = ϕ(b) and F is an other maximal chain between u and v ,
then there exit c, d ∈ F, c ≺ d such that ϕ(c) = ϕ(d). This property is just the
cover-preserving property (this is not the usual form).

A planar lattice is called slim if every covering square is an interval. Now let
L and K be finite lattices. A join-homomorphism ϕ : L → K is said to be cover-
preserving iff it preserves the relation �. Similarly, a join-congruence Φ of L is
called cover-preserving if the natural join-homomorphism L → L/Φ, x 7→ [x]Φ is
cover-preserving. As usual, J(L) stands for the order of all nonzero join-irreducible
elements of L. For a order P .

In [1] we proved:

Lemma 2. Let Φ be a join-congruence of a finite semimodular lattice M . Then Φ
is cover-preserving if and only if for any covering square S = {a ∧ b, a, b, a ∨ b} if
a ∧ b 6≡ a (Φ) and a ∧ b 6≡ b (Φ) then a ≡ a ∨ b (Φ) implies b ≡ a ∨ b (Φ).

Stern’s theorem was rediscovered by G. Czédli and E. T. Schmidt [1], see the
following theorem (Stern’s result was well-hidden in his book):

Theorem 4. Each finite semimodular lattice L is a cover-preserving join-homo-
morphic image of the direct product of finite chains, C1, C2, ..., Cn , these are max-
imal subchains of L, n = Dim(L) = w(J(L)) such that J(L) ⊆ C1 ∪ C2 ∪ ... ∪ Cn.

Let us recall the main result from Grätzer and Knapp [9]:

Corollary 2. (Grätzer and Knapp [9]) Each finite planar semimodular lattice can
be obtained from a cover-preserving join-homomorphic image of the direct product of
two finite chains and adding doubly irreducible elements to the interiors of covering
squares.

2.2. The grid.

Definition 3. The grid of a semimodular lattice L is G = C1×C2× ...×Cn, where
the Ci-s are maximal subchains of L, J(L) ⊆ C1 ∪ C2 ∪ ... ∪ Cn, n = dim(L).

Observe that a grid can be considered as a coordinate system.
By [1] L is the cover-preserving join-homomorphic image of G.
Remark 1. Let D1, D2, ...Dn, n = dim(L) be subchains of L such that J(L) =

D1 ∪ D2 ∪ ... ∪ Dn then G = D1 × ... × Dn is called a (lower) grid of L.

2.3. The source. To describe the cover-preserving join- congruences of a distribu-
tive lattice G we need the notion of source elements of G. Czédli and E. T. Schmidt
[2]. Let Θ be a cover-preserving join-congruence of G.

Definition 4. An element s ∈ G is called a source element of Θ if there is a t, t ≺ s
such that s ≡ t (Θ) and for every prime quotient u/v if s/t ↘ u/v, s 6= u imply
u 6≡ v (Θ). The set SΘ of all source elements of Θ is the source of Θ.

Lemma 3. Let x be an arbitrary lower cover of a source element s of Θ. Then
x ≡ s (Θ). If s/x ↘ v/z, s 6= v, then v 6≡ z (Θ).
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Proof. Let s be a source element of Θ then s ≡ t (Θ) for some t, t ≺ s. If x ≺ s
and x 6= t then {x ∧ t, x, t, s} form a covering square. Then x 6≡ x ∧ t (Θ). This
implies x ∧ t 6≡ t (Θ). By Lemma 3 we have x ≡ s (Θ).

To prove that v 6≡ z (Θ), we may assume that v ≺ s. Take t, t ≺ s, then we
have three (pairwise different) lower covers of s, namely .x, v, t. These generate an
eight-element boolean lattice in which By the choice of t we know that v 6≡ v ∧ t
(Θ), x 6≡ x ∧ t (Θ) and z 6≡ x ∧ t ∧ v (Θ). It follows that x 6≡ t (Θ), otherwise by
the transitivity x 6≡ v (Θ). �

The following results are proved in [12]. The source S satisfies an independence
property:

Definition 5. Two elements s1 and s2 of a 2D-distributive lattice are s-independent
if x ≺ s1, y ≺ s2 then s1/x, s2/y are not perspective, s1/x 6∼ s2/y. A subset S is
s-independent iff every pair {s1, s2} is s-independent.

Remark. In the 2D case every s-independent subset is the source of some cover-
preserving join-congruence. In higher dimensional cases this is not thrue, we need
an other property too, the shower property [12].

Lemma 4. Every row/column contains at most one source element.

The semimodular lattice L is determined by (G, Θ) or (G, S), where S is an
s-independent subset and therefore we write:

L = L(G, S).

Determined means, if L 6∼= L′ then S 6∼= S′ (order isomorphic subsets of G).
Let Θ be a cover-preserving join-congruence of an 2-dimensional grid G and let

S be the source of Θ. Take S and the set of all lower covers of the source elements
s′i ≺ s (i ∈ {1, 2, 3}). Then we have the following set of primintervals of G:

P = {[s′i, s]|, s ∈ S}.

Let ΘS be the join congruence generated by this set of primintervals, i.e. for a
priminterval [a, b] a ≡ b (ΘS) if and only if there is a s ∈ S priminterval [s′i, s] such
that [a, b] is upper perspective to a [s′i, s]. Then Θ = ΘS (if S is an s-independent
set then ΘS .

It is easy to prove that in the 2D case every s-independent subset S determinate
a cover-preserving join-congruence Θ.

Lemma 5. Let G be a 2-dimensional grid, i.e. the direct product of two chains.
Let S be an s-independent subset of G. Then there exists a cover-preserving join-
congruences Θ of G with the source S.

The meet of two cover-preserving join-congruence is in generally not cover-
preserving.

Θs denotes the cover-preserving join-congruence determined by s, see in Figure
6. The source of Θs is {s}.
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Figure 6. The join-congruence Θs

2.4. The matrix. Let L be a semimodular lattice. By Theorem 1 we have a grid
G = Ck

n and a cover-preserving join-congruence Θ of G such that G/Θ ∼= L. In
Figure 7 the source S of Θ has four elements. Put 1 into a cell if its top element is in
S, otherwise put zero. What we get is an n×n matrix, ML, which determines L (if
you like you can turn this grid with 45 degrees to see the matrix in the traditional
form). The 7 element semimodular, non modular lattice N7 has the matrix

MN7 =
∣∣∣∣
1 0
0 0

∣∣∣∣
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Figure 7. A grid and four sours elements

Take the following example. A source and the corresponding matrix is a n × n
(0, 1)-matrix, where every row/column contains at most 1 entry, the source elements
are s1 = (6, 2), s2 = (5, 6), s3 = (4, 3), s4 = (2, 5):

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
There is an another possibilitie to get a matrix:

∣∣∣∣
6 5 4 2
2 6 3 5

∣∣∣∣

3. The proof of Theorem 2

(1) and (2) are equvivalent, see in [3]
(2) ⇒ (3). Let L be a 2D semimodular lattice of lengths n with two dual

atoms p and q such that p ∧ q = 0, i.e. 0, p, q, 1 is the skeleton. In Figure 7
you see the n = 4 cases. J(L) is the set of all x 0 < x ≤ q, 0 < x ≤ p. Let
C1 = {x; 0 < x ≤ p} ∪ {1} and C2 = {x; 0 < x ≤ q} ∪ {1}. (C1 ≈ C2). G = is
a grid of L and the cover-preserving join-homomorphism is ϕ : (x, y) ⇒ x ∨ y. Θ
denotes the induced cover-preserving join-congruence of G.

〈n, 0〉 ∧ 〈0, n〉 = 0 and 〈n, 0〉 ∨ 〈0, n〉 = 1. Let p = 〈n, 0〉 and q = 〈0, n〉. The
last row rep. last column of the grid doesn’t any source element (this would change
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the order in J(G)). In G/Θ p, q are dual atoms and therefore 〈n, 1〉 ≡ 〈n, n〉 (Θ)
and 〈1, n〉 ≡ 〈n, n〉 (Θ) which means all other rows/columns must contain a source
element, with other words the rows/columns contain an entrie 1, i.e. the restricted
matrix is non-singular.

s s1 2

s2

F

F

0

0
11

s10 0
1

1

0

0

1

1

0 0

0

0

0

0

0

1

1 0

0 0 0

0

P

P

1

2

the matrixthe source

the source the matrix

0
1 1

2 2
3 3

Figure 8. Two patch lattices and the matrices

(3) ⇒ (2). Let L be a 2D semimodular lattice and assume that ML is a patch
matrix. The every row rep. column contains ”1” entrie, i.e. a source element. If
G is the grid then (n, 1) ≡ (n, n)(Θ), (1, n) ≡ (n, n)(Θ) but (n, 1) 6≡ (n, 0)(Θ),
(n, 1) 6≡ (0, n)(Θ). In the factor lattice G/Θ ∼= L p = (n, 0), q = (0, 1) are dual
atoms and p ∧ q = 0.
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4. Patch matrices

We consider first (0, 1)-matrices, in which every row/column has at most one non
zero entry, i.e. ”1”. A n × n square matrix M = [ai,j ] of this kind is non singular
(or non singular) if every row/column contains exactly one ”1”. Obviously, every
(0, 1)-non singular matrix is determined by a permutation.

Take a patch matrix, i.e. a (n + 1) × (n + 1) matrix N , where the last row
and the last column contains only zeros and the remaining n × n matrix is an non
singular matrix M then N = Ma will be called the augmented M . If M = [1] then
the corresponding augmented matrix is:

N =
[
1 0
0 0

]
.

Definition 6. A block of a matrix M = [ai,j ], 1 ≤ i, j ≤ n is a square submatrix
in the form [ai,j ], i ∈ {s, s + 1, s + 2, ..., s + k} and j ∈ {t, t + 1, t + 2, ..., t + k} for
some s, t, k.

See in Figure 9, the rows/columns of the block are consecutive rows/columns of
the given matrix (geometrically it is a convex rectangular).

Definition 7. A block matrix is a system of blocks of a matrix such that the (set
theoretical) meet of two blocks does not contain any entry and every entry is in a
block.

Visually, we have a partition of rectangles (blocks). Let us remark that this
definition is not the usual definition. In Figure x we have two 4 × 4-blocks, one
2 × 2-block and the remaining ”0” entries are 1 × 1-blocks, i.e. trivial boxes.

Let M1 and M2 two augmented non singular submatrix as blocks of a matrix N .
If M1 ∩M2 6= ∅, i.e. it contains an entry then there are two possibilities, presented
in Figure 17 resp. Figure 18 (the blocks can have different sizes). Then M1 ∪ M2

span a block M (convex hull). In all other cases we have a row or column with
more then one entry ”1”. These are the vertical and horizontal sum of M1 and M2

(see [12]): M1 +v M2 resp. M1 +h M2 (these are the generated boxes i.e. the convex
rectangular hulls).

We formulate the following easy lemma (the correspondig theorem to Theorem
1):

Lemma 6. Every (0, 1)-matrix M , in which every row/column has at most one
non zero entry, is a block matrix where the blocks are patch matrices and some
1 × 1-matrices (with ”0” entries), (i.e. it is the patcwork of patch matrices).

Proof. Let M be a (0, 1)-matrix in which every row/column has at most one non
zero entry. Take the left most 2× 2-submatrix M1 which is an augmented non sin-
gular matrices, i.e. has the form given in Figure 24. If this is a maximal augmented
non singular matrix then this a block. Otherwise, this is not a maximal augmented
non singular matrix then there is an other augmented non singular matrix M2 such
that M1 ∩ M2 6= ∅. This implies that M1 +v M2 or M1 +v M2 exists. These op-
erations are the nesting of matrices. On this way we get a maximal augmented
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Figure 9. A matrix with three non-trivial blocks
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Figure 10. Horizontal sum of blocks, +h

non singular matrix. We consider as blocks the maximal augmented non singular
(k × k)- matrices. The remaining entries form 1 × 1 blocks with ”0” entries.

Intuitively, we have the ”1” entries in the plain, some areas are ”den-
sity areas” of these entries, these generate a block which is a maxi-
mal augmented non singular matrix; the ”isolated ”1”-s are one-element
blocks.

�

Hopefully Lemma 6 allow (planar) semimodular lattices to deal with matrices.

Problem 1. Establish connection beween Lemma 6 and Theorem 2, prove that
Lemma 6 implies Theorem 2.
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Figure 11. Vertical sum of blocks, +v

K

Figure 12. The lattice K

In Figre 12 and figure 13 zou can see a block matrix and the corresponding
patchwork.

5. Outlook

Theorem 1 is a structure theorem of 2D semimodular lattice. I hope similar
theorem holds for all semimodular lattices, see more results in [12].

The skeleton, Sk(L) of a n-dimensional semimodular lattice is a 2n-element
boolean sublattice, which contains 0, 1. The ”building stones” of the structure
theorem are special rectangular lattices (in most cases the surface of the diagram
is a rectangular shape), we get these from Boolean lattices.

The following 3D rectangular lattices are the patch lattices: C3, M3.

Definition 8. A semimodular lattice is a patchwork lattice if the dual atoms of the
skeleton are dual atoms of L.

Problem 2. Characterize the patch lattices as nested boolean lattices in the 3D
case.

The direct product G = C1 × C2 × C3, where C1, C2 and C3 are chains can
be considered as a 3D hypermatrix (this is a generalization of the matrix to a
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Figure 13. Patching of matrices and K

s

Figure 14. 3D source lattice, L3,0.

n1 × n2 × n3 array of elements: square cuboid), this has a row and two columns.
G contains covering cubes, these are called 3-cells. The source elements are top
element of the cells, see Figure 8. The 3D hypermatrix of type 23 or 33 [ai,j,k] is a
source hypermatrix if a1,1,1 = 1 and all other entries are zero.

Problem 3. Characterize the the hypermatrices of patch lattices.

The ”building tool” is a kind of gluing, the patchwork construction. It is related
to the Hall-Dilworth gluing and S-glued sum (Ch. Herrmann [11]), for instance in
the 3-dimensional case we glue together cubes (i.e. 23 Boolean lattices) over faces,
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see in Figure 2. Another example is the Rubik cube, the 27 small cubes (”unit
cubes”) contact with each other along their sides.

Conjecture 1. Every finite semimodular lattice R is the patchwork of patch lat-
tices.

A surprising patchwork is the modular lattice M3[Cn] where the patch lattices
(components) are isomorphic to M3 or C2

2.
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[12] E. T. Schmidt, A new look at the semimodular lattices; a geometric approach (results,

ideas and conjectures), (2012),
[13] M. Stern, Semimodular Lattices. Theory and Applications. Encyclopedia of Mathematics

and its Applications, 73. Cambridge University Press (1999)

Mathematical Institute of the Budapest University of Technology and Economics,
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