Limit / large dev. thms. exercises before second midterm

1. Prove that the uniform distribution $\mathrm{UNI}[-1,1]$ cannot be expressed as the difference of two i.i.d. random variables. Hint: Use the method of characteristic functions!
2. Let X_{n} be uniformly distributed on the set $\{1,2, \ldots, n\}$. Use the method of characteristic functions to show that $X_{n} / n \Rightarrow \mathrm{UNI}[0,1]$.
3. Use the method of characteristic functions to show that the difference of two independent EXP(1) random variables has the same distribution as $X Y$, where $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=\frac{1}{2}$ and $Y \sim \operatorname{EXP}(1)$ and X and Y are independent.
4. Show by an example that $\phi_{X+Y}(u)=\phi_{X}(u) \phi_{Y}(u)$ does not necessarily imply that the random variables X and Y are independent. Hint: Think of a famous distribution!
5. Let U, X and Y be independent random variables distributed as follows: $U \sim \mathrm{UNI}[0,1], X, Y \sim \operatorname{EXP}(1)$. Use the method of characteristic functions to prove that

$$
Z:=U \cdot(X+Y) \sim \operatorname{EXP}(1)
$$

6. The Lévy distribution is stable. Let X denote a random variable with standard Lévy distribution. On the one hand, we have already learnt that $S_{n} / n^{2} \Rightarrow X$, where $S_{n}=\eta_{1}+\cdots+\eta_{n}$, where $\eta_{1}, \eta_{2}, \ldots$ are i.i.d. and η_{k} has the same distribution as the hitting time of level one by a one dimensional simple symmetric random walk starting from the origin. On the other hand, we have learnt that $\mathbb{E}\left(e^{i t X}\right)=e^{-\sqrt{-2 i t}}$. Denote by $\operatorname{LEVY}(a)$ the distribution of $a X$, where $a \in \mathbb{R}_{+}$.
Give two different proofs of the fact that for any $a, b \in \mathbb{R}_{+}$we have

$$
\begin{equation*}
\operatorname{LEVY}(a) * \operatorname{LEVY}(b) \sim \operatorname{LEVY}\left((\sqrt{a}+\sqrt{b})^{2}\right) \tag{1}
\end{equation*}
$$

(The $*$ symbol denotes convolution)
7. Let $X_{1}, X_{2}, X_{3}, \ldots$ denote i.i.d. r.v.'s with $\mathrm{UNI}[0,1]$ distribution. Use Lindeberg to show that

$$
\frac{\sum_{k=1}^{n} k X_{k}-\frac{n^{2}}{4}}{\frac{1}{6} n^{\frac{3}{2}}} \Rightarrow N(0,1)
$$

8. For any $s \in(1,+\infty)$ let X_{s} denote an \mathbb{N}_{+}-valued random variable satisfying $\mathbb{P}\left(X_{s}=n\right)=n^{-s} / \zeta(s)$, where $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$. Denote by Y_{s} the number of distinct primes that divide X_{s}. Show that

$$
\begin{equation*}
\frac{Y_{1+\varepsilon}-\ln (1 / \varepsilon)}{\sqrt{\ln (1 / \varepsilon)}} \Rightarrow \mathcal{N}(0,1), \quad \varepsilon \rightarrow 0_{+} \tag{2}
\end{equation*}
$$

Hint: To approximate $\sum_{p \in \mathcal{P}} p^{-s}$, take the log of the Euler formula (see page 128) for the Riemann zeta function $\zeta(s)$.
9. Prove that X_{n} converges to 0 in probability if and only if $\varphi_{n}(t) \rightarrow 1$ in an open neighbourhood of $t=0$.
10. Let X_{1}, X_{2}, \ldots be i.i.d. random variables. Assume $\mathbb{P}\left(X_{i} \geq 0\right)=1, \mathbb{E} X_{i}=1$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$. Prove that

$$
2\left(\sqrt{S_{n}}-\sqrt{n}\right) \Rightarrow \mathcal{N}\left(0, \sigma^{2}\right)
$$

11. For each $n \in \mathbb{N}$, let $\xi_{n, k}, k=1, \ldots, n$ denote i.i.d. random variables with $\operatorname{BER}(1 / n)$ distribution. These random variables form a triangular array. Let $S_{n}=\xi_{n, 1}+\cdots+\xi_{n, n}$. Find the weak limit of

$$
\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}}, \quad n \rightarrow \infty
$$

Explain why this is a valuable lesson in the context of Lindeberg's theorem.

