Limit / large dev. thms. exercises before second midterm

- 1. Prove that the uniform distribution UNI[-1, 1] cannot be expressed as the difference of two i.i.d. random variables. *Hint:* Use the method of characteristic functions!
- 2. Let X_n be uniformly distributed on the set $\{1, 2, ..., n\}$. Use the method of characteristic functions to show that $X_n/n \Rightarrow \text{UNI}[0, 1]$.
- 3. Use the method of characteristic functions to show that the difference of two independent EXP(1) random variables has the same distribution as XY, where $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = \frac{1}{2}$ and $Y \sim \text{EXP}(1)$ and X and Y are independent.
- 4. Show by an example that $\phi_{X+Y}(u) = \phi_X(u)\phi_Y(u)$ does not necessarily imply that the random variables X and Y are independent. *Hint:* Think of a famous distribution!
- 5. Let U, X and Y be independent random variables distributed as follows: $U \sim \text{UNI}[0, 1], X, Y \sim \text{EXP}(1)$. Use the method of characteristic functions to prove that

$$Z := U \cdot (X + Y) \sim \text{EXP}(1)$$

6. The Lévy distribution is stable. Let X denote a random variable with standard Lévy distribution. On the one hand, we have already learnt that $S_n/n^2 \Rightarrow X$, where $S_n = \eta_1 + \cdots + \eta_n$, where η_1, η_2, \ldots are i.i.d. and η_k has the same distribution as the hitting time of level one by a one dimensional simple symmetric random walk starting from the origin. On the other hand, we have learnt that $\mathbb{E}(e^{itX}) = e^{-\sqrt{-2it}}$. Denote by LEVY(a) the distribution of aX, where $a \in \mathbb{R}_+$.

Give two different proofs of the fact that for any $a, b \in \mathbb{R}_+$ we have

$$LEVY(a) * LEVY(b) \sim LEVY((\sqrt{a} + \sqrt{b})^2).$$
(1)

(The * symbol denotes convolution)

7. Let X_1, X_2, X_3, \ldots denote i.i.d. r.v.'s with UNI[0,1] distribution. Use Lindeberg to show that

$$\frac{\sum\limits_{k=1}^{n} kX_k - \frac{n^2}{4}}{\frac{1}{6}n^{\frac{3}{2}}} \Rightarrow N(0,1)$$

8. For any $s \in (1, +\infty)$ let X_s denote an \mathbb{N}_+ -valued random variable satisfying $\mathbb{P}(X_s = n) = n^{-s}/\zeta(s)$, where $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$. Denote by Y_s the number of distinct primes that divide X_s . Show that

$$\frac{Y_{1+\varepsilon} - \ln(1/\varepsilon)}{\sqrt{\ln(1/\varepsilon)}} \Rightarrow \mathcal{N}(0,1), \qquad \varepsilon \to 0_+$$
(2)

Hint: To approximate $\sum_{p \in \mathcal{P}} p^{-s}$, take the log of the Euler formula (see page 128) for the Riemann zeta function $\zeta(s)$.

- 9. Prove that X_n converges to 0 in probability if and only if $\varphi_n(t) \to 1$ in an open neighbourhood of t = 0.
- 10. Let X_1, X_2, \ldots be i.i.d. random variables. Assume $\mathbb{P}(X_i \ge 0) = 1$, $\mathbb{E}X_i = 1$ and $\operatorname{Var}(X_i) = \sigma^2 < \infty$. Prove that

$$2\left(\sqrt{S_n} - \sqrt{n}\right) \Rightarrow \mathcal{N}(0, \sigma^2).$$

11. For each $n \in \mathbb{N}$, let $\xi_{n,k}, k = 1, ..., n$ denote i.i.d. random variables with BER(1/n) distribution. These random variables form a triangular array. Let $S_n = \xi_{n,1} + \cdots + \xi_{n,n}$. Find the weak limit of

$$\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}}, \qquad n \to \infty.$$

Explain why this is a valuable lesson in the context of Lindeberg's theorem.