Midterm Exam - April 24, 2018, Limit thms. of probab.

Family name	Given name	
Signature	Neptun Code	

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (7 marks) Given some $p \in (0,1)$, let $Y_{p,0}, Y_{p,1}, Y_{p,2}, \ldots$ denote i.i.d. random variables with Bernoulli distribution:

$$\mathbb{P}(Y_{p,n} = 1) = p, \qquad \mathbb{P}(Y_{p,n} = 0) = 1 - p.$$

Let $X_p = \min\{ n \ge 0 : Y_{p,n} = 1 \}.$

Use the method of characteristic functions to prove that $pX_p \Rightarrow \text{EXP}(1)$ as $p \to 0_+$.

Solution: X_p has pessimistic geometric distribution: $\mathbb{P}(X_p = k) = (1-p)^k p, \ k = 0, 1, 2, \dots$

$$\varphi_p(t) = \mathbb{E}(e^{itX_p}) = \sum_{k=0}^{\infty} e^{itk} (1-p)^k p = p \sum_{k=0}^{\infty} (e^{it} (1-p))^k = \frac{p}{1-e^{it}(1-p)}.$$

 $\lim_{p\to 0} \varphi_p(pt) = \lim_{p\to 0} \frac{p}{1-e^{ipt}(1-p)} = \lim_{p\to 0} \frac{1}{1-(e^{ipt}-1)/p} = \frac{1}{1-it}$, the characteristic function of EXP(1).

2. (8 marks) Let $1 > p_1 \ge p_2 \ge p_3 \ge \cdots \ge 0$. Let X_1, X_2, \ldots denote independent random variables with Bernoulli distribution:

$$\mathbb{P}(X_n = 1) = p_n, \qquad \mathbb{P}(X_n = 0) = 1 - p_n.$$

Let us define $S_n = X_1 + \cdots + X_n$. Write down the extra conditions that we need to impose on the sequence $(p_n)_{n=1}^{\infty}$ so that we can conclude that

$$\frac{S_n - \sum_{k=1}^n p_k}{\sqrt{\sum_{k=1}^n p_k}} \Rightarrow \mathcal{N}(0,1).$$

Hint: Use Lindeberg's theorem.

Solution:

$$\mathbb{E}(S_n) = \sum_{k=1}^n p_k, \ \operatorname{Var}(S_n) = \sum_{k=1}^n p_k (1 - p_k).$$

In order to prove $\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}} \Rightarrow \mathcal{N}(0,1)$, we need to check Lindeberg's condition. We want to show that for any $\varepsilon > 0$ we have

$$\lim_{n \to \infty} \frac{1}{\operatorname{Var}(S_n)} \sum_{k=1}^n \mathbb{E}\left((X_k - p_k)^2 \mathbb{1}\left[|X_k - p_k| > \varepsilon \sqrt{\operatorname{Var}(S_n)} \right] \right) = 0$$

If $\lim_{n\to\infty} \operatorname{Var}(S_n) = +\infty$ then $\mathbb{1}\left[|X_k - p_k| > \varepsilon \sqrt{\operatorname{Var}(S_n)}\right] = 0$ for all $k \in \mathbb{N}$ and all $n \ge n_0$, where n_0 is the smallest index for which $\varepsilon \sqrt{\operatorname{Var}(S_{n_0})} > 1$, since $|X_k - p_k| \le 1$ for any k. Thus we have

$$\frac{1}{\operatorname{Var}(S_n)} \sum_{k=1}^n \mathbb{E}\left((X_k - p_k)^2 \mathbb{1}\left[|X_k - p_k| > \varepsilon \sqrt{\operatorname{Var}(S_n)} \right] \right) = 0, \quad n \ge n_0.$$

Now we note that if $\sum_{k=1}^{\infty} p_k = +\infty$ then $\lim_{n\to\infty} \operatorname{Var}(S_n) = \lim_{n\to\infty} \sum_{k=1}^n p_k (1-p_k) = +\infty$, thus we have $\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}} \Rightarrow \mathcal{N}(0,1)$ by Lindeberg's theorem. In order to conclude $\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\sum_{k=1}^n p_k}} \Rightarrow \mathcal{N}(0,1)$, we need

$$\lim_{n \to \infty} \frac{\sqrt{\sum_{k=1}^{n} p_k (1 - p_k)}}{\sqrt{\sum_{k=1}^{n} p_k}} = 1.$$

The necessary and sufficient condition for this is $\lim_{n\to\infty} p_n = 0$ (in addition to $\sum_{k=1}^\infty p_k = +\infty$). Also note that if $\sum_{k=1}^\infty p_k < +\infty$ then $\mathbb{E}(S_\infty) < +\infty$, thus $\mathbb{P}(S_\infty < +\infty) = 1$, thus in this case we actually have $\lim_{n\to\infty} \frac{S_n - \sum_{k=1}^n p_k}{\sqrt{\sum_{k=1}^n p_k}} = \frac{S_\infty - \sum_{k=1}^\infty p_k}{\sqrt{\sum_{k=1}^\infty p_k}}$, and the limiting random variable is discrete, so it definitely doesn't have standard normal distribution.