Midterm Exam - May 15, 2024, Limit thms. of probab., SOLUTIONS

1. Let Y_{1}, Y_{2}, \ldots denote i.i.d. random variables with distribution $\mathbb{P}\left(Y_{i}=+1\right)=\frac{1}{3}, \mathbb{P}\left(Y_{i}=-1\right)=\frac{1}{3}$, $\mathbb{P}\left(Y_{i}=0\right)=\frac{1}{3}$. Let $Z_{0}=0$ and $Z_{n}=Y_{1}+\cdots+Y_{n}$. Let $\tau:=\min \left\{n \geq 0: Z_{n}=1\right\}$.
Let $\mathcal{T}_{0}:=0$ and let $\mathcal{T}_{k}:=\min \left\{n>\mathcal{T}_{k-1}: Z_{n}=0\right\}$.
(a) Let $z \in \mathbb{C}$ with $|z| \leq 1$. Find $\mathbb{E}\left[z^{\tau}\right]$. Hint: You will have to solve a quadratic equation.
(b) Let $z \in \mathbb{C}$ with $|z| \leq 1$. Find $\mathbb{E}\left[z^{\mathcal{T}_{1}}\right]$.
(c) Find $\mathbb{E}\left[z^{\mathcal{T}_{k}}\right]$.
(d) Find the value of $\eta \in \mathbb{R}_{+}$such that $\mathcal{T}_{k} / k^{\eta} \Rightarrow \mathcal{T}$ as $k \rightarrow \infty$ (where \mathcal{T} is a non-degenerate random variable) and find the characteristic function of \mathcal{T}.

Solution:

(a) Let $G(z)=\mathbb{E}\left[z^{\tau}\right]$. Similarly to page 99-100 of the scanned lecture notes, we have $G(z)=\frac{1}{3} z+$ $\frac{1}{3} z G(z)+\frac{1}{3} z G^{2}(z)$. Thus $z G^{2}(z)+(z-3) G(z)+z=0$, thus $G(z)=\frac{(3-z)-\sqrt{(z-3)^{2}-4 z^{2}}}{2 z}$ (the other solution would give $G(0)=\infty$)
(b) $\mathbb{E}\left[z^{\mathcal{T}_{1}}\right]=\frac{1}{3} z+\frac{2}{3} z G(z)=1-\sqrt{1-\frac{2}{3} z-\frac{1}{3} z^{2}}$.
(c) $\mathbb{E}\left[z^{\mathcal{T}_{k}}\right]=\left(1-\sqrt{1-\frac{2}{3} z-\frac{1}{3} z^{2}}\right)^{k}$, cf. page 62 or 65 of scanned or HW7.2 for a similar argument.
(d) Let $Z_{k}:=\mathcal{T}_{k} / k^{\eta}$. The characteristic function of Z_{k} is $\left(1-\sqrt{1-\frac{2}{3} e^{i t / k^{\eta}}-\frac{1}{3} e^{i 2 t / k^{\eta}}}\right)^{k}$. We know that if $k \cdot a_{k} \rightarrow c$ then $\left(1-a_{k}\right)^{k} \rightarrow e^{-c}$, so we need to find η so that for any $t \in \mathbb{R}$ the sequence $k \cdot \sqrt{1-\frac{2}{3} e^{i t / k^{\eta}}-\frac{1}{3} e^{i 2 t / k^{\eta}}}$ converges to a finite non-zero value as $k \rightarrow \infty$. Therefore we want $\lim _{k \rightarrow \infty} k^{2} \cdot\left(1-\frac{2}{3} e^{i t / k^{\eta}}-\frac{1}{3} e^{i 2 t / k^{\eta}}\right)=b$ to be non-zero and finite. Thus we must choose $\eta=2$ and we may use L'Hospital's rule to conclude that the limit is $b=-\frac{2}{3}$ it $-\frac{1}{3} 2 i t=-\frac{4}{3}$ it. Thus $Z_{k} \Rightarrow Z$ as $k \rightarrow \infty$ where $\mathbb{E}\left[e^{i t Z}\right]=e^{-\sqrt{-\frac{4}{3} i t}}$ (thus Z is a constant times standard Lévy, cf. HW7.2).
2. Let X_{1}, X_{2}, \ldots denote independent random variables with the following distribution: $\mathbb{P}\left(X_{k}= \pm k^{2}\right)=$ $\frac{1}{4 \sqrt{k}}, \mathbb{P}\left(X_{k}= \pm k^{3}\right)=\frac{1}{4 k^{2}}, \mathbb{P}\left(X_{k}=0\right)=1-\frac{1}{2 \sqrt{k}}-\frac{1}{2 k^{2}}$. Let $S_{n}=X_{1}+\cdots+X_{n}$.
(a) Show that Lindeberg's theorem cannot be applied to the above case in order to prove $\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \Rightarrow$ $\mathcal{N}(0,1)$ because Lindeberg's condition fails.
(b) Find a, b, α, β such that $\frac{S_{n}-a n^{\alpha}}{b n^{\beta}} \Rightarrow \mathcal{N}(0,1)$. Hint: use truncation, Borel-Cantelli and Lindeberg (for the truncated random variables).

Hint: In your calculations you may use without proof that for any $\gamma>-1$ we have $1^{\gamma}+2^{\gamma}+\cdots+n^{\gamma} \approx \frac{n^{\gamma+1}}{\gamma+1}$.

Solution:

(a) $\mathbb{E}\left[X_{k}\right]=0, \operatorname{Var}\left(X_{k}\right)=\frac{1}{2} k^{3.5}+\frac{1}{2} k^{4} \leq k^{4} . \operatorname{Var}\left(S_{n}\right) \leq \sum_{k=1}^{n} k^{4} \leq n^{5}$. Thus $\sigma_{n}=\sqrt{\operatorname{Var}\left(S_{n}\right)} \leq n^{2.5}$. We will show that Lindeberg's condition fails for $\varepsilon=1$. Note that if n is large enough then $\left(\frac{n}{2}\right)^{3}>\varepsilon \sigma_{n}$, thus $\frac{1}{\sigma_{n}^{2}} \sum_{k=1}^{n} \mathbb{E}\left[\left|X_{k}\right|^{2} \cdot \mathbb{1}\left[\left|X_{k}\right|>\varepsilon \sigma_{n}\right]\right] \geq n^{-5} \sum_{k=n / 2}^{n} k^{6} \frac{1}{2} \frac{1}{k^{2}} \geq n^{-5} \frac{n}{2}\left(\frac{n}{2}\right)^{6} \frac{1}{2} \frac{1}{n^{2}}=2^{-8}$. The r.h.s. does not go to zero as $n \rightarrow \infty$, thus Lindeberg's condition fails.
(b) Let $\widetilde{X}_{k}=X_{k} \cdot \mathbb{1}\left[\left|X_{k}\right| \leq k^{2}\right]$ and $\widetilde{S}_{n}=\widetilde{X}_{1}+\cdots+\widetilde{X}_{n} . \mathbb{E}\left[\widetilde{X}_{k}\right]=0, \operatorname{Var}\left(\widetilde{X}_{k}\right)=\frac{1}{2} k^{3.5}, \operatorname{Var}\left(\widetilde{S}_{n}\right)=$ $\sum_{k=1}^{n} \frac{1}{2} k^{3.5} \approx \frac{n^{4.5}}{9}, \widetilde{\sigma}_{n}=\sqrt{\operatorname{Var}\left(\widetilde{S}_{n}\right)} \approx \frac{n^{2.25}}{3}$, thus $a=0, \alpha$ can be anything, $b=\frac{1}{3}$ and $\beta=2.25$. Now we check Lindeberg's condition. For any $k \leq n$ we have $\left|\widetilde{X_{k}}\right| \leq k^{2} \leq n^{2}$, thus for any $\varepsilon>0$ we have $\mathbb{1}\left[\left|\widetilde{X}_{k}\right|>\varepsilon \widetilde{\sigma}_{n}\right]=0$ if n is large enough. Thus $\widetilde{\sigma}_{n}^{-2} \sum_{k=1}^{n} \mathbb{E}\left[\left|\widetilde{X}_{k}\right|^{2} \cdot \mathbb{1}\left[\left|\tilde{X}_{k}\right|>\varepsilon \widetilde{\sigma}_{n}\right]\right] \rightarrow 0$ as $n \rightarrow \infty$. Lindeberg states $\frac{\widetilde{S}_{n}-\mathbb{E}\left(\widetilde{S}_{n}\right)}{\sqrt{\operatorname{Var}\left(\widetilde{S}_{n}\right)}} \Rightarrow \mathcal{N}(0,1)$, thus (multiplicative) Slutsky implies $\frac{\widetilde{S}_{n}}{b n^{\beta}} \Rightarrow \mathcal{N}(0,1)$. Now let us observe that $\mathbb{P}\left(\widetilde{X}_{k} \neq X_{k}\right)=\frac{1}{2} \frac{1}{k^{2}}$, this is summable in k, thus Borel-Cantelli implies that there are only finitely many values of k for which $\widetilde{X}_{k} \neq X_{k}$. This implies that $S_{n}-\widetilde{S}_{n}$ converges to an almost surely finite random variable as $n \rightarrow \infty$, thus $\frac{S_{n}-\widetilde{S}_{n}}{b n^{b}} \rightarrow 0$, thus (additive) Slutsky implies the desired

$$
\frac{S_{n}}{b n^{\beta}} \Rightarrow \mathcal{N}(0,1)
$$

