
Midterm Exam - May 15, 2024, Limit thms. of probab., SOLUTIONS

1. Let Y1, Y2, . . . denote i.i.d. random variables with distribution P(Yi = +1) = 1
3 , P(Yi = −1) = 1

3 ,
P(Yi = 0) = 1

3 . Let Z0 = 0 and Zn = Y1 + · · ·+ Yn. Let τ := min{n ≥ 0 : Zn = 1}.
Let T0 := 0 and let Tk := min{n > Tk−1 : Zn = 0}.

(a) Let z ∈ C with |z| ≤ 1. Find E[zτ ]. Hint: You will have to solve a quadratic equation.
(b) Let z ∈ C with |z| ≤ 1. Find E[zT1 ].
(c) Find E[zTk ].
(d) Find the value of η ∈ R+ such that Tk/kη ⇒ T as k → ∞ (where T is a non-degenerate random

variable) and find the characteristic function of T .

Solution:

(a) Let G(z) = E[zτ ]. Similarly to page 99-100 of the scanned lecture notes, we have G(z) = 1
3z +

1
3zG(z) + 1

3zG
2(z). Thus zG2(z) + (z − 3)G(z) + z = 0, thus G(z) =

(3−z)−
√

(z−3)2−4z2

2z (the other
solution would give G(0) = ∞)

(b) E[zT1 ] = 1
3z +

2
3zG(z) = 1−

√
1− 2

3z −
1
3z

2.

(c) E[zTk ] =
(
1−

√
1− 2

3z −
1
3z

2
)k

, cf. page 62 or 65 of scanned or HW7.2 for a similar argument.

(d) Let Zk := Tk/kη. The characteristic function of Zk is
(
1−

√
1− 2

3e
it/kη − 1

3e
i2t/kη

)k

. We know

that if k · ak → c then (1 − ak)
k → e−c, so we need to find η so that for any t ∈ R the sequence

k ·
√
1− 2

3e
it/kη − 1

3e
i2t/kη converges to a finite non-zero value as k → ∞. Therefore we want

limk→∞ k2 · (1− 2
3e

it/kη − 1
3e

i2t/kη

) = b to be non-zero and finite. Thus we must choose η = 2 and
we may use L’Hospital’s rule to conclude that the limit is b = − 2

3 it −
1
32it = − 4

3 it. Thus Zk ⇒ Z

as k → ∞ where E[eitZ ] = e−
√

− 4
3 it (thus Z is a constant times standard Lévy, cf. HW7.2).

2. Let X1, X2, . . . denote independent random variables with the following distribution: P(Xk = ±k2) =
1

4
√
k
, P(Xk = ±k3) = 1

4k2 , P(Xk = 0) = 1− 1
2
√
k
− 1

2k2 . Let Sn = X1 + · · ·+Xn.

(a) Show that Lindeberg’s theorem cannot be applied to the above case in order to prove Sn−E(Sn)√
Var(Sn)

⇒
N (0, 1) because Lindeberg’s condition fails.

(b) Find a, b, α, β such that Sn−anα

bnβ ⇒ N (0, 1). Hint: use truncation, Borel-Cantelli and Lindeberg (for
the truncated random variables).

Hint: In your calculations you may use without proof that for any γ > −1 we have 1γ+2γ+· · ·+nγ ≈ nγ+1

γ+1 .
Solution:

(a) E[Xk] = 0, Var(Xk) =
1
2k

3.5 + 1
2k

4 ≤ k4. Var(Sn) ≤
∑n

k=1 k
4 ≤ n5. Thus σn =

√
Var(Sn) ≤ n2.5.

We will show that Lindeberg’s condition fails for ε = 1. Note that if n is large enough then(
n
2

)3
> εσn, thus 1

σ2
n

∑n
k=1 E

[
|Xk|2 · 1 [|Xk| > εσn]

]
≥ n−5

∑n
k=n/2 k

6 1
2

1
k2 ≥ n−5 n

2

(
n
2

)6 1
2

1
n2 = 2−8.

The r.h.s. does not go to zero as n → ∞, thus Lindeberg’s condition fails.
(b) Let X̃k = Xk · 1[ |Xk| ≤ k2 ] and S̃n = X̃1 + · · · + X̃n. E[X̃k] = 0, Var(X̃k) = 1

2k
3.5, Var(S̃n) =∑n

k=1
1
2k

3.5 ≈ n4.5

9 , σ̃n =

√
Var(S̃n) ≈ n2.25

3 , thus a = 0, α can be anything, b = 1
3 and β = 2.25.

Now we check Lindeberg’s condition. For any k ≤ n we have |X̃k| ≤ k2 ≤ n2, thus for any ε > 0

we have 1
[
|X̃k| > εσ̃n

]
= 0 if n is large enough. Thus σ̃−2

n

∑n
k=1 E

[
|X̃k|2 · 1

[
|X̃k| > εσ̃n

]]
→ 0 as

n → ∞. Lindeberg states S̃n−E(S̃n)√
Var(S̃n)

⇒ N (0, 1), thus (multiplicative) Slutsky implies S̃n

bnβ ⇒ N (0, 1).

Now let us observe that P(X̃k ̸= Xk) =
1
2

1
k2 , this is summable in k, thus Borel-Cantelli implies that

there are only finitely many values of k for which X̃k ̸= Xk. This implies that Sn − S̃n converges to
an almost surely finite random variable as n → ∞, thus Sn−S̃n

bnb → 0, thus (additive) Slutsky implies
the desired

Sn

bnβ
⇒ N (0, 1).
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