Family name

\qquad Given name \qquad

Signature \qquad Neptun Code \qquad

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let Y_{1}, Y_{2}, \ldots denote i.i.d. random variables with distribution

$$
\mathbb{P}\left(Y_{i}=+1\right)=\frac{1}{3}, \quad \mathbb{P}\left(Y_{i}=-1\right)=\frac{1}{3}, \quad \mathbb{P}\left(Y_{i}=0\right)=\frac{1}{3}
$$

Let $Z_{0}=0$ and $Z_{n}=Y_{1}+\cdots+Y_{n}$. Let $\tau:=\min \left\{n \geq 0: Z_{n}=1\right\}$.
Let $\mathcal{T}_{0}:=0$ and let $\mathcal{T}_{k}:=\min \left\{n>\mathcal{T}_{k-1}: Z_{n}=0\right\}$.
(a) Let $z \in \mathbb{C}$ with $|z| \leq 1$. Find $\mathbb{E}\left[z^{\tau}\right]$. Hint: You will have to solve a quadratic equation.
(b) Let $z \in \mathbb{C}$ with $|z| \leq 1$. Find $\mathbb{E}\left[z^{\mathcal{T}_{1}}\right]$.
(c) Find $\mathbb{E}\left[z^{\mathcal{T}_{k}}\right]$.
(d) Find the value of $\eta \in \mathbb{R}_{+}$such that

$$
\mathcal{T}_{k} / k^{\eta} \Rightarrow \mathcal{T}
$$

as $k \rightarrow \infty$ (where \mathcal{T} is a non-degenerate random variable) and find the characteristic function of \mathcal{T}.
2. Let X_{1}, X_{2}, \ldots denote independent random variables with distribution

$$
\mathbb{P}\left(X_{k}= \pm k^{2}\right)=\frac{1}{4 \sqrt{k}}, \quad \mathbb{P}\left(X_{k}= \pm k^{3}\right)=\frac{1}{4 k^{2}}, \quad \mathbb{P}\left(X_{k}=0\right)=1-\frac{1}{2 \sqrt{k}}-\frac{1}{2 k^{2}}
$$

Let $S_{n}=X_{1}+\cdots+X_{n}$.
(a) Show that Lindeberg's theorem cannot be applied to the above case in order to prove

$$
\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \Rightarrow \mathcal{N}(0,1)
$$

because Lindeberg's condition fails.
(b) Find a, b, α, β such that

$$
\begin{equation*}
\frac{S_{n}-a n^{\alpha}}{b n^{\beta}} \Rightarrow \mathcal{N}(0,1) \tag{1}
\end{equation*}
$$

Hint: use truncation, Borel-Cantelli and Lindeberg (for the truncated random variables).
Hint: In your calculations you may use without proof that for any $\gamma>-1$ we have

$$
1^{\gamma}+2^{\gamma}+\cdots+n^{\gamma} \approx \frac{n^{\gamma+1}}{\gamma+1}
$$

(in the sense that the ratio of the two sides goes to 1 as $n \rightarrow \infty$)

