Midterm Exam - May 15, 2024, Limit thms. of probab.

Family name	Given name
Signature	Neptun Code
Signature	Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let Y_1, Y_2, \ldots denote i.i.d. random variables with distribution

$$\mathbb{P}(Y_i = +1) = \frac{1}{3}, \qquad \mathbb{P}(Y_i = -1) = \frac{1}{3}, \qquad \mathbb{P}(Y_i = 0) = \frac{1}{3}.$$

Let $Z_0 = 0$ and $Z_n = Y_1 + \dots + Y_n$. Let $\tau := \min\{n \ge 0 : Z_n = 1\}$. Let $\mathcal{T}_0 := 0$ and let $\mathcal{T}_k := \min\{n > \mathcal{T}_{k-1} : Z_n = 0\}$.

- (a) Let $z \in \mathbb{C}$ with $|z| \leq 1$. Find $\mathbb{E}[z^{\tau}]$. *Hint:* You will have to solve a quadratic equation.
- (b) Let $z \in \mathbb{C}$ with $|z| \leq 1$. Find $\mathbb{E}[z^{\mathcal{T}_1}]$.
- (c) Find $\mathbb{E}[z^{\mathcal{T}_k}]$.
- (d) Find the value of $\eta \in \mathbb{R}_+$ such that

$$T_k/k^\eta \Rightarrow \mathcal{T}$$

as $k \to \infty$ (where \mathcal{T} is a non-degenerate random variable) and find the characteristic function of \mathcal{T} . 2. Let X_1, X_2, \ldots denote independent random variables with distribution

$$\mathbb{P}(X_k = \pm k^2) = \frac{1}{4\sqrt{k}}, \quad \mathbb{P}(X_k = \pm k^3) = \frac{1}{4k^2}, \quad \mathbb{P}(X_k = 0) = 1 - \frac{1}{2\sqrt{k}} - \frac{1}{2k^2}$$

Let $S_n = X_1 + \dots + X_n$.

(a) Show that Lindeberg's theorem cannot be applied to the above case in order to prove

$$\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}} \Rightarrow \mathcal{N}(0, 1)$$

because Lindeberg's condition fails.

(b) Find a, b, α, β such that

$$\frac{S_n - an^{\alpha}}{bn^{\beta}} \Rightarrow \mathcal{N}(0, 1). \tag{1}$$

Hint: use truncation, Borel-Cantelli and Lindeberg (for the truncated random variables).

Hint: In your calculations you may use without proof that for any $\gamma > -1$ we have

$$1^{\gamma} + 2^{\gamma} + \dots + n^{\gamma} \approx \frac{n^{\gamma+1}}{\gamma+1}$$

(in the sense that the ratio of the two sides goes to 1 as $n \to \infty$)