Midterm Exam Solution 2 - May 11, 2022, Limit thms. of probab.

1. Let $\varphi(t)=\mathbb{E}\left(e^{i t X}\right)$ for some random variable X. Which of the following functions are also characteristic functions of random variables?
(a) (2 points) $\overline{\varphi(3 t)} e^{-|t|}$
(b) (2 points) $1-\sqrt{1-\varphi^{2}(t)}$
(c) $\left(2\right.$ points) $\frac{\operatorname{Re}(\varphi(t))+2 \varphi(t)}{3+t^{2}}$
(d) $\left(2\right.$ points) $\frac{1}{2} \int_{-\infty}^{\infty} \varphi(t / s) e^{-|s|} \mathrm{d} s$

Solution:

(a) Let Y be independent of X with $\mathrm{CAU}(1)$ distribution. Then $\overline{\varphi(3 t)} e^{-|t|}$ is the char. fn. of $-3 X+Y$.
(b) Let R denote the first return time of a simple random walk to the origin. We know from the solution of HW7.2(a) that $\mathbb{E}\left(z^{R}\right)=1-\sqrt{1-z^{2}}=: G(z)$. Let X_{1}, X_{2}, \ldots denote i.i.d. copies of X, independent of R. Then the char. fn. of $X_{1}+\cdots+X_{R}$ is $G(\varphi(t))=1-\sqrt{1-\varphi^{2}(t)}$, similarly to the solution of HW8.2(e).
(c) $\frac{\operatorname{Re}(\varphi(t))+2 \varphi(t)}{3+t^{2}}=\frac{\operatorname{Re}(\varphi(t))+2 \varphi(t)}{3} \frac{3}{3+t^{2}}=\left(\frac{1}{6} \overline{\varphi(t)}+\frac{5}{6} \varphi(t)\right) \frac{1}{1+(t / \sqrt{3})^{2}}=: \psi(t)$, thus if X, Y, Z are independent, Y has p.d.f. $\frac{1}{2} e^{-|x|}$ and $\mathbb{P}(Z=-1)=\frac{1}{6}, \mathbb{P}(Z=+1)=\frac{5}{6}$, then the char.fn. of $X Z+Y / \sqrt{3}$ is $\psi(t)$ (see HW6.2(a)).
(d) If Y has p.d.f. $f(x)=\frac{1}{2} e^{-|x|}$ for all $x \in \mathbb{R}$ and Y is independent of X then X / Y has char.fn. $\frac{1}{2} \int_{-\infty}^{\infty} \varphi(t / s) e^{-|s|} \mathrm{d} s$, similarly to HW8.2(f).
2. (7 points) Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with p.d.f. $f(x)=\frac{3}{2} \cdot x^{-4} \mathbb{1}[|x| \geq 1], x \in \mathbb{R}$.

Let $S_{n}=1 \cdot X_{1}+2 \cdot X_{2}+\ldots n \cdot X_{n}$. Find a, b, α, β such that

$$
\begin{equation*}
\frac{S_{n}-a n^{\alpha}}{b n^{\beta}} \Rightarrow \mathcal{N}(0,1) \tag{1}
\end{equation*}
$$

Hint: In your calculation you may use without proof that for any $\gamma>-1$ we have

$$
\begin{equation*}
1^{\gamma}+2^{\gamma}+\cdots+n^{\gamma} \approx \frac{n^{\gamma+1}}{\gamma+1} \tag{2}
\end{equation*}
$$

(in the sense that the ratio of the two sides goes to 1 as $n \rightarrow \infty$)
Solution: Let X have p.d.f. $f . \mathbb{E}(X)=0$ by symmetry. Thus $\mathbb{E}\left(S_{n}\right)=0$ by linearity. Now

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) \mathrm{d} x=2 \int_{1}^{\infty} \frac{3}{2} x^{-2} \mathrm{~d} x=3
$$

Thus $\sigma_{n}^{2}=\operatorname{Var}\left(S_{n}\right)=\sum_{k=1}^{n} \operatorname{Var}\left(k X_{k}\right)=\sum_{k=1}^{n} k^{2} \cdot 3 \approx 3 \frac{n^{3}}{3}$ (using (2)), thus $\sigma_{n} \approx n^{3 / 2}$, so if we want to apply Lindeberg's theorem, then $a=0, \alpha$ can be anything, $b=1$ and $\beta=3 / 2$. Let $\xi_{n, k}=k \cdot X_{k}$, $k=1,2, \ldots, n$. Then $\tilde{\xi}_{n, k}=\xi_{n, k}-\mathbb{E}\left(\xi_{n, k}\right)=k \cdot X_{k}$. Let us check that Lindeberg's condition holds:

$$
\begin{aligned}
& \frac{1}{\sigma_{n}^{2}} \sum_{k=1}^{n} \mathbb{E}\left[\left|\tilde{\xi}_{n, k}\right|^{2} \cdot \mathbb{1}\left[\left|\tilde{\xi}_{n, k}\right|>\varepsilon \sigma_{n}\right]\right]=\frac{1}{\sigma_{n}^{2}} \sum_{k=1}^{n} \mathbb{E}\left[(k \cdot X)^{2} \cdot \mathbb{1}\left[|k \cdot X|>\varepsilon \sigma_{n}\right]\right]= \\
& \frac{1}{\sigma_{n}^{2}} \sum_{k=1}^{n} k^{2} \mathbb{E}\left[X^{2} \cdot \mathbb{1}\left[|X|>\frac{\varepsilon \sigma_{n}}{k}\right]\right]=\frac{1}{\sigma_{n}^{2}} \sum_{k=1}^{n} k^{2} 2 \int_{\frac{\varepsilon \sigma_{n}}{k}}^{\infty} x^{2} \cdot \frac{3}{2} \cdot x^{-4} \mathrm{~d} x=\frac{1}{\sigma_{n}^{2}} \sum_{k=1}^{n} k^{2} 3 \frac{k}{\varepsilon \sigma_{n}}= \\
& \frac{1}{\varepsilon} \frac{3}{\sigma_{n}^{3}} \sum_{k=1}^{n} k^{3} \stackrel{(2)}{\approx} \frac{1}{\varepsilon} \frac{3}{\sigma_{n}^{3}} \frac{n^{4}}{4} \approx \frac{3}{4 \varepsilon} \frac{n^{4}}{\left(n^{3 / 2}\right)^{3}}=\frac{3}{4 \varepsilon} \frac{1}{\sqrt{n}} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

The conditions of Lindeberg's theorem hold (including the row-wise independence of the triangular array), thus (1) holds by Lindeberg's theorem (and we also used Slutsky when we replaced σ_{n} by $n^{3 / 2}=b n^{\beta}$).

