Midterm Exam - March 31, 2022, Limit thms. of probab. SOLUTIONS

1. Let $Y=X_{1}+\cdots+X_{10000}$, where X_{1}, \ldots, X_{10000} are i.i.d. with distribution

$$
\mathbb{P}\left(X_{i}=k\right)=\frac{1}{64}\binom{6}{k-1}, \quad k=1,2, \ldots, 7 .
$$

(a) (4 marks) Approximate the probability $\mathbb{P}\left(Y=4 \cdot 10^{4}\right)$ using known results.
(b) (4 marks) Approximate $\ln \left(\mathbb{P}\left(Y \leq 2 \cdot 10^{4}\right)\right)$ using known results.

Solution: Note that if $Z_{i}:=X_{i}-1$ then $Z_{i} \sim \operatorname{BIN}\left(6, \frac{1}{2}\right)$. If $Z:=Z_{1}+\cdots+Z_{10000}$ then $Z \sim \operatorname{BIN}\left(6 \cdot 10^{4}, \frac{1}{2}\right)$. We have $Y=Z+10^{4}$. Note that $\mathbb{E}(Z)=6 \cdot 10^{4} \cdot \frac{1}{2}=3 \cdot 10^{4}$.
(a) $\mathbb{P}\left(Y=4 \cdot 10^{4}\right)=\mathbb{P}\left(Z=3 \cdot 10^{4}\right)$. We have $\frac{\sqrt{6 \cdot 10^{4}}}{2} \mathbb{P}\left(Z=\frac{6 \cdot 10^{4}}{2}+\frac{\sqrt{6 \cdot 10^{4}}}{2} \cdot 0\right) \approx \frac{1}{\sqrt{2 \pi}} e^{-0^{2} / 2}$ by de Moivre's theorem (HW4.3(c)), thus

$$
\mathbb{P}\left(Y=4 \cdot 10^{4}\right) \approx \frac{1}{\sqrt{2 \pi}} \frac{2}{100 \sqrt{6}}=\frac{1}{100 \sqrt{3 \pi}}
$$

(b) We have $\mathbb{P}\left(Y \leq 2 \cdot 10^{4}\right)=\mathbb{P}\left(Z \leq 10^{4}\right)$. We have $\frac{1}{6 \cdot 10^{4}} \ln \left(\mathbb{P}\left(\frac{Z}{6 \cdot 10^{4}} \leq \frac{1}{6}\right)\right) \approx-\min _{x \leq \frac{1}{6}} I(x)$ by Cramér's theorem where $I(x)=x \ln \left(\frac{x}{p}\right)+(1-x) \ln \left(\frac{1-x}{1-p}\right)=x \ln (2 x)+(1-x) \ln (2-2 x)$, since $p=\frac{1}{2}$. We have $\min _{x \leq \frac{1}{6}} I(x)=I\left(\frac{1}{6}\right)$, since $\frac{1}{6} \leq p=\frac{1}{2}$. Thus

$$
\ln \left(\mathbb{P}\left(Y \leq 2 \cdot 10^{4}\right)\right) \approx-6 \cdot 10^{4} \cdot I\left(\frac{1}{6}\right)=-6 \cdot 10^{4} \cdot\left(\frac{1}{6} \ln \left(2 \frac{1}{6}\right)+\left(1-\frac{1}{6}\right) \ln \left(2-2 \frac{1}{6}\right)\right)=-10^{4} \ln \left(\frac{1}{3}\right)-5 \cdot 10^{4} \ln \left(\frac{5}{3}\right)
$$

2. Let Y_{1}, Y_{2}, \ldots denote i.i.d. random variables with density function g. Let us assume that $g: \mathbb{R} \rightarrow(0,+\infty)$ is a strictly positive and continuous function (in particular: $\mathbb{P}\left[Y_{i}<0\right]>0$ and $\mathbb{P}\left[Y_{i}=0\right]=0$). Let

$$
M_{n}=\min \left\{\frac{1}{Y_{1}}, \ldots, \frac{1}{Y_{n}}\right\} .
$$

Let G denote the c.d.f. of Y_{i}. Let $\beta \in \mathbb{R}_{+}$. Let us denote by F_{n} the c.d.f. of M_{n} / n^{β}.
(a) (4 marks) Calculate $F_{n}(x)$ for all $x \in \mathbb{R}$. Hint: Consider the cases $x>0$ and $x<0$ separately.
(b) (3 marks) Find the value of $\beta \in \mathbb{R}_{+}$for which M_{n} / n^{β} converges in distribution to a non-degenerate probability distribution as $n \rightarrow \infty$ and identify the c.d.f. of the limiting distribution.

Solution:

(a) Let $y:=n^{\beta} x$. We have $F_{n}(x)=\mathbb{P}\left(M_{n} / n^{\beta} \leq x\right)=\mathbb{P}\left(M_{n} \leq y\right)$. If $x<0$ then $y<0$ and

$$
\begin{aligned}
F_{n}(x)=\mathbb{P}\left(M_{n} \leq y\right)=1-\mathbb{P}\left(M_{n}>y\right)= & 1-\mathbb{P}\left(\frac{1}{Y_{1}}>y\right)^{n}=1-\left(1-\mathbb{P}\left(\frac{1}{Y_{1}} \leq y\right)\right)^{n}= \\
& 1-\left(1-\mathbb{P}\left(\frac{1}{y} \leq Y_{1}<0\right)\right)^{n}=1-\left(1-\left(G(0)-G\left(\frac{1}{y}\right)\right)\right)^{n}
\end{aligned}
$$

If $x>0$ then $y>0$ and

$$
F_{n}(x)=\mathbb{P}\left(M_{n} \leq y\right)=1-\mathbb{P}\left(M_{n}>y\right)=1-\mathbb{P}\left(\frac{1}{Y_{1}}>y\right)^{n}=1-\mathbb{P}\left(0 \leq Y_{1}<\frac{1}{y}\right)^{n}=1-\left(G\left(\frac{1}{y}\right)-G(0)\right)^{n} .
$$

(b) We want to find $\beta>0$ such that $F_{n}(x)$ converges to the c.d.f. of a non-degenerate random variable. First note that for any choice of $\beta>0$ we have $\lim _{n \rightarrow \infty} F_{n}(0)=\lim _{n \rightarrow \infty}\left(1-(1-G(0))^{n}\right)=1$, since $G(0)=\int_{-\infty}^{0} g(x) \mathrm{d} x>0$. Thus $\lim _{n \rightarrow \infty} F_{n}(x)=1$ for all $x \geq 0$ for any choice of $\beta>0$. On the other hand, if $x<0$ then $G(0)-G\left(\frac{1}{n^{\beta} x}\right)=\int_{n^{-\beta} \frac{1}{x}}^{0} g(u) \mathrm{d} u=n^{-\beta} \frac{g(0)}{|x|}+o\left(n^{-\beta}\right)$ and thus
$\lim _{n \rightarrow \infty} F_{n}(x)=1-\lim _{n \rightarrow \infty}\left(1-\left(G(0)-G\left(\frac{1}{n^{\beta} x}\right)\right)\right)^{n}=1-\exp \left(-\lim _{n \rightarrow \infty} n \cdot\left(G(0)-G\left(\frac{1}{n^{\beta} x}\right)\right) \stackrel{(*)}{=} 1-\exp \left(\frac{-g(0)}{|x|}\right)\right.$,
where $(*)$ holds if we choose $\beta=1$. Thus $M_{n} / n \Rightarrow M$, where $F(x)=\mathbb{P}(M \leq x)$ satisfies $F(x)=$ $1-\exp \left(-\frac{g(0)}{|x|}\right)$ for $x<0$ and $F(x)=1$ for $x \geq 0$. It is easy to check that F is indeed a c.d.f.

