Midterm Exam - March 31, 2022, Limit thms. of probab. SOLUTIONS

1. Let $Y = X_1 + \cdots + X_{10000}$, where X_1, \ldots, X_{10000} are i.i.d. with distribution

$$\mathbb{P}(X_i = k) = \frac{1}{64} \binom{6}{k-1}, \qquad k = 1, 2, \dots, 7.$$

- (a) (4 marks) Approximate the probability $\mathbb{P}(Y = 4 \cdot 10^4)$ using known results.
- (b) (4 marks) Approximate $\ln(\mathbb{P}(Y \le 2 \cdot 10^4))$ using known results.

Solution: Note that if $Z_i := X_i - 1$ then $Z_i \sim BIN(6, \frac{1}{2})$. If $Z := Z_1 + \cdots + Z_{10000}$ then $Z \sim BIN(6 \cdot 10^4, \frac{1}{2})$. We have $Y = Z + 10^4$. Note that $\mathbb{E}(Z) = 6 \cdot 10^4 \cdot \frac{1}{2} = 3 \cdot 10^4$.

(a) $\mathbb{P}(Y = 4 \cdot 10^4) = \mathbb{P}(Z = 3 \cdot 10^4)$. We have $\frac{\sqrt{6 \cdot 10^4}}{2} \mathbb{P}(Z = \frac{6 \cdot 10^4}{2} + \frac{\sqrt{6 \cdot 10^4}}{2} \cdot 0) \approx \frac{1}{\sqrt{2\pi}} e^{-0^2/2}$ by de Moivre's theorem (HW4.3(c)), thus

$$\mathbb{P}(Y = 4 \cdot 10^4) \approx \frac{1}{\sqrt{2\pi}} \frac{2}{100\sqrt{6}} = \frac{1}{100\sqrt{3\pi}}$$

(b) We have $\mathbb{P}(Y \le 2 \cdot 10^4) = \mathbb{P}(Z \le 10^4)$. We have $\frac{1}{6 \cdot 10^4} \ln \left(\mathbb{P}(\frac{Z}{6 \cdot 10^4} \le \frac{1}{6})\right) \approx -\min_{x \le \frac{1}{6}} I(x)$ by Cramér's theorem where $I(x) = x \ln(\frac{x}{p}) + (1-x) \ln(\frac{1-x}{1-p}) = x \ln(2x) + (1-x) \ln(2-2x)$, since $p = \frac{1}{2}$. We have $\min_{x \le \frac{1}{6}} I(x) = I(\frac{1}{6})$, since $\frac{1}{6} \le p = \frac{1}{2}$. Thus

$$\ln(\mathbb{P}(Y \le 2 \cdot 10^4)) \approx -6 \cdot 10^4 \cdot I(\frac{1}{6}) = -6 \cdot 10^4 \cdot \left(\frac{1}{6}\ln(2\frac{1}{6}) + (1 - \frac{1}{6})\ln(2 - 2\frac{1}{6})\right) = -10^4\ln(\frac{1}{3}) - 5 \cdot 10^4\ln(\frac{5}{3})$$

2. Let Y_1, Y_2, \ldots denote i.i.d. random variables with density function g. Let us assume that $g : \mathbb{R} \to (0, +\infty)$ is a strictly positive and continuous function (in particular: $\mathbb{P}[Y_i < 0] > 0$ and $\mathbb{P}[Y_i = 0] = 0$). Let

$$M_n = \min\left\{\frac{1}{Y_1}, \dots, \frac{1}{Y_n}\right\}.$$

Let G denote the c.d.f. of Y_i . Let $\beta \in \mathbb{R}_+$. Let us denote by F_n the c.d.f. of M_n/n^{β} .

- (a) (4 marks) Calculate $F_n(x)$ for all $x \in \mathbb{R}$. *Hint:* Consider the cases x > 0 and x < 0 separately.
- (b) (3 marks) Find the value of $\beta \in \mathbb{R}_+$ for which M_n/n^β converges in distribution to a non-degenerate probability distribution as $n \to \infty$ and identify the c.d.f. of the limiting distribution.

Solution:

(a) Let $y := n^{\beta}x$. We have $F_n(x) = \mathbb{P}(M_n/n^{\beta} \le x) = \mathbb{P}(M_n \le y)$. If x < 0 then y < 0 and $F_n(x) = \mathbb{P}(M_n \le y) = 1 - \mathbb{P}(M_n > y) = 1 - \mathbb{P}(\frac{1}{Y_1} > y)^n = 1 - (1 - \mathbb{P}(\frac{1}{Y_1} \le y))^n = 1 - (1 - \mathbb{P}(\frac{1}{y} \le Y_1 < 0))^n = 1 - (1 - (G(0) - G(\frac{1}{y})))^n.$

If x > 0 then y > 0 and

$$F_n(x) = \mathbb{P}(M_n \le y) = 1 - \mathbb{P}(M_n > y) = 1 - \mathbb{P}(\frac{1}{Y_1} > y)^n = 1 - \mathbb{P}(0 \le Y_1 < \frac{1}{y})^n = 1 - (G(\frac{1}{y}) - G(0))^n.$$

(b) We want to find $\beta > 0$ such that $F_n(x)$ converges to the c.d.f. of a non-degenerate random variable. First note that for any choice of $\beta > 0$ we have $\lim_{n\to\infty} F_n(0) = \lim_{n\to\infty} (1 - (1 - G(0))^n) = 1$, since $G(0) = \int_{-\infty}^0 g(x) \, dx > 0$. Thus $\lim_{n\to\infty} F_n(x) = 1$ for all $x \ge 0$ for any choice of $\beta > 0$. On the other hand, if x < 0 then $G(0) - G(\frac{1}{n^{\beta}x}) = \int_{n^{-\beta}\frac{1}{x}}^0 g(u) \, du = n^{-\beta}\frac{g(0)}{|x|} + o(n^{-\beta})$ and thus

$$\lim_{n \to \infty} F_n(x) = 1 - \lim_{n \to \infty} (1 - (G(0) - G(\frac{1}{n^{\beta_x}})))^n = 1 - \exp\left(-\lim_{n \to \infty} n \cdot (G(0) - G(\frac{1}{n^{\beta_x}}))\right) \stackrel{(*)}{=} 1 - \exp\left(-\frac{g(0)}{|x|}\right)$$

where (*) holds if we choose $\beta = 1$. Thus $M_n/n \Rightarrow M$, where $F(x) = \mathbb{P}(M \le x)$ satisfies $F(x) = 1 - \exp\left(-\frac{g(0)}{|x|}\right)$ for x < 0 and F(x) = 1 for $x \ge 0$. It is easy to check that F is indeed a c.d.f.