Make-up Midterm Exam 1 - April 13, 2022, Limit thms. of probab.

- 1. Let Z_1, Z_2, \ldots denote i.i.d. random variables with p.d.f. $f(x) = 4e^{4x} \mathbb{1}[x < 0]$. Let $Y_n := \frac{Z_1 + \cdots + Z_n}{n}$.
 - (a) (4 points) Let $g_n(x)$ denote the p.d.f. of Y_n . Find all of the possible values of $x \in \mathbb{R}$, $\alpha \in \mathbb{R}$ and $c \in (0, +\infty)$ such that

$$\lim_{n \to \infty} g_n(x) \cdot n^{\alpha} = c. \tag{1}$$

(b) (3 points) Calculate $\lim_{n\to\infty} \frac{1}{n} \ln (\mathbb{P}[Y_n \leq x])$ for each $x \in \mathbb{R}$.

Solution: Note that if $Z_i^* := -4Z_i$ then $Z_i^* \sim \text{EXP}(1)$. If we let $S_n^* = Z_1^* + \cdots + Z_n^*$ then $Y_n = -\frac{1}{4}S_n^*/n$. Let $g_n^*(x)$ denote the p.d.f. of S_n^*/n . Thus we have $g_n(x) = 4g_n^*(-4x)$. Note that $\mathbb{E}(Y_n) = -\frac{1}{4}$.

(a) We know from the solution of HW3.2(e) that g_n^{*}(x) ≈ e^{-nI(x)}, where I(x) = x - 1 - ln(x) is the large deviation rate function of the EXP(1) distribution. We know that I(x) > 0 if x ≠ 1, thus g_n^{*}(x) decays exponentially as n → ∞ for any x ≠ 1. By g_n(x) = 4g_n^{*}(-4x) we obtain that g_n(x) goes to zero exponentially fast if x ≠ -1/4. Thus if x ≠ -1/4 then lim_{n→∞} g_n(x) · n^α = 0 for any α ∈ ℝ. Thus our only chance for achieving (1) with a positive c is if we choose x = -1/4. Let X_n := S_n^{*-n}/√n Let f_n(x) denote the p.d.f. of X_n. We know from class (see page 47-50) that f_n(x) → 1/√2π e^{-x²/2} as n→∞, thus f_n(0) ≈ 1/√2π. Note that S_n^{*}/n = X_n/√n + 1, thus g_n^{*}(x) = √n f_n(√n(x-1)), in particular g_n^{*}(1) ≈ √n 1/√2π. Thus g_n(-1/4) = 4g_n^{*}(1) ≈ √n 4/√2π. Thus x = -1/4, α = -1/2 and c = 4/√2π in (1).

$$\lim_{n \to \infty} \frac{1}{n} \ln \left(\mathbb{P}\left[Y_n \le x \right] \right) = \lim_{n \to \infty} \frac{1}{n} \ln \left(\mathbb{P}\left[S_n^*/n \ge -4x \right] \right) \stackrel{(*)}{=} - \min_{y \ge -4x} I(y) = \begin{cases} -I(1) = 0 & \text{if } x \ge -\frac{1}{4}, \\ -I(-4x) & \text{if } x < -\frac{1}{4}, \end{cases}$$

where (*) holds by Cramér's theorem with $I(\cdot)$ defined above.

2. Let $p \in (0, \frac{1}{2})$. Let X_1, X_2, \ldots denote i.i.d. random variables with distribution

$$\mathbb{P}(X_i = +1) = p, \qquad \mathbb{P}(X_i = -1) = p, \qquad \mathbb{P}(X_i = 0) = 1 - 2p.$$
 (2)

Let $W_0 = 0$ and $W_n = X_1 + \dots + X_n$. Let $V_n = \max\{W_0, W_1, \dots, W_n\}$. Let $\tau_\ell := \min\{n : W_n = \ell\}$.

- (a) (3 points) Find $\beta \in \mathbb{R}_+$ such that W_n/n^β converges in distribution to a non-degenerate random variable. Write down the c.d.f. of the limiting distribution.
- (b) (3 points) Find $\gamma \in \mathbb{R}_+$ such that V_n/n^{γ} converges in distribution to a non-degenerate random variable. Write down the c.d.f. of the limiting distribution.
- (c) (2 points) Find $\delta \in \mathbb{R}_+$ such that $\tau_{\ell}/\ell^{\delta}$ converges in distribution to a non-degenerate random variable. Write down the c.d.f. of the limiting distribution.

Solution:

- (a) $\mathbb{E}(X_i) = 0$, $\operatorname{Var}(X_i) = \mathbb{E}(X_i^2) = 2p$. Thus by the CLT we have $W_n/\sqrt{2pn} \Rightarrow \mathcal{N}(0,1)$, therefore $\beta = 1/2$ and $W_n/n^\beta \Rightarrow \mathcal{N}(0,\sqrt{2p^2})$, thus the c.d.f. of the limiting distribution of W_n/n^β is $\Phi(\frac{x}{\sqrt{2p}})$.
- (b) For any $k \in \mathbb{N}_0$ we have $\mathbb{P}(V_n \ge k) = 2\mathbb{P}(W_n > k) + \mathbb{P}(W_n = k)$ by the reflection principle (i.e., by the same argument as on page 58, which only used that the increments of the walk are i.i.d., symmetric and have absolute value less than or equal to 1, and all of these properties hold for (2)). Thus if we pick $\gamma = 1/2$ then for any $x \ge 0$ we have

$$\mathbb{P}(V_n/n^{\gamma} \ge x) = \mathbb{P}(V_n \ge \lceil xn^{\gamma} \rceil) \to 2 \cdot (1 - \Phi(\frac{x}{\sqrt{2p}})),$$

since $2\mathbb{P}(W_n > \lceil xn^{\gamma} \rceil + 1) \leq \mathbb{P}(V_n \geq \lceil xn^{\gamma} \rceil)) \leq 2\mathbb{P}(W_n > \lceil xn^{\gamma} \rceil)$, and we have $\mathbb{P}(W_n > \lceil xn^{\gamma} \rceil) \rightarrow 1 - \Phi(\frac{x}{\sqrt{2p}})$ and $\mathbb{P}(W_n > \lceil xn^{\gamma} \rceil + 1) \rightarrow 1 - \Phi(\frac{x}{\sqrt{2p}})$ by part (a) and Slutsky. Thus V_n/\sqrt{n} weakly converges and the c.d.f. of the limit distribution is $2\Phi(\frac{x}{\sqrt{2p}}) - 1$ for $x \geq 0$ (and zero otherwise).

(c) $\{\tau_{\ell} \leq n\} = \{V_n \geq \ell\}$, thus for any x > 0 we have $\delta = 2$ and $\mathbb{P}(\tau_{\ell}/\ell^2 \leq x) = \mathbb{P}(\tau_{\ell} \leq \lfloor \ell^2 x \rfloor) = \mathbb{P}(V_{\lfloor \ell^2 x \rfloor} \geq \ell) = \mathbb{P}(V_{\lfloor \ell^2 x \rfloor}/\sqrt{\lfloor \ell^2 x \rfloor} \geq \ell/\sqrt{\lfloor \ell^2 x \rfloor}) \rightarrow 2 \cdot (1 - \Phi(\frac{1}{\sqrt{2px}}))$ by part (b) and Slutsky. Thus the c.d.f. of the weak limit of $\tau_{\ell}/\ell^{\delta}$ is $2 \cdot (1 - \Phi(\frac{1}{\sqrt{2px}}))$ if x > 0 and zero otherwise.