Make-up Midterm Exam 1 - April 13, 2022, Limit thms. of probab.

1. Let Z_{1}, Z_{2}, \ldots denote i.i.d. random variables with p.d.f. $f(x)=4 e^{4 x} \mathbb{1}[x<0]$. Let $Y_{n}:=\frac{Z_{1}+\cdots+Z_{n}}{n}$.
(a) (4 points) Let $g_{n}(x)$ denote the p.d.f. of Y_{n}. Find all of the possible values of $x \in \mathbb{R}, \alpha \in \mathbb{R}$ and $c \in(0,+\infty)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{n}(x) \cdot n^{\alpha}=c \tag{1}
\end{equation*}
$$

(b) (3 points) Calculate $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left[Y_{n} \leq x\right]\right)$ for each $x \in \mathbb{R}$.

Solution: Note that if $Z_{i}^{*}:=-4 Z_{i}$ then $Z_{i}^{*} \sim \operatorname{EXP}(1)$. If we let $S_{n}^{*}=Z_{1}^{*}+\cdots+Z_{n}^{*}$ then $Y_{n}=-\frac{1}{4} S_{n}^{*} / n$. Let $g_{n}^{*}(x)$ denote the p.d.f. of S_{n}^{*} / n. Thus we have $g_{n}(x)=4 g_{n}^{*}(-4 x)$. Note that $\mathbb{E}\left(Y_{n}\right)=-\frac{1}{4}$.
(a) We know from the solution of HW3.2(e) that $g_{n}^{*}(x) \approx e^{-n I(x)}$, where $I(x)=x-1-\ln (x)$ is the large deviation rate function of the $\operatorname{EXP}(1)$ distribution. We know that $I(x)>0$ if $x \neq 1$, thus $g_{n}^{*}(x)$ decays exponentially as $n \rightarrow \infty$ for any $x \neq 1$. By $g_{n}(x)=4 g_{n}^{*}(-4 x)$ we obtain that $g_{n}(x)$ goes to zero exponentially fast if $x \neq-\frac{1}{4}$. Thus if $x \neq-\frac{1}{4}$ then $\lim _{n \rightarrow \infty} g_{n}(x) \cdot n^{\alpha}=0$ for any $\alpha \in \mathbb{R}$. Thus our only chance for achieving (1) with a positive c is if we choose $x=-\frac{1}{4}$. Let $X_{n}:=\frac{S_{n}^{*}-n}{\sqrt{n}}$ Let $f_{n}(x)$ denote the p.d.f. of X_{n}. We know from class (see page 47-50) that $f_{n}(x) \rightarrow \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ as $n \rightarrow \infty$, thus $f_{n}(0) \approx \frac{1}{\sqrt{2 \pi}}$. Note that $S_{n}^{*} / n=\frac{X_{n}}{\sqrt{n}}+1$, thus $g_{n}^{*}(x)=\sqrt{n} f_{n}(\sqrt{n}(x-1))$, in particular $g_{n}^{*}(1) \approx \sqrt{n} \frac{1}{\sqrt{2 \pi}}$. Thus $g_{n}\left(-\frac{1}{4}\right)=4 g_{n}^{*}(1) \approx \sqrt{n} \frac{4}{\sqrt{2 \pi}}$. Thus $x=-\frac{1}{4}, \alpha=-\frac{1}{2}$ and $c=\frac{4}{\sqrt{2 \pi}}$ in (1).
(b)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left[Y_{n} \leq x\right]\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left[S_{n}^{*} / n \geq-4 x\right]\right) \stackrel{(*)}{=}-\min _{y \geq-4 x} I(y)= \begin{cases}-I(1)=0 & \text { if } x \geq-\frac{1}{4} \\ -I(-4 x) & \text { if } x<-\frac{1}{4}\end{cases}
$$

where $(*)$ holds by Cramér's theorem with $I(\cdot)$ defined above.
2. Let $p \in\left(0, \frac{1}{2}\right)$. Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with distribution

$$
\begin{equation*}
\mathbb{P}\left(X_{i}=+1\right)=p, \quad \mathbb{P}\left(X_{i}=-1\right)=p, \quad \mathbb{P}\left(X_{i}=0\right)=1-2 p \tag{2}
\end{equation*}
$$

Let $W_{0}=0$ and $W_{n}=X_{1}+\cdots+X_{n}$. Let $V_{n}=\max \left\{W_{0}, W_{1}, \ldots, W_{n}\right\}$. Let $\tau_{\ell}:=\min \left\{n: W_{n}=\ell\right\}$.
(a) (3 points) Find $\beta \in \mathbb{R}_{+}$such that W_{n} / n^{β} converges in distribution to a non-degenerate random variable. Write down the c.d.f. of the limiting distribution.
(b) (3 points) Find $\gamma \in \mathbb{R}_{+}$such that V_{n} / n^{γ} converges in distribution to a non-degenerate random variable. Write down the c.d.f. of the limiting distribution.
(c) (2 points) Find $\delta \in \mathbb{R}_{+}$such that $\tau_{\ell} / \ell^{\delta}$ converges in distribution to a non-degenerate random variable. Write down the c.d.f. of the limiting distribution.

Solution:

(a) $\mathbb{E}\left(X_{i}\right)=0, \operatorname{Var}\left(X_{i}\right)=\mathbb{E}\left(X_{i}^{2}\right)=2 p$. Thus by the CLT we have $W_{n} / \sqrt{2 p n} \Rightarrow \mathcal{N}(0,1)$, therefore $\beta=1 / 2$ and $W_{n} / n^{\beta} \Rightarrow \mathcal{N}\left(0, \sqrt{2 p}^{2}\right)$, thus the c.d.f. of the limiting distribution of W_{n} / n^{β} is $\Phi\left(\frac{x}{\sqrt{2 p}}\right)$.
(b) For any $k \in \mathbb{N}_{0}$ we have $\mathbb{P}\left(V_{n} \geq k\right)=2 \mathbb{P}\left(W_{n}>k\right)+\mathbb{P}\left(W_{n}=k\right)$ by the reflection principle (i.e., by the same argument as on page 58 , which only used that the increments of the walk are i.i.d., symmetric and have absolute value less than or equal to 1 , and all of these properties hold for (2)). Thus if we pick $\gamma=1 / 2$ then for any $x \geq 0$ we have

$$
\mathbb{P}\left(V_{n} / n^{\gamma} \geq x\right)=\mathbb{P}\left(V_{n} \geq\left\lceil x n^{\gamma}\right\rceil\right) \rightarrow 2 \cdot\left(1-\Phi\left(\frac{x}{\sqrt{2 p}}\right)\right)
$$

since $\left.2 \mathbb{P}\left(W_{n}>\left\lceil x n^{\gamma}\right\rceil+1\right) \leq \mathbb{P}\left(V_{n} \geq\left\lceil x n^{\gamma}\right\rceil\right)\right) \leq 2 \mathbb{P}\left(W_{n}>\left\lceil x n^{\gamma}\right\rceil\right)$, and we have $\mathbb{P}\left(W_{n}>\left\lceil x n^{\gamma}\right\rceil\right) \rightarrow$ $1-\Phi\left(\frac{x}{\sqrt{2 p}}\right)$ and $\mathbb{P}\left(W_{n}>\left\lceil x n^{\gamma}\right\rceil+1\right) \rightarrow 1-\Phi\left(\frac{x}{\sqrt{2 p}}\right)$ by part (a) and Slutsky. Thus V_{n} / \sqrt{n} weakly converges and the c.d.f. of the limit distribution is $2 \Phi\left(\frac{x}{\sqrt{2 p}}\right)-1$ for $x \geq 0$ (and zero otherwise).
(c) $\left\{\tau_{\ell} \leq n\right\}=\left\{V_{n} \geq \ell\right\}$, thus for any $x>0$ we have $\delta=2$ and $\mathbb{P}\left(\tau_{\ell} / \ell^{2} \leq x\right)=\mathbb{P}\left(\tau_{\ell} \leq\left\lfloor\ell^{2} x\right\rfloor\right)=$ $\mathbb{P}\left(V_{\left\lfloor\ell^{2} x\right\rfloor} \geq \ell\right)=\mathbb{P}\left(V_{\left\lfloor\ell^{2} x\right\rfloor} / \sqrt{\left\lfloor\ell^{2} x\right\rfloor} \geq \ell / \sqrt{\left\lfloor\ell^{2} x\right\rfloor}\right) \rightarrow 2 \cdot\left(1-\Phi\left(\frac{1}{\sqrt{2 p x}}\right)\right)$ by part (b) and Slutsky. Thus the c.d.f. of the weak limit of $\tau_{\ell} / \ell^{\delta}$ is $2 \cdot\left(1-\Phi\left(\frac{1}{\sqrt{2 p x}}\right)\right)$ if $x>0$ and zero otherwise.

