Midterm Exam - March 27, 2024, Limit thms. of probab., SOLUTION

- 1. Let X_1, X_2, \ldots denote i.i.d. random variables with distribution $\mathbb{P}(X_i = k) = \frac{2}{3^k}, k = 1, 2, 3, \ldots$ Let us define $S_n = X_1 + \cdots + X_n$.
 - (a) Show that $\mathbb{P}(S_n = k) = \binom{k-1}{n-1} \frac{2^n}{3^k}, k = n, n+1, n+2, \dots$
 - (b) Calculate $\lim_{n\to\infty} \frac{1}{n} \ln \left(\mathbb{P}(S_n = \lfloor nx \rfloor) \right), x \in \mathbb{R}.$
 - (c) Briefly explain how this relates to Cramér's theorem and one of the formulas from the *Formula* sheet: large deviation rate functions, exponential tilting.

Solution:

- (a) X_i has optimistic geometric distribution $\operatorname{GEO}(\frac{2}{3})$. Thus if we consider a sequence of independent trials with success probability $\frac{2}{3}$ then X_1 is the number of trials until (and including) the first success, while S_n is the number of trials until (and including) the n'th success. The event $\{S_n = k\}$ occurs if and only if there were exactly n-1 successes among the first k-1 trials and the the k'th trial is successful. Thus $\mathbb{P}(S_n = k) = {\binom{k-1}{n-1}} \left(\frac{2}{3}\right)^{n-1} \cdot \left(\frac{1}{3}\right)^{(k-1)-(n-1)} \cdot \frac{2}{3} = {\binom{k-1}{n-1}} \cdot \frac{2^n}{3^k}$
- (b) If x < 1 then $\mathbb{P}(S_n = \lfloor nx \rfloor) = 0$. If $x \ge 1$ then we use the crude Stirling formula:

$$\mathbb{P}(S_n = \lfloor nx \rfloor) = \binom{\lfloor nx \rfloor - 1}{n-1} \frac{2^n}{3^{\lfloor nx \rfloor}} \approx \frac{\lfloor nx \rfloor!}{n!(\lfloor nx \rfloor - n)!} 2^n 3^{-nx} \approx \frac{(nx)^{nx} e^{-nx}}{n^n e^{-n} (n(x-1))^{n(x-1)} e^{-n(x-1)}} 2^n 3^{-nx} = \frac{x^{nx}}{(x-1)^{n(x-1)}} 2^n 3^{-nx} = \left(\frac{x^x}{(x-1)^{x-1}} \frac{2}{3^x}\right)^n, \quad (1)$$

thus $\lim_{n\to\infty} \frac{1}{n} \ln \left(\mathbb{P}(S_n = \lfloor nx \rfloor) \right) = x \ln(x) - (x-1) \ln(x-1) + \ln(2) - x \ln(3).$

(c) Recalling how we proved Cramér's theorem for binomial distribution (see page 5 of the scanned lecture notes) and recalling how we related the large deviation rate functions of BER(p) and GEO(p) distributions (see page 29-30 of scanned), and also by the heuristic meaning of Cramér's theorem (see page 24 of scanned), we expect $\lim_{n\to\infty} \frac{1}{n} \ln (\mathbb{P}(S_n = \lfloor nx \rfloor)) = -I(x)$, where I(x) is the large deviation rate function of the GEO($\frac{2}{3}$) distribution, and this is indeed the case, since

$$I(x) = (x-1)\ln\left(\frac{x-1}{1/3}\right) - x\ln(x) - \ln(2/3)$$

2. Let Z_1, Z_2, \ldots denote i.i.d. random variables with p.d.f. $f(x) = xe^{-x}\mathbb{1}[x \ge 0]$. Let $M_n := \max\{Z_1, \ldots, Z_n\}$. Let us define $c_n := \ln(n) + \ln(\ln(n))$. Let $Y_n := M_n - c_n$. Show that Y_n weakly converges as $n \to \infty$ and identify the limiting distribution.

Solution: Using the setup of HW4.2(b), f(x) is the p.d.f. of the time of the second earthquake, thus the corresponding c.d.f. is $F(x) = 1 - e^{-x}(1+x)$ if $x \ge 0$ (or one can also calculate $\int_0^x f(x) dx = F(x)$ using integration by parts). For any $x \in \mathbb{R}$, we have $c_n + x \ge 0$ if n is large enough, and then we have

$$\mathbb{P}(Y_n \le x) = \mathbb{P}(M_n \le c_n + x) = \mathbb{P}(Z_i \le c_n + x, i = 1, \dots, n) = F(c_n + x)^n = \left(1 - e^{-\ln(n) - \ln(\ln(n)) - x} (1 + \ln(n) + \ln(\ln(n)) + x)\right)^n = \left(1 - \frac{e^{-x}}{n} \frac{1 + \ln(n) + \ln(\ln(n)) + x}{\ln(n)}\right)^n.$$
 (2)

Note that

$$\lim_{n \to \infty} \frac{1 + \ln(n) + \ln(\ln(n)) + x}{\ln(n)} = 1$$

thus

$$\lim_{n \to \infty} \mathbb{P}(Y_n \le x) = \lim_{n \to \infty} \left(1 - \frac{e^{-x}}{n} \right)^n = \exp\left(-e^{-x}\right), \qquad x \in \mathbb{R}$$

Thus $Y_n \Rightarrow Y$, where $\mathbb{P}(Y \le x) = \exp(-e^{-x})$, i.e., Y has standard Gumbel distribution.