Midterm Exam - March 27, 2024, Limit thms. of probab., SOLUTION

1. Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with distribution $\mathbb{P}\left(X_{i}=k\right)=\frac{2}{3^{k}}, k=1,2,3, \ldots$

Let us define $S_{n}=X_{1}+\cdots+X_{n}$.
(a) Show that $\mathbb{P}\left(S_{n}=k\right)=\binom{k-1}{n-1} \frac{2^{n}}{3^{k}}, k=n, n+1, n+2, \ldots$
(b) Calculate $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(S_{n}=\lfloor n x\rfloor\right)\right), x \in \mathbb{R}$.
(c) Briefly explain how this relates to Cramér's theorem and one of the formulas from the Formula sheet: large deviation rate functions, exponential tilting.

Solution:

(a) X_{i} has optimistic geometric distribution $\operatorname{GEO}\left(\frac{2}{3}\right)$. Thus if we consider a sequence of independent trials with success probability $\frac{2}{3}$ then X_{1} is the number of trials until (and including) the first success, while S_{n} is the number of trials until (and including) the n 'th success. The event $\left\{S_{n}=k\right\}$ occurs if and only if there were exactly $n-1$ successes among the first $k-1$ trials and the the k^{\prime} th trial is successful. Thus $\mathbb{P}\left(S_{n}=k\right)=\binom{k-1}{n-1}\left(\frac{2}{3}\right)^{n-1} \cdot\left(\frac{1}{3}\right)^{(k-1)-(n-1)} \cdot \frac{2}{3}=\binom{k-1}{n-1} \cdot 2^{3^{n}}$
(b) If $x<1$ then $\mathbb{P}\left(S_{n}=\lfloor n x\rfloor\right)=0$. If $x \geq 1$ then we use the crude Stirling formula:

$$
\begin{align*}
& \mathbb{P}\left(S_{n}=\lfloor n x\rfloor\right)=\binom{\lfloor n x\rfloor-1}{n-1} \frac{2^{n}}{3\lfloor n x\rfloor} \approx \frac{\lfloor n x\rfloor!}{n!(\lfloor n x\rfloor-n)!} 2^{n} 3^{-n x} \approx \\
& \frac{(n x)^{n x} e^{-n x}}{n^{n} e^{-n}(n(x-1))^{n(x-1)} e^{-n(x-1)}} 2^{n} 3^{-n x}=\frac{x^{n x}}{(x-1)^{n(x-1)}} 2^{n} 3^{-n x}=\left(\frac{x^{x}}{(x-1)^{x-1}} \frac{2}{3^{x}}\right)^{n} \tag{1}
\end{align*}
$$

thus $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(S_{n}=\lfloor n x\rfloor\right)\right)=x \ln (x)-(x-1) \ln (x-1)+\ln (2)-x \ln (3)$.
(c) Recalling how we proved Cramér's theorem for binomial distribution (see page 5 of the scanned lecture notes) and recalling how we related the large deviation rate functions of $\operatorname{BER}(p)$ and $\operatorname{GEO}(p)$ distributions (see page 29-30 of scanned), and also by the heuristic meaning of Cramér's theorem (see page 24 of scanned), we expect $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(S_{n}=\lfloor n x\rfloor\right)\right)=-I(x)$, where $I(x)$ is the large deviation rate function of the $\operatorname{GEO}\left(\frac{2}{3}\right)$ distribution, and this is indeed the case, since

$$
I(x)=(x-1) \ln \left(\frac{x-1}{1 / 3}\right)-x \ln (x)-\ln (2 / 3)
$$

2. Let Z_{1}, Z_{2}, \ldots denote i.i.d. random variables with p.d.f. $f(x)=x e^{-x} \mathbb{1}[x \geq 0]$. Let $M_{n}:=\max \left\{Z_{1}, \ldots, Z_{n}\right\}$. Let us define $c_{n}:=\ln (n)+\ln (\ln (n))$. Let $Y_{n}:=M_{n}-c_{n}$. Show that Y_{n} weakly converges as $n \rightarrow \infty$ and identify the limiting distribution.

Solution: Using the setup of HW4.2(b), $f(x)$ is the p.d.f. of the time of the second earthquake, thus the corresponding c.d.f. is $F(x)=1-e^{-x}(1+x)$ if $x \geq 0$ (or one can also calculate $\int_{0}^{x} f(x) \mathrm{d} x=F(x)$ using integration by parts). For any $x \in \mathbb{R}$, we have $c_{n}+x \geq 0$ if n is large enough, and then we have

$$
\begin{align*}
& \mathbb{P}\left(Y_{n} \leq x\right)=\mathbb{P}\left(M_{n} \leq c_{n}+x\right)=\mathbb{P}\left(Z_{i} \leq c_{n}+x, i=1, \ldots, n\right)=F\left(c_{n}+x\right)^{n}= \\
& \quad\left(1-e^{-\ln (n)-\ln (\ln (n))-x}(1+\ln (n)+\ln (\ln (n))+x)\right)^{n}=\left(1-\frac{e^{-x}}{n} \frac{1+\ln (n)+\ln (\ln (n))+x}{\ln (n)}\right)^{n} \tag{2}
\end{align*}
$$

Note that

$$
\lim _{n \rightarrow \infty} \frac{1+\ln (n)+\ln (\ln (n))+x}{\ln (n)}=1
$$

thus

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(Y_{n} \leq x\right)=\lim _{n \rightarrow \infty}\left(1-\frac{e^{-x}}{n}\right)^{n}=\exp \left(-e^{-x}\right), \quad x \in \mathbb{R}
$$

Thus $Y_{n} \Rightarrow Y$, where $\mathbb{P}(Y \leq x)=\exp \left(-e^{-x}\right)$, i.e., Y has standard Gumbel distribution.

