Midterm Exam - March 27, 2024, Limit thms. of probab.

Family name

\qquad

Given name

\qquad

Signature \qquad Neptun Code \qquad

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with distribution

$$
\mathbb{P}\left(X_{i}=k\right)=\frac{2}{3^{k}}, \quad k=1,2,3, \ldots
$$

Let us define $S_{n}=X_{1}+\cdots+X_{n}$.
(a) Show that

$$
\mathbb{P}\left(S_{n}=k\right)=\binom{k-1}{n-1} \frac{2^{n}}{3^{k}}, \quad k=n, n+1, n+2, \ldots
$$

(b) Calculate

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(S_{n}=\lfloor n x\rfloor\right)\right), \quad x \in \mathbb{R}
$$

(c) Briefly explain how this relates to Cramér's theorem and one of the formulas from the Formula sheet: large deviation rate functions, exponential tilting
2. Let Z_{1}, Z_{2}, \ldots denote i.i.d. random variables with p.d.f.

$$
f(x)=x e^{-x} \mathbb{1}[x \geq 0] .
$$

Let

$$
M_{n}:=\max \left\{Z_{1}, \ldots, Z_{n}\right\} .
$$

Let us define

$$
c_{n}:=\ln (n)+\ln (\ln (n)) .
$$

Let

$$
Y_{n}:=M_{n}-c_{n} .
$$

Show that Y_{n} weakly converges as $n \rightarrow \infty$ and identify the limiting distribution.

