Midterm Exam - March 13, 2018, Limit thms. of probab.

Family name \qquad Given name \qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (8 marks) Let $S_{n}=X_{1}+\cdots+X_{n}$, where X_{1}, X_{2}, \ldots are i.i.d. with $\operatorname{POI}(1)$ distribution. Give a good upper bound on the probability $\mathbb{P}\left(S_{n} \geq e \cdot n\right)$. Write down all the details: calculate the relevant moment generating function, give a bound on $\mathbb{P}\left(S_{n} \geq e \cdot n\right)$ using the exponential Chebyshev's inequality, optimize your bound over the parameter λ of the moment generating function, simplify your result as much as possible.
2. (7 marks) Let $f(x)=\frac{1}{4} x^{-5 / 4} \mathbb{1}[x \geq 1]$. Let Y_{1}, Y_{2}, \ldots denote i.i.d. random variables with probability density function $f(x)$. Denote by $M_{n}=\max \left\{Y_{1}, \ldots, Y_{n}\right\}$. Find the value of $\beta \in \mathbb{R}_{+}$for which M_{n} / n^{β} converges in distribution to a non-degenerate probability distribution as $n \rightarrow \infty$ and identify the c.d.f. of the limiting distribution.
