Midterm Exam - March 13, 2018, Limit thms. of probab.

Family name	Given name
U U	
Signature	Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

- 1. (8 marks) Let $S_n = X_1 + \cdots + X_n$, where X_1, X_2, \ldots are i.i.d. with POI(1) distribution. Give a good upper bound on the probability $\mathbb{P}(S_n \ge e \cdot n)$. Write down all the details: calculate the relevant moment generating function, give a bound on $\mathbb{P}(S_n \ge e \cdot n)$ using the exponential Chebyshev's inequality, optimize your bound over the parameter λ of the moment generating function, simplify your result as much as possible.
- 2. (7 marks) Let $f(x) = \frac{1}{4}x^{-5/4}\mathbb{1}[x \ge 1]$. Let Y_1, Y_2, \ldots denote i.i.d. random variables with probability density function f(x). Denote by $M_n = \max\{Y_1, \ldots, Y_n\}$. Find the value of $\beta \in \mathbb{R}_+$ for which M_n/n^β converges in distribution to a non-degenerate probability distribution as $n \to \infty$ and identify the c.d.f. of the limiting distribution.