Midterm Exam - May 3, 2024, Limit thms. of probab.

1. (8 points) Let X be a random variable with distribution $\mathbb{P}(X = k) = \frac{1}{e} \frac{1}{(k-1)!}, k = 1, 2, 3, ...$

Let X_1, X_2, \ldots denote i.i.d. random variables with the same distribution as X. Let us define

$$S_n = X_1 + \dots + X_n$$

- (a) Find the logarithmic moment generating function $\lambda \mapsto \ln(M(\lambda))$ of X.
- (b) Find the tilting parameter $\lambda_3 \in \mathbb{R}$ such that the exponentially tilted random variable $X^{(\lambda_3)}$ has expectation equal to 3.
- (c) Find the limit $R_3 = \lim_{n \to \infty} \frac{1}{n} \ln \left(\mathbb{P}[S_n \ge 3n] \right).$
- (d) What is the relation between the values of $\ln(M(\lambda_3))$, λ_3 and R_3 according to Cramér's theorem? Check that this identity between the numbers that you found in (a),(b),(c) above indeed holds.

Solution: Let
$$\widetilde{X} = X - 1$$
, $\widetilde{X}_i := X_i - 1$, $\widetilde{S}_n = S_n - n = \widetilde{X}_1 + \dots + \widetilde{X}_n$. Note that $\widetilde{X} \sim \text{POI}(1)$.

- (a) $\ln(M(\lambda)) = \ln\left(\mathbb{E}[e^{\lambda X}]\right) = \ln\left(e^{\lambda}\mathbb{E}[e^{\lambda \tilde{X}}]\right) = \lambda + (e^{\lambda} 1)$, since $e^{\lambda} 1$ is the log.mom.gen. function of the POI(1) distribution by the formula sheet.
- (b) $X^{(\lambda)} = \widetilde{X}^{(\lambda)} + 1$, so we want λ_3 such that $\mathbb{E}[\widetilde{X}^{(\lambda_3)}] = 2$. We know from the formula sheet that $\widetilde{X}^{(\lambda)} \sim \text{POI}(e^{\lambda})$, thus $\mathbb{E}[\widetilde{X}^{(\lambda)}] = e^{\lambda}$, thus $\lambda_3 = \ln(2)$.
- (c) $R_3 = \lim_{n \to \infty} \frac{1}{n} \ln \left(\mathbb{P}\left[\frac{\tilde{S}_n}{n} \ge 2 \right] \right) = -(2\ln(2) 1)$ by the formula sheet (the large dev. rate function of POI(1) distribution evaluated at 2).
- (d) We have $I(3) = 3\lambda^*(3) \hat{I}(\lambda^*(3))$, because I (the large dev. rate function of X) is the Legendre transform of \hat{I} (the log.mom.gen.fn. of X). With our notation $R_3 = -I(3)$, $\lambda^*(3) = \lambda_3$ and $\hat{I}(\lambda^*(3)) = \ln(M(\lambda_3))$, thus we must have $-R_3 = 3\lambda_3 \ln(M(\lambda_3))$. And indeed this is consistent with (a),(b),(c) because we have $2\ln(2) 1 = 3\ln(2) (\ln(2) + 1)$.
- 2. (7 points) Let Y_1, Y_2, \ldots denote independent and identically distributed random variables with optimistic GEO(1/2) distribution. Let $M_n = \max\{Y_1, \ldots, Y_n\}$. For some $c \in \mathbb{R}_+$ let $Z(n) := M_n c \cdot \ln(n)$. Let $n_k := 2^k, k = 0, 1, 2, \ldots$
 - (a) How to choose the constant c if we want $Z(n_k)$ to converge in distribution as $k \to \infty$? What is the c.d.f. of the limiting distribution?
 - (b) Does Z(n) converge in distribution as $n \to \infty$ with the above choice of c? Why?

Solution: Y_1 is the number of coins that you need to toss until you see the first heads. $Y_1 > k$ if and only if the first k coin tosses are all tails, thus $\mathbb{P}(Y_1 > k) = 2^{-k}, k = 0, 1, 2, \ldots$. Thus $\mathbb{P}(Y_1 \le k) = 1 - 2^{-k}, k = 0, 1, 2, \ldots$. Thus the c.d.f. of the GEO(1/2) distribution is $F(x) = 1 - 2^{-\lfloor x \rfloor}$ if $x \ge 0$. The c.d.f. of M_n is $(1 - 2^{-\lfloor x \rfloor})^n \lor 0$. The c.d.f. of Z(n) is

$$G_n(x) := \mathbb{P}(Z(n) \le x) = \mathbb{P}(M_n \le c \cdot \ln(n) + x) = (1 - 2^{-\lfloor c \cdot \ln(n) + x \rfloor})^n \vee 0.$$

Now if we fix $x \in \mathbb{R}$ then

$$2^{-\lfloor c \cdot \ln(n) + x \rfloor} \simeq 2^{-c \cdot \ln(n)} = e^{\ln(2)(-c \cdot \ln(n))} = e^{\ln(n) \cdot (-c \ln(2))} = n^{-c \ln(2)}$$

Remember that if $a_n \to 0$ and $a_n b_n \to \gamma$ then $(1 - a_n)^{b_n} \to e^{-\gamma}$. In our case $a_n = 2^{-\lfloor c \cdot \ln(n) + x \rfloor}$ and $b_n = n$, so if we want $G_n(x)$ (or at least $G_{n_k}(x)$) to converge to a number that is strictly between 0 and 1 then we need $0 < \gamma < \infty$. Now $a_n b_n \simeq n^{-c \ln(2)} \cdot n$, thus we must choose $c = \frac{1}{\ln(2)}$, because otherwise $a_n b_n$ will go to either zero or infinity.

- (a) Now $c \cdot \ln(n_k) = \frac{1}{\ln(2)} \cdot \ln(2^k) = \frac{1}{\ln(2)} \cdot k \cdot \ln(2) = k$, thus for any $x \in \mathbb{R}$, for large enough n we have $G_{n_k}(x) = (1 2^{-\lfloor k + x \rfloor})^{2^k} = (1 \frac{2^{-\lfloor x \rfloor}}{2^k})^{2^k}$, thus $G_{n_k}(x) \to G(x) := \exp\left(2^{-\lfloor x \rfloor}\right)$ as $k \to \infty$, thus $Z(n_k)$ indeed converges in distribution to a random variable Z with c.d.f. G(x) as $k \to \infty$.
- (b) The answer is no, as we now explain. Note that $Z(n_k) = M_{n_k} k$ is an integer-valued random variable for each k and thus Z is also an integer-valued random variable. But if we choose $n'_k := \lfloor \sqrt{2} \cdot 2^k \rfloor$ then $c \cdot \ln(n'_k) - k \to \frac{1}{2}$, thus by a similar calculation as above, $Z(n'_k)$ will converge in distribution to a random variable whose distribution is concentrated on values that are halfway between consecutive integers. Since the weak limits along the subsequences n_k and n'_k are different, the whole sequence Z(n) does not converge in distribution as $n \to \infty$.