Midterm Exam - May 3, 2024, Limit thms. of probab.

1. (8 points) Let X be a random variable with distribution $\mathbb{P}(X=k)=\frac{1}{e} \frac{1}{(k-1)!}, k=1,2,3, \ldots$

Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with the same distribution as X. Let us define

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

(a) Find the logarithmic moment generating function $\lambda \mapsto \ln (M(\lambda))$ of X.
(b) Find the tilting parameter $\lambda_{3} \in \mathbb{R}$ such that the exponentially tilted random variable $X^{\left(\lambda_{3}\right)}$ has expectation equal to 3 .
(c) Find the limit $R_{3}=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left[S_{n} \geq 3 n\right]\right)$.
(d) What is the relation between the values of $\ln \left(M\left(\lambda_{3}\right)\right), \lambda_{3}$ and R_{3} according to Cramér's theorem? Check that this identity between the numbers that you found in (a),(b),(c) above indeed holds.

Solution: Let $\widetilde{X}=X-1, \widetilde{X}_{i}:=X_{i}-1, \widetilde{S}_{n}=S_{n}-n=\widetilde{X}_{1}+\cdots+\widetilde{X}_{n}$. Note that $\widetilde{X} \sim \operatorname{POI}(1)$.
(a) $\ln (M(\lambda))=\ln \left(\mathbb{E}\left[e^{\lambda X}\right]\right)=\ln \left(e^{\lambda} \mathbb{E}\left[e^{\lambda \tilde{X}}\right]\right)=\lambda+\left(e^{\lambda}-1\right)$, since $e^{\lambda}-1$ is the log.mom.gen. function of the $\mathrm{POI}(1)$ distribution by the formula sheet.
(b) $\tilde{X}^{(\lambda)}=\tilde{X}^{(\lambda)}+1$, so we want λ_{3} such that $\mathbb{E}\left[\widetilde{X}^{\left(\lambda_{3}\right)}\right]=2$. We know from the formula sheet that $\widetilde{X}^{(\lambda)} \sim \operatorname{POI}\left(e^{\lambda}\right)$, thus $\mathbb{E}\left[\widetilde{X}^{(\lambda)}\right]=e^{\lambda}$, thus $\lambda_{3}=\ln (2)$.
(c) $R_{3}=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left[\frac{\widetilde{S}_{n}}{n} \geq 2\right]\right)=-(2 \ln (2)-1)$ by the formula sheet (the large dev. rate function of $\operatorname{POI}(1)$ distribution evaluated at 2$)$.
(d) We have $I(3)=3 \lambda^{*}(3)-\widehat{I}\left(\lambda^{*}(3)\right)$, because I (the large dev. rate function of X) is the Legendre transform of \widehat{I} (the log.mom.gen.fn. of X). With our notation $R_{3}=-I(3), \lambda^{*}(3)=\lambda_{3}$ and $\widehat{I}\left(\lambda^{*}(3)\right)=\ln \left(M\left(\lambda_{3}\right)\right)$, thus we must have $-R_{3}=3 \lambda_{3}-\ln \left(M\left(\lambda_{3}\right)\right)$. And indeed this is consistent with (a), (b), (c) because we have $2 \ln (2)-1=3 \ln (2)-(\ln (2)+1)$.
2. (7 points) Let Y_{1}, Y_{2}, \ldots denote independent and identically distributed random variables with optimistic $\mathrm{GEO}(1 / 2)$ distribution. Let $M_{n}=\max \left\{Y_{1}, \ldots, Y_{n}\right\}$. For some $c \in \mathbb{R}_{+}$let $Z(n):=M_{n}-c \cdot \ln (n)$. Let $n_{k}:=2^{k}, k=0,1,2, \ldots$.
(a) How to choose the constant c if we want $Z\left(n_{k}\right)$ to converge in distribution as $k \rightarrow \infty$? What is the c.d.f. of the limiting distribution?
(b) Does $Z(n)$ converge in distribution as $n \rightarrow \infty$ with the above choice of c ? Why?

Solution: Y_{1} is the number of coins that you need to toss until you see the first heads. $Y_{1}>k$ if and only if the first k coin tosses are all tails, thus $\mathbb{P}\left(Y_{1}>k\right)=2^{-k}, k=0,1,2, \ldots$ Thus $\mathbb{P}\left(Y_{1} \leq k\right)=$ $1-2^{-k}, k=0,1,2, \ldots$, thus the c.d.f. of the $\operatorname{GEO}(1 / 2)$ distribution is $F(x)=1-2^{-\lfloor x\rfloor}$ if $x \geq 0$. The c.d.f. of M_{n} is $\left(1-2^{-\lfloor x\rfloor}\right)^{n} \vee 0$. The c.d.f. of $Z(n)$ is

$$
G_{n}(x):=\mathbb{P}(Z(n) \leq x)=\mathbb{P}\left(M_{n} \leq c \cdot \ln (n)+x\right)=\left(1-2^{-\lfloor c \cdot \ln (n)+x\rfloor}\right)^{n} \vee 0 .
$$

Now if we fix $x \in \mathbb{R}$ then

$$
2^{-\lfloor c \cdot \ln (n)+x\rfloor} \asymp 2^{-c \cdot \ln (n)}=e^{\ln (2)(-c \cdot \ln (n))}=e^{\ln (n) \cdot(-c \ln (2))}=n^{-c \ln (2)}
$$

Remember that if $a_{n} \rightarrow 0$ and $a_{n} b_{n} \rightarrow \gamma$ then $\left(1-a_{n}\right)^{b_{n}} \rightarrow e^{-\gamma}$. In our case $a_{n}=2^{-\lfloor c \cdot \ln (n)+x\rfloor}$ and $b_{n}=n$, so if we want $G_{n}(x)$ (or at least $\left.G_{n_{k}}(x)\right)$ to converge to a number that is strictly between 0 and 1 then we need $0<\gamma<\infty$. Now $a_{n} b_{n} \asymp n^{-c \ln (2)} \cdot n$, thus we must choose $c=\frac{1}{\ln (2)}$, because otherwise $a_{n} b_{n}$ will go to either zero or infinity.
(a) Now $c \cdot \ln \left(n_{k}\right)=\frac{1}{\ln (2)} \cdot \ln \left(2^{k}\right)=\frac{1}{\ln (2)} \cdot k \cdot \ln (2)=k$, thus for any $x \in \mathbb{R}$, for large enough n we have $G_{n_{k}}(x)=\left(1-2^{-\lfloor k+x\rfloor}\right)^{2^{k}}=\left(1-\frac{2^{-\lfloor x\rfloor}}{2^{k}}\right)^{2^{k}}$, thus $G_{n_{k}}(x) \rightarrow G(x):=\exp \left(2^{-\lfloor x\rfloor}\right)$ as $k \rightarrow \infty$, thus $Z\left(n_{k}\right)$ indeed converges in distribution to a random variable Z with c.d.f. $G(x)$ as $k \rightarrow \infty$.
(b) The answer is no, as we now explain. Note that $Z\left(n_{k}\right)=M_{n_{k}}-k$ is an integer-valued random variable for each k and thus Z is also an integer-valued random variable. But if we choose $n_{k}^{\prime}:=\left\lfloor\sqrt{2} \cdot 2^{k}\right\rfloor$ then $c \cdot \ln \left(n_{k}^{\prime}\right)-k \rightarrow \frac{1}{2}$, thus by a similar calculation as above, $Z\left(n_{k}^{\prime}\right)$ will converge in distribution to a random variable whose distribution is concentrated on values that are halfway between consecutive integers. Since the weak limits along the subsequences n_{k} and n_{k}^{\prime} are different, the whole sequence $Z(n)$ does not converge in distribution as $n \rightarrow \infty$.

