Midterm Exam - May 3, 2024, Limit thms. of probab.

Family name \qquad Given name \qquad

Signature \qquad Neptun Code \qquad

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (8 points) Let X be a random variable with distribution

$$
\mathbb{P}(X=k)=\frac{1}{e} \frac{1}{(k-1)!}, \quad k=1,2,3, \ldots
$$

Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with the same distribution as X. Let us define

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

(a) Find the logarithmic moment generating function $\lambda \mapsto \ln (M(\lambda))$ of X.
(b) Find the tilting parameter $\lambda_{3} \in \mathbb{R}$ such that the exponentially tilted random variable $X^{\left(\lambda_{3}\right)}$ has expectation equal to 3 .
(c) Find the limit $R_{3}=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left[S_{n} \geq 3 n\right]\right)$.
(d) What is the relation between the values of $\ln \left(M\left(\lambda_{3}\right)\right), \lambda_{3}$ and R_{3} according to Cramér's theorem? Check that this identity between the numbers that you found in (a),(b),(c) above indeed holds.
2. (7 points) Let Y_{1}, Y_{2}, \ldots denote independent and identically distributed random variables with optimistic $\operatorname{GEO}(1 / 2)$ distribution. Let

$$
M_{n}=\max \left\{Y_{1}, \ldots, Y_{n}\right\}
$$

For some $c \in \mathbb{R}_{+}$let

$$
Z(n):=M_{n}-c \cdot \ln (n) .
$$

Let $n_{k}:=2^{k}, k=0,1,2, \ldots$.
(a) How to choose the constant c if we want $Z\left(n_{k}\right)$ to converge in distribution as $k \rightarrow \infty$? What is the c.d.f. of the limiting distribution?
(b) Does $Z(n)$ converge in distribution as $n \rightarrow \infty$ with the above choice of c ? Why?

