Neptun code: BMETE95MM10

Specifications: 5 credit course; 2×90 minutes per week
Instructor: Balázs Ráth, Contact: rathb@math.bme.hu, rathbalazs@gmail.com
Webpage: www.math.bme.hu/~rathb, Language of lectures: English
Dates and times: see Neptun Office hours: see webpage

Lecture notes:

- Prof. Bálint Tóth's typed lecture notes (see webpage)
- I will also post my hand-written lecture notes on the course web-page.

Prerequisites: We will routinely use basic facts of calculus and probability theory and assume that students already took an introductory course on these topics.

Course outline:

1) Large deviations, Cramér's theorem, Hoeffding's inequality
2) Weak convergence of probability measures
3) Limit theorems with bare hands (e.g., arcsine laws for simple random walk)
4) Method of characteristic functions
5) Lindeberg's theorem (with applications)
6) Stable distributions and related limit theorems

Midterm: There will be two 45 minute midterm exams during (or maybe right after) the regularly scheduled class on March 27 and May 15.
Homework assignments: Weekly homeworks will be assigned, collected and graded. In total, there will be 9 homeworks. Homeworks that are handed in late will not be accepted. Handing in homeworks via e-mail (in PDF format!) is acceptable, but paper format is preferred - e.g., if you cannot hand in your solution personally, send it via e-mail by the homework deadline, but you will make the grading much easier for me if you hand in the same solution on paper a few days later. Thank you!
Class PRESENTATIONS: Students will be required to solve exercises at the blackboard. I will notify students via email well in advance about the exercise that they will solve.
Grading policy: The students are required to collect 40% of the homework marks and 40% of the midterm (or the make-up midterm) marks for both midterms in order to enter the final exam. The students are required to collect 40% of the final exam marks in order to pass the course.

Ingredients of the final grade:	Calculation of the final grade:
$50 \%:$ Final exam grade	$0-39 \%:$ insufficient (1)
15\%: First midterm grade	$40-54 \%:$ sufficient (2)
15\%: Second midterm grade	$55-69 \%:$ satisfactory (3)
15\%: Weekly homework grade	$70-84 \%: \operatorname{good}(4)$
$5 \%:$ Class presentation grade	$85-100 \%:$ excellent (5)

