Limit/large dev. thms. HW assignment 3. Solutions

1. (a) Let I denote the Legendre transform of the logarithmic moment generating function of X. Let
Y = Xj + Xo, where X; and X5 are i.i.d. copies of X. Find the Legendre transform of the
logarithmic moment generating function of Y.

(b) Let I denote the Legendre transform of the logarithmic moment generating function of X. Let
Y :=aX 4+ b (where a,b € R). Find the Legendre transform of the log. mom. gen. function of Y.

(c) Let Y7,Y5,... denote i.i.d. integer-valued random variables with distribution
P(Y; = —2k) =2"0+D £ =0,1,2,... (1)
Find lim,,_, % In(P(Y; +---4+Y, <nz)) for any = € R.
(d) Let Y7,Ys,... denote i.i.d. integer-valued random variables with distribution
PY;=-1)=1/4, PY;=0)=1/2, PY;=1)=1/4 (2)

Find limy o0 + In (P (Y1 + -+ + Yy, < na)) for any z € R.
Solution:

(a) Let Ix(A) := In(E[e*X]) and Ty (A) := In(E[e*Y]) = In(E[e*¥]2) = 2In(E[e*X]) = 2Tx (A).
We have Ix(x) = sup,{\z — IAX()\)}, thus we obtain

(f

Iy (z) := sup{ Az — Iy (\)} = sup{Az — 2Ix (\)} = 2sup{)\§ —Ix(\)} =2Ix 2).
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Remark: Let X1, Xs,... be i.i.d. with the same distribution as X. Let Y7,Y5,... be i.i.d. with the
same distribution as Y. By our assumption X7 +- - -+ X5, has the same distribution as Y1 +---+Y,.
Thus, applying the heuristic version of Cramér’s theorem twice, we obtain

Yi+---+Y, X1+ + Xon X1+ + Xop
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which is another (heuristic) way of seeing Iy (z) = 2/x(5).
(b) Let Ix () := In(E[e*X]) and Ty (\) := In(E[e*Y]) = Ix (a\) + Ab by HW1.1(a).
We have Ix(z) = supy{\z — Ix(\)}, thus we obtain

Iy (x) := st)l\p{)\x ~Iy(\)} = st;p{)\(x —b) — Ix(a\)} =

sup{a)\x —b_ Ix(a\)} = sup{)\’L_b —Ix(\)} =Ix (x — b> :
A a b\ a a

(¢) Let X denote an (optimistic) GEO(3) random variable. Then X —1 is a pessimistic GEO(3) random
variable and —2(X — 1) has the same distribution as Y; in equation (1) above. We know from class

(see page 28 of scanned lecture notes) that Ix(z) = (x — 1)In (f:i) — 2 -In(z) — In(3) and if
2

Y = —2(X — 1) = —2X + 2 then we obtain Iy (z) = Ix(%£2) = Ix(1 — 3z) by part (b) of this

exercise. Also, it is well known that E(X) = 1/(1/2) = 2, thus E(Y) = —2(2 — 1) = —2. Thus by

Carmeér’s theorem we obtain
o1 . 0 if z > E(Y),
lim —In(P(Y; + -+ Y, <nz)) = — Iy (y) = - 3
I (P ne)) = - min () {Iy(x) if z < E(Y). )

(d) Let X; and X5 denote i.i.d. BER(1/2) random variables. Let Z := X; + X5 and Y := Z — 1. Then
Y has the same distribution as Y; from (2). We know from page 8 of the scanned lecture notes that

Ix(z)=(1—2)In (11:142) +xln (17/2) Now by part (a) of this exercise we have Iz(x) = 2Ix(z/2)
and by part (b) of this exercise we have Iy (z) = Iz(x + 1), thus Iy (z) = 2Ix (). Also E(Y) =0
and again by Carmér’s theorem we obtain (3).




2. Let X1, Xs,... denote i.i.d. random variables with EXP(A) distribution, i.e., the density function of X;
is f(z) = e 1z >0]. Let S,, = X1 +--- + X,,.

(a) Use induction on n to show that the density function of S,, is
n—1

falw) = AmeA (:j_ il 2 0l

Hint: Use the convolution formula stated on page 20 of the scanned lecture notes.

(b) Calculate the logarithmic moment generating function s I(y) of X;. For which values of i do we
have I'(p) < 4007

(¢) Calculate the Legendre transform I(z) of I(y). For which values of z do we have I(z) < +00?

(d) Give a formula for lim, o + In (P(S,/n > x)) for any & > 1/X using Cramér’s theorem (see page
21 of scanned lecture notes).

(e) Calculate lim,_,o = In (P(S,/n > x)) directly using the formula for the density function f, of S,.
Hint: Use Laplace’s principle (similarly to page 15 of the scanned lecture notes) and the crude

Stirling formula (see page 3 of scanned):

nelT" < nl < (n+ 1)”“67” (4)

Solution:

(a) The induction hypothesis holds if n = 1: we indeed have fi(z) = f(z) = )\16*”%—?1@ > 0]. Now
let’s show that if we assume that it holds for n then it also holds for n 4+ 1: for any x > 0 we have

fusr (&) = (fu * ) & /fn flz—y)dy =

/OO )\ne_)\yLl]l[y > O]Ae—k(x—y)ﬂ[x_y > 0] dy — )\n-‘rle—)\x /z yn—l dy _ )\n+16_>\xﬁ
. (n—1)1~ - o (n—1)! n!

(b) Since the notation A is already reserved for the parameter of EXP(M), let us denote by u the variable
of the logarithmic moment generating function I(x) = In(E(e**1)).

E(et*) = / e f(z) de = / ANz gg — 2 ;i p<A,
0 0 A—p
thus I(p) = In (ﬁ) =In(A) —In(A — p) if g < X and I(p) = +o0 if u > A.

(c) I(x) =sup,{pxr— I(w)}. f’(,u) = )\%# Given z we want p* such that I’(p*) = 2. Thus p* = A —
and if > 0 then

A

I(m),u*a:f(u*))\:rlln()\ *)/\xlln(x\:r).

If # < 0 then I(x) = +oo because for u < 0 we have I(p) < 0, thus lim,,— — oo {pa — I(0)} = 4.
(d) We have E(X;) = 1/A, thus by Cramér’s theorem we have

lim L n (P(Sy/n > 7)) = — inf I(y) = —I() = In(Az) + 1 — Az, o> 1/, (5)

n—oo N y>x

(e) The density function of S, /n is g, (z) = nf,(nz), thus for x > 1/\ we have

n—1 n.n—1
gn(x) _ n)\ne—)\n$ ((’I’LZ‘) 1)' — A" “Anz VX
n — :

n!

Bz [ " gy dy,

therefore by (4) we get

n ( n ) / L (e Mey)" dy < P(Su/n > ) <n / ; (Ae™ey)" dy,

n+1 Y



thus

1 *1 1
P(S,/n>x) & / ;(AeiAyey)” dy = / Zen(In(y)—Ay+1) dy = / ;67"1(1’) dy.

Y z
We will show

1 >
lim —In (/ —e W) dy) = —I(x).
n—oo N z 'y

e MW qy < / —e MW gy < ,/ e W) gy

Applying the Laplace lemma twice, for any = > 1/\ we obtain

We have
1 2x

2 J,

n—oo N y>x

lim lln </ e W) dy> = —inf I(y) = —I(z),

1 2£E
lim —1 ”I<y>d> inf I(y) = —I(x).
Jim -~ In ( /x e Y i (v) (z)

Putting these together with (8), we obtain (7), which, together with (6) gives an alternative proof

of (5).



3. Let X,, denote an optimistic geometric random variable with success probability p = 1/n. Show that
X,n/E(X,,) converges in distribution as n — oo and identify the limiting distribution.

Solution: For any non-negative integer m we have P(X,, > m) = (1 —p)™ since X,, > m means the first

m trials were unsuccessful. Note that E(X,,) = % =n. For any x > 0 we have

P(Eg;n) 9;) :IP’<)2" Sx) — P(X, < an) =P (X, < |on]) =

Lon)
1
1-P(X, > anJ):1—(1—p)LmJ:1-(1—n> —1—e"%  n— oo

For any z < 0 we have P (% < x) = 0. Thus, if we denote by F,, the c.d.f. of X,,/E(X,,) and we
denote F(z) =1— e for x > 0 and F(x) = 0 for z <0 then F,, converges point-wise to F.

This means E();"n) = EXP(1), since F is the c.d.f. of the EXP(1) distribution.




