
Limit/large dev. thms. HW assignment 3. Solutions
1. (a) Let I denote the Legendre transform of the logarithmic moment generating function of X. Let

Y := X1 + X2, where X1 and X2 are i.i.d. copies of X. Find the Legendre transform of the
logarithmic moment generating function of Y .

(b) Let I denote the Legendre transform of the logarithmic moment generating function of X. Let
Y := aX + b (where a, b ∈ R). Find the Legendre transform of the log. mom. gen. function of Y .

(c) Let Y1, Y2, . . . denote i.i.d. integer-valued random variables with distribution

P(Yi = −2k) = 2−(k+1), k = 0, 1, 2, . . . (1)

Find limn→∞
1
n ln (P(Y1 + · · ·+ Yn ≤ nx)) for any x ∈ R.

(d) Let Y1, Y2, . . . denote i.i.d. integer-valued random variables with distribution

P(Yi = −1) = 1/4, P(Yi = 0) = 1/2, P(Yi = 1) = 1/4. (2)

Find limn→∞
1
n ln (P (Y1 + · · ·+ Yn ≤ nx)) for any x ∈ R.

Solution:

(a) Let ÎX(λ) := ln(E[eλX ]) and ÎY (λ) := ln(E[eλY ]) = ln(E[eλX ]2) = 2 ln(E[eλX ]) = 2ÎX(λ).

We have IX(x) = supλ{λx− ÎX(λ)}, thus we obtain

IY (x) := sup
λ
{λx− ÎY (λ)} = sup

λ
{λx− 2ÎX(λ)} = 2 sup

λ
{λx

2
− ÎX(λ)} = 2IX(

x

2
).

Remark: Let X1, X2, . . . be i.i.d. with the same distribution as X. Let Y1, Y2, . . . be i.i.d. with the
same distribution as Y . By our assumption X1+ · · ·+X2n has the same distribution as Y1+ · · ·+Yn.
Thus, applying the heuristic version of Cramér’s theorem twice, we obtain

e−nIY (x) ∼∼∼ P(
Y1 + · · ·+ Yn

n
≈ x) = P(

X1 + · · ·+X2n

n
≈ x) ≈ P(

X1 + · · ·+X2n

2n
≈ x

2
) ∼∼∼ e−2nIX( x

2 ),

which is another (heuristic) way of seeing IY (x) = 2IX(x2 ).

(b) Let ÎX(λ) := ln(E[eλX ]) and ÎY (λ) := ln(E[eλY ]) = ÎX(aλ) + λb by HW1.1(a).
We have IX(x) = supλ{λx− ÎX(λ)}, thus we obtain

IY (x) := sup
λ
{λx− ÎY (λ)} = sup

λ
{λ(x− b)− ÎX(aλ)} =

sup
λ
{aλx− b

a
− ÎX(aλ)} = sup

λ′
{λ′x− b

a
− ÎX(λ′)} = IX

(
x− b
a

)
.

(c) Let X denote an (optimistic) GEO( 12 ) random variable. Then X−1 is a pessimistic GEO( 12 ) random
variable and −2(X − 1) has the same distribution as Yi in equation (1) above. We know from class
(see page 28 of scanned lecture notes) that IX(x) = (x − 1) ln

(
x−1
1− 1

2

)
− x · ln(x) − ln( 12 ) and if

Y = −2(X − 1) = −2X + 2 then we obtain IY (x) = IX(x−2−2 ) = IX(1 − 1
2x) by part (b) of this

exercise. Also, it is well known that E(X) = 1/(1/2) = 2, thus E(Y ) = −2(2 − 1) = −2. Thus by
Carmér’s theorem we obtain

lim
n→∞

1

n
ln (P(Y1 + · · ·+ Yn ≤ nx)) = − min

y∈(−∞,x]
IY (y) =

{
0 if x ≥ E(Y ),

−IY (x) if x ≤ E(Y ).
(3)

(d) Let X1 and X2 denote i.i.d. BER(1/2) random variables. Let Z := X1 +X2 and Y := Z − 1. Then
Y has the same distribution as Yi from (2). We know from page 8 of the scanned lecture notes that
IX(x) = (1−x) ln

(
1−1/2
1−x

)
+x ln

(
1/2
x

)
. Now by part (a) of this exercise we have IZ(x) = 2IX(x/2)

and by part (b) of this exercise we have IY (x) = IZ(x+1), thus IY (x) = 2IX(x+1
2 ). Also E(Y ) = 0

and again by Carmér’s theorem we obtain (3).
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2. Let X1, X2, . . . denote i.i.d. random variables with EXP(λ) distribution, i.e., the density function of Xi

is f(x) = λe−λx1[x ≥ 0]. Let Sn = X1 + · · ·+Xn.

(a) Use induction on n to show that the density function of Sn is

fn(x) = λne−λx
xn−1

(n− 1)!
1[x ≥ 0].

Hint: Use the convolution formula stated on page 20 of the scanned lecture notes.
(b) Calculate the logarithmic moment generating function µ 7→ Î(µ) of Xi. For which values of µ do we

have Î(µ) < +∞?

(c) Calculate the Legendre transform I(x) of Î(µ). For which values of x do we have Î(x) < +∞?
(d) Give a formula for limn→∞

1
n ln (P(Sn/n ≥ x)) for any x ≥ 1/λ using Cramér’s theorem (see page

21 of scanned lecture notes).
(e) Calculate limn→∞

1
n ln (P(Sn/n ≥ x)) directly using the formula for the density function fn of Sn.

Hint: Use Laplace’s principle (similarly to page 15 of the scanned lecture notes) and the crude
Stirling formula (see page 3 of scanned):

nne1−n ≤ n! ≤ (n+ 1)n+1e−n (4)

Solution:

(a) The induction hypothesis holds if n = 1: we indeed have f1(x) = f(x) = λ1e−λx x
0

0! 1[x ≥ 0]. Now
let’s show that if we assume that it holds for n then it also holds for n+ 1: for any x ≥ 0 we have

fn+1(x) = (fn ∗ f)(x) =
∫ ∞
−∞

fn(y)f(x− y) dy =∫ ∞
−∞

λne−λy
yn−1

(n− 1)!
1[y ≥ 0]·λe−λ(x−y)1[x−y ≥ 0] dy = λn+1e−λx

∫ x

0

yn−1

(n− 1)!
dy = λn+1e−λx

xn

n!

(b) Since the notation λ is already reserved for the parameter of EXP(λ), let us denote by µ the variable
of the logarithmic moment generating function Î(µ) = ln(E(eµXi)).

E(eµXi) =

∫ ∞
0

eµxf(x) dx =

∫ ∞
0

λe(µ−λ)x dx =
λ

λ− µ
, if µ < λ,

thus Î(µ) = ln
(

λ
λ−µ

)
= ln(λ)− ln(λ− µ) if µ < λ and Î(µ) = +∞ if µ ≥ λ.

(c) I(x) = supµ{µx− Î(µ)}. Î ′(µ) = 1
λ−µ . Given x we want µ∗ such that Î ′(µ∗) = x. Thus µ∗ = λ− 1

x
and if x > 0 then

I(x) = µ∗x− Î(µ∗) = λx− 1− ln

(
λ

λ− µ∗

)
= λx− 1− ln(λx).

If x < 0 then I(x) = +∞ because for µ ≤ 0 we have Î(µ) ≤ 0, thus limµ→−∞{µx− Î(µ)} = +∞.
(d) We have E(Xi) = 1/λ, thus by Cramér’s theorem we have

lim
n→∞

1

n
ln (P(Sn/n ≥ x)) = − inf

y≥x
I(y) = −I(x) = ln(λx) + 1− λx, x > 1/λ. (5)

(e) The density function of Sn/n is gn(x) = nfn(nx), thus for x > 1/λ we have

gn(x) = nλne−λnx
(nx)n−1

(n− 1)!
= nλne−λnx

nnxn−1

n!
, P(Sn/n ≥ x) =

∫ ∞
x

gn(y) dy,

therefore by (4) we get

n

(
n

n+ 1

)n ∫ ∞
x

1

y

(
λe−λyey

)n
dy ≤ P(Sn/n ≥ x) ≤ n

∫ ∞
x

1

y

(
λe−λyey

)n
dy,
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thus

P(Sn/n ≥ x) ∼∼∼
∫ ∞
x

1

y
(λe−λyey)n dy =

∫ ∞
x

1

y
en(ln(λy)−λy+1) dy =

∫ ∞
x

1

y
e−nI(y) dy. (6)

We will show
lim
n→∞

1

n
ln

(∫ ∞
x

1

y
e−nI(y) dy

)
= −I(x). (7)

We have
1

2x

∫ 2x

x

e−nI(y) dy ≤
∫ ∞
x

1

y
e−nI(y) dy ≤ 1

x

∫ ∞
x

e−nI(y) dy (8)

Applying the Laplace lemma twice, for any x > 1/λ we obtain

lim
n→∞

1

n
ln

(∫ ∞
x

e−nI(y) dy

)
= − inf

y≥x
I(y) = −I(x),

lim
n→∞

1

n
ln

(∫ 2x

x

e−nI(y) dy

)
= − inf

y∈[x,2x]
I(y) = −I(x).

Putting these together with (8), we obtain (7), which, together with (6) gives an alternative proof
of (5).
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3. Let Xn denote an optimistic geometric random variable with success probability p = 1/n. Show that
Xn/E(Xn) converges in distribution as n→∞ and identify the limiting distribution.

Solution: For any non-negative integer m we have P(Xn > m) = (1− p)m since Xn > m means the first
m trials were unsuccessful. Note that E(Xn) =

1
p = n. For any x ≥ 0 we have

P
(

Xn

E(Xn)
≤ x

)
= P

(
Xn

n
≤ x

)
= P (Xn ≤ xn) = P (Xn ≤ bxnc) =

1− P (Xn > bxnc) = 1− (1− p)bxnc = 1−
(
1− 1

n

)bxnc
→ 1− e−x, n→∞.

For any x ≤ 0 we have P
(

Xn

E(Xn)
≤ x

)
= 0. Thus, if we denote by Fn the c.d.f. of Xn/E(Xn) and we

denote F (x) = 1− e−x for x ≥ 0 and F (x) = 0 for x ≤ 0 then Fn converges point-wise to F .

This means Xn

E(Xn)
⇒ EXP(1), since F is the c.d.f. of the EXP(1) distribution.
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