Limit / large dev. thms. first midterm practice

1. Let $f(x)=|x-1|+|x+1|$. Find the Legendre transform of f.
2. Let $Z(\lambda)$ denote the moment generating function of the r.v. X. Denote by $X^{(\mu)}$ the exponentially tilted random variable (tilted with parameter $\mu \in \mathbb{R})$. Let $Z_{\mu}(\lambda)=\mathbb{E}\left(\exp \left(\lambda X^{(\mu)}\right)\right)$ denote the moment generating function of $X^{(\mu)}$. Write down an identity between $Z(\lambda+\mu), Z_{\mu}(\lambda)$ and $Z(\mu)$.
3. If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$, denote by $\{f, g\}^{c o}$ the joint lower convex envelope of f and g, i.e., the supremum of those affine linear functions that lie below both f and g. Show that if f and g are both convex and continuous then the Legendre transform of $\max \{f, g\}$ is $\{\hat{f}, \hat{g}\}^{c o}$ and that the Legendre transform of $\{f, g\}^{c o}$ is $\max \{\hat{f}, \hat{g}\}$.
4. We use a randomized algorithm to solve a yes/no decision problem. The algorithm gives the correct answer with probability $p>\frac{1}{2}$. We run the algorithm n times (where n is an odd number) and make our decision based on the majority of the results. Use the exponential Chebyshev's inequality (á la Cramér) to give a very good upper bound the probability that we make a wrong decision. Simplify the formula that you obtain as much as possible.
5. Let X and Y denote independent random variables. Denote by I_{X} and I_{Y} the large deviation rate function of X and Y, respectively. Show that the large deviation function I_{X+Y} of $X+Y$ is the ,infimum convolution" of I_{X} and I_{Y}.
Hint: A non-rigorous proof using the heuristic meaning of Cramér's theorem (and our \approx notation) is OK. A rigorous proof is even better. You should figure out by yourselves the notion of ,infimum convolution" (or Google it)
6. Let X denote the random variable with p.d.f.

$$
f(x)=4 x e^{-2 x} \mathbb{1}[x \geq 0]
$$

Let Y denote the sum of 1000 i.i.d. copies of X.
(a) Find the Legendre transform of the logarithmic mom.gen. function of X.
(b) Denote by g the p.d.f. of Y. Approximate $g(1000)$.
(c) Estimate the number of zeroes in the decimal expansion of $\mathbb{P}(Y \leq 500)$.
7. I roll a fair die 1000 times. Denote by X the sum of the numbers rolled.
(a) Estimate the probability that X is greater than or equal to 3550 .
(b) Estimate the probability that X is exactly equal to 3550 .
(c) Give a good lower bound on the number of zeroes in the decimal expansion of the probability that X is greater than or equal to 4500 .
8. Let X_{1}, X_{2}, \ldots denote i.i.d. r.v.'s with $\operatorname{POI}(\lambda)$ distribution. Let $S_{n}=X_{1}+\cdots+X_{n}$.
(a) Use Stirling's formula to prove the local $C L T$ for S_{n} :

$$
\lim _{n \rightarrow \infty} \sqrt{n \lambda} \mathbb{P}\left(S_{n}=\lfloor n \lambda+\sqrt{n \lambda} x\rfloor\right)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

(b) Deduce the global CLT from the local CLT: show that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \leq x\right)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} \mathrm{~d} y
$$

9. Before the national election, we want to estimate the fraction p of republican voters. We ask n random people and calculate the fraction p_{n} of republicans in our sample. How to choose n if we want to estimate the value of p with a margin of error 0.01 with 95% confidence? Use the CLT.
10. Weibull distribution. Let U_{1}, U_{2}, \ldots denote i.i.d. random variables with $\mathrm{UNI}[0,1]$ distribution. Let $\beta>0$. Let

$$
M_{n}=\min \left\{U_{1}^{\beta}, \ldots, U_{n}^{\beta}\right\}
$$

Show that $n^{\alpha} M_{n}$ converges in distribution as $n \rightarrow \infty$ to a non-trivial probability distribution if we choose $\alpha>0$ correctly. Determine the cumulative distribution function (c.d.f.) $F(x)$ of the limiting distribution.
11. Let $\tau_{1}, \tau_{2}, \ldots$ be i.i.d. waiting times between successive events and define the renewal process

$$
\nu_{t}:=\max \left\{n: \sum_{i=1}^{n} \tau_{i}<t\right\}
$$

In plain words, ν_{t} is the number of events that occurred in the time interval $[0, t]$. Denote $m:=\mathbb{E}\left(\tau_{j}\right)<\infty$, $\sigma^{2}:=\operatorname{Var}\left(\tau_{j}\right)<\infty$. Use the classic CLT for the sum of i.i.d. r.v.'s to derive a CLT for ν_{t} : find $a>0, b>0$ such that

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{\nu_{t}-a t}{b \sqrt{t}}<x\right)=\Phi(x)
$$

where Φ is the standard normal c.d.f. Express a and b in terms of m and σ.
12. Let X_{1}, X_{2}, \ldots denote i.i.d. r.v.'s and assume that $\mathbb{E}\left(X_{i}\right)=0$ and $\mathbb{P}\left(\left|X_{i}\right| \leq K\right)=1$ for some $K \in \mathbb{R}$. Let us define

$$
Y_{n}=\prod_{k=1}^{n}\left(1+\frac{X_{k}}{\sqrt{n}}\right)
$$

Use the CLT to show that Y_{n} converges weakly as $n \rightarrow \infty$. The limiting distribution is famous (e.g., in financial mathematics): name it and identify its parameter(s).
13. Let $X_{0}^{n}, X_{1}^{n}, X_{2}^{n}, \ldots, X_{2 n}^{n}$ denote the conditional distribution of one dimensional simple symmetric random walk under the condition that it returns to the origin in $2 n$ steps, i.e., that $X_{2 n}^{n}=0$. Denote by $M_{n}=\max \left\{X_{0}^{n}, X_{1}^{n}, X_{2}^{n}, \ldots, X_{2 n}^{n}\right\}$. Show that M_{n} / \sqrt{n} converges in distribution as $n \rightarrow \infty$ and find the c.d.f. of the limiting distribution.
14. For $n, m \in \mathbb{N}$ let X_{n}, Y_{m} be independent r.v.'s with distributions $X_{n} \sim \operatorname{POI}(n), Y_{m} \sim \operatorname{POI}(m)$. Prove that

$$
\frac{X_{n}-n-\left(Y_{m}-m\right)}{\sqrt{X_{n}+Y_{m}}}
$$

converges in distribution as $n, m \rightarrow \infty$. Identify the limiting distribution.
Hint: This is easy if you use Slutsky in a clever way, similarly to page 54 of the scanned lecture notes.
15. Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with p.d.f. $f(x)=\frac{1}{(x-1)^{2}} \mathbb{1}[x \leq 0]$. Let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Find a sequence $\left(a_{n}\right)$ such that M_{n} / a_{n} weakly converges to a non-degenerate random variable Z. Find the c.d.f. of Z. What does it mean that Z is max-stable?
16. At time zero a stock broker has 1000 dollars. At each time-step, three things can happen: either he gains one dollar (this happens with probability $1 / 4$), loses one dollar (this also happens with probability $1 / 4$) or he neither gains nor loses (this happens with probability $1 / 2$).
How would you approximate the distribution of the time when the stock broker goes bankrupt (i.e., loses all his money)? How to make this rigorous?
17. Let Z_{n} denote an integer-valued random variable for which

$$
\mathbb{P}\left(Z_{n}=k\right)=(k+1) \frac{1}{n^{2}}\left(1-\frac{1}{n}\right)^{k}, \quad k=0,1,2, \ldots
$$

Show that Z_{n} / n converges in distribution as $n \rightarrow \infty$ and identify the limiting distribution.
18. Let X_{1} and X_{2} be i.i.d. random variables with Lévy distribution. What is the distribution of $X_{1}+3 X_{2}$?

