
Limit / large dev. thms. first midterm practice
1. Let f(x) = |x− 1|+ |x+ 1|. Find the Legendre transform of f .

2. Let Z(λ) denote the moment generating function of the r.v. X. Denote by X(µ) the exponentially
tilted random variable (tilted with parameter µ ∈ R). Let Zµ(λ) = E

(
exp(λX(µ))

)
denote the moment

generating function of X(µ). Write down an identity between Z(λ+ µ), Zµ(λ) and Z(µ).

3. If f : R → R and g : R → R, denote by {f, g}co the joint lower convex envelope of f and g, i.e.,
the supremum of those affine linear functions that lie below both f and g. Show that if f and g are
both convex and continuous then the Legendre transform of max{f, g} is {f̂ , ĝ}co and that the Legendre
transform of {f, g}co is max{f̂ , ĝ}.

4. We use a randomized algorithm to solve a yes/no decision problem. The algorithm gives the correct
answer with probability p > 1

2 . We run the algorithm n times (where n is an odd number) and make our
decision based on the majority of the results. Use the exponential Chebyshev’s inequality (á la Cramér)
to give a very good upper bound the probability that we make a wrong decision. Simplify the formula
that you obtain as much as possible.

5. Let X and Y denote independent random variables. Denote by IX and IY the large deviation rate
function of X and Y , respectively. Show that the large deviation function IX+Y of X+Y is the „infimum
convolution” of IX and IY .

Hint: A non-rigorous proof using the heuristic meaning of Cramér’s theorem (and our ∼∼∼ notation) is OK.
A rigorous proof is even better. You should figure out by yourselves the notion of „infimum convolution”
(or Google it)

6. Let X denote the random variable with p.d.f.

f(x) = 4xe−2x1[x ≥ 0]

Let Y denote the sum of 1000 i.i.d. copies of X.

(a) Find the Legendre transform of the logarithmic mom.gen. function of X.

(b) Denote by g the p.d.f. of Y . Approximate g(1000).

(c) Estimate the number of zeroes in the decimal expansion of P(Y ≤ 500).

7. I roll a fair die 1000 times. Denote by X the sum of the numbers rolled.

(a) Estimate the probability that X is greater than or equal to 3550.

(b) Estimate the probability that X is exactly equal to 3550.

(c) Give a good lower bound on the number of zeroes in the decimal expansion of the probability that
X is greater than or equal to 4500.

8. Let X1, X2, . . . denote i.i.d. r.v.’s with POI(λ) distribution. Let Sn = X1 + · · ·+Xn.

(a) Use Stirling’s formula to prove the local CLT for Sn:

lim
n→∞

√
nλP

(
Sn = bnλ+

√
nλxc

)
=

1√
2π
e−x

2/2.

(b) Deduce the global CLT from the local CLT: show that

lim
n→∞

P

(
Sn − E(Sn)√

Var(Sn)
≤ x

)
=

∫ x

−∞

1√
2π
e−y

2/2 dy.

9. Before the national election, we want to estimate the fraction p of republican voters. We ask n random
people and calculate the fraction pn of republicans in our sample. How to choose n if we want to estimate
the value of p with a margin of error 0.01 with 95% confidence? Use the CLT.
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10. Weibull distribution. Let U1, U2, . . . denote i.i.d. random variables with UNI[0, 1] distribution. Let β > 0.
Let

Mn = min{Uβ1 , . . . , Uβn }.

Show that nαMn converges in distribution as n→∞ to a non-trivial probability distribution if we choose
α > 0 correctly. Determine the cumulative distribution function (c.d.f.) F (x) of the limiting distribution.

11. Let τ1, τ2, . . . be i.i.d. waiting times between successive events and define the renewal process

νt := max

{
n :

n∑
i=1

τi < t

}
.

In plain words, νt is the number of events that occurred in the time interval [0, t]. Denotem := E(τj) <∞,
σ2 := Var(τj) <∞. Use the classic CLT for the sum of i.i.d. r.v.’s to derive a CLT for νt: find a > 0, b > 0
such that

lim
t→∞

P
(νt − at

b
√
t

< x
)

= Φ(x),

where Φ is the standard normal c.d.f. Express a and b in terms of m and σ.

12. Let X1, X2, . . . denote i.i.d. r.v.’s and assume that E(Xi) = 0 and P(|Xi| ≤ K) = 1 for some K ∈ R. Let
us define

Yn =

n∏
k=1

(
1 +

Xk√
n

)
.

Use the CLT to show that Yn converges weakly as n → ∞. The limiting distribution is famous (e.g., in
financial mathematics): name it and identify its parameter(s).

13. LetXn
0 , X

n
1 , X

n
2 , . . . , X

n
2n denote the conditional distribution of one dimensional simple symmetric random

walk under the condition that it returns to the origin in 2n steps, i.e., that Xn
2n = 0. Denote by

Mn = max{Xn
0 , X

n
1 , X

n
2 , . . . , X

n
2n}. Show that Mn/

√
n converges in distribution as n→∞ and find the

c.d.f. of the limiting distribution.

14. For n,m ∈ N let Xn, Ym be independent r.v.’s with distributions Xn ∼ POI(n), Ym ∼ POI(m). Prove
that

Xn − n− (Ym −m)√
Xn + Ym

converges in distribution as n,m→∞. Identify the limiting distribution.

Hint: This is easy if you use Slutsky in a clever way, similarly to page 54 of the scanned lecture notes.

15. LetX1, X2, . . . denote i.i.d. random variables with p.d.f. f(x) = 1
(x−1)21[x ≤ 0]. LetMn = max{X1, . . . , Xn}.

Find a sequence (an) such that Mn/an weakly converges to a non-degenerate random variable Z. Find
the c.d.f. of Z. What does it mean that Z is max-stable?

16. At time zero a stock broker has 1000 dollars. At each time-step, three things can happen: either he gains
one dollar (this happens with probability 1/4), loses one dollar (this also happens with probability 1/4)
or he neither gains nor loses (this happens with probability 1/2).

How would you approximate the distribution of the time when the stock broker goes bankrupt (i.e., loses
all his money)? How to make this rigorous?

17. Let Zn denote an integer-valued random variable for which

P(Zn = k) = (k + 1)
1

n2
(1− 1

n
)k, k = 0, 1, 2, . . .

Show that Zn/n converges in distribution as n→∞ and identify the limiting distribution.

18. Let X1 and X2 be i.i.d. random variables with Lévy distribution. What is the distribution of X1 + 3X2 ?
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