Limit / large dev. thms. Exercise, lecture 15

- 1. Let $a \in \mathbb{R}_+$. Let $X_n \sim \text{BIN}(n, \frac{a}{n})$. Let $X \sim \text{POI}(a)$.
 - (a) Find the characteristic function φ_n of X_n and the characteristic function φ of X.
 - (b) Prove that $X_n \Rightarrow X$ by showing that φ_n converges point-wise to φ .
- 2. For any $z \in (0, +\infty)$, we define the Gamma function $\Gamma(z)$ by

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \,\mathrm{d}x.$$

Note that $\Gamma(z)$ can by extended analytically to all complex numbers except the non-positive integers. The *Weierstrass-identity* is the following formula:

$$\Gamma(z+1) = e^{-\gamma \cdot z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right)^{-1} \cdot e^{\frac{z}{n}},$$

where γ is the Euler-constant:

$$\gamma = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \log(n)$$

The goal of this exercise is to prove the Weierstrass-identity using probabilistic methods.

- (a) Let X_1, \ldots, X_n denote i.i.d. EXP(1) random variables, moreover let Y_1, \ldots, Y_n denote independent random variables, $Y_k \sim EXP(k)$. Use the memoryless property of exponential distribution to show that
 - $M_n \sim T_n$, where $M_n := \max\{X_1, \dots, X_n\}, \quad T_n := Y_1 + \dots + Y_n.$
- (b) Recall that $M_n \log(n)$ converges in distribution as $n \to \infty$ to the standard Gumbel distribution, i.e.,

$$\lim_{n \to \infty} \mathbb{P}\left(M_n - \ln(n) \le x\right) = \exp\left(-e^{-x}\right), \qquad x \in \mathbb{R}$$

(c) Calculate the moment generating function $Z(\lambda)$ of the standard Gumbel distribution, i.e., show

$$Z(\lambda) = \Gamma(1 - \lambda)$$

- (d) Let $Z_n = Y_n \frac{1}{n}$. Show that the sum $Z = \sum_{n=1}^{\infty} Z_n$ is well-defined by showing that it has zero expectation and finite variance. Show that $Z + \gamma$ has standard Gumbel distribution.
- (e) Use characteristic functions to show that

$$\Gamma(1-it) = e^{it\gamma} \prod_{n=1}^{\infty} \left(1 - \frac{it}{n}\right)^{-1} \cdot e^{-it/n}$$

i.e., show that the Weierstrass identity holds for z = -it.

Lemma. Let X_1, \ldots, X_n denote i.i.d. EXP(1) random variables, moreover let Y_1, \ldots, Y_n denote independent random variables, $Y_k \sim EXP(k)$. We have

 $M_n \sim T_n$, where $M_n := \max\{X_1, \dots, X_n\}, \quad T_n := Y_1 + \dots + Y_n.$

Proof. Imagine that we have n i.i.d. clocks and X_i is the time when clock with index i rings, $1 \le i \le n$. M_n is the time when the last clock rings.

Let $T_0 = 0$ and let us denote by T_k the time when you hear the k'th ring. For example we have $T_1 = \min\{X_1, \ldots, X_n\}$ and $T_n = M_n$.

Let us denote by $\hat{Y}_k = T_k - T_{k-1}$ the time that elapses between T_{k-1} and T_k . We have

$$M_n = \hat{Y}_1 + \dots + \hat{Y}_n.$$

We will show that $\hat{Y}_1, \ldots, \hat{Y}_n$ are independent and $\hat{Y}_k \sim \text{EXP}(n-k+1)$. What is the distribution of the time when you hear the first clock ring? It is known that

$$Y_1 = \min\{X_1, \dots, X_n\} \sim \operatorname{EXP}(n) \sim Y_n$$

Then, by the memoryless property, the remaining n-1 clocks start afresh, so after the first ring, we still have n-1 i.i.d. EXP(1) clocks.

Then we can repeat the above argument inductively: the gap \hat{Y}_2 between the first and the second ring has EXP(n-1) distribution, just like Y_{n-1} , etc.

Finally the gap \hat{Y}_n between ring n-1 and ring n has EXP(1) distribution, since there is only one EXP(1) clock left.