Limit / large dev. thms. Exercise, lecture 15

1. Let $a \in \mathbb{R}_{+}$. Let $X_{n} \sim \operatorname{BIN}\left(n, \frac{a}{n}\right)$. Let $X \sim \operatorname{POI}(a)$.
(a) Find the characteristic function φ_{n} of X_{n} and the characteristic function φ of X.
(b) Prove that $X_{n} \Rightarrow X$ by showing that φ_{n} converges point-wise to φ.
2. For any $z \in(0,+\infty)$, we define the Gamma function $\Gamma(z)$ by

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} \mathrm{~d} x
$$

Note that $\Gamma(z)$ can by extended analytically to all complex numbers except the non-positive integers. The Weierstrass-identity is the following formula:

$$
\Gamma(z+1)=e^{-\gamma \cdot z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} \cdot e^{\frac{z}{n}},
$$

where γ is the Euler-constant:

$$
\gamma=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k}-\log (n)
$$

The goal of this exercise is to prove the Weierstrass-identity using probabilistic methods.
(a) Let X_{1}, \ldots, X_{n} denote i.i.d. $E X P(1)$ random variables, moreover let Y_{1}, \ldots, Y_{n} denote independent random variables, $Y_{k} \sim E X P(k)$. Use the memoryless property of exponential distribution to show that

$$
M_{n} \sim T_{n}, \quad \text { where } \quad M_{n}:=\max \left\{X_{1}, \ldots, X_{n}\right\}, \quad T_{n}:=Y_{1}+\cdots+Y_{n}
$$

(b) Recall that $M_{n}-\log (n)$ converges in distribution as $n \rightarrow \infty$ to the standard Gumbel distribution, i.e.,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(M_{n}-\ln (n) \leq x\right)=\exp \left(-e^{-x}\right), \quad x \in \mathbb{R}
$$

(c) Calculate the moment generating function $Z(\lambda)$ of the standard Gumbel distribution, i.e., show

$$
Z(\lambda)=\Gamma(1-\lambda)
$$

(d) Let $Z_{n}=Y_{n}-\frac{1}{n}$. Show that the sum $Z=\sum_{n=1}^{\infty} Z_{n}$ is well-defined by showing that it has zero expectation and finite variance. Show that $Z+\gamma$ has standard Gumbel distribution.
(e) Use characteristic functions to show that

$$
\Gamma(1-i t)=e^{i t \gamma} \prod_{n=1}^{\infty}\left(1-\frac{i t}{n}\right)^{-1} \cdot e^{-i t / n}
$$

i.e., show that the Weierstrass identity holds for $z=-i t$.

Lemma. Let X_{1}, \ldots, X_{n} denote i.i.d. $E X P(1)$ random variables, moreover let Y_{1}, \ldots, Y_{n} denote independent random variables, $Y_{k} \sim E X P(k)$. We have

$$
M_{n} \sim T_{n}, \quad \text { where } \quad M_{n}:=\max \left\{X_{1}, \ldots, X_{n}\right\}, \quad T_{n}:=Y_{1}+\cdots+Y_{n}
$$

Proof. Imagine that we have n i.i.d. clocks and X_{i} is the time when clock with index i rings, $1 \leq i \leq n$. M_{n} is the time when the last clock rings.
Let $T_{0}=0$ and let us denote by T_{k} the time when you hear the k 'th ring.
For example we have $T_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $T_{n}=M_{n}$.
Let us denote by $\hat{Y}_{k}=T_{k}-T_{k-1}$ the time that elapses between T_{k-1} and T_{k}.
We have

$$
M_{n}=\hat{Y}_{1}+\cdots+\hat{Y}_{n}
$$

We will show that $\hat{Y}_{1}, \ldots, \hat{Y}_{n}$ are independent and $\hat{Y}_{k} \sim \operatorname{EXP}(n-k+1)$.
What is the distribution of the time when you hear the first clock ring?
It is known that

$$
\hat{Y}_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\} \sim \operatorname{EXP}(n) \sim Y_{n}
$$

Then, by the memoryless property, the remaining $n-1$ clocks start afresh, so after the first ring, we still have $n-1$ i.i.d. $\operatorname{EXP}(1)$ clocks.

Then we can repeat the above argument inductively: the gap \hat{Y}_{2} between the first and the second ring has $\operatorname{EXP}(n-1)$ distribution, just like Y_{n-1}, etc.

Finally the gap \hat{Y}_{n} between ring $n-1$ and ring n has $\operatorname{EXP}(1)$ distribution, since there is only one $\operatorname{EXP}(1)$ clock left.

