SCHEFFÉ: IF f_{n} P.D.F., f P.D.F. AND $\forall x: f_{n}(x) \longrightarrow f(x)$ THEN $F_{n} \Rightarrow F$
WHERE $\quad F_{n}(x)=\int_{-\infty}^{x} f_{m}(y) d y, \quad F(x)=\int_{-\infty}^{x} f(y) d y$
SLUTSKY: IF $\hat{X}_{M} \Rightarrow \lambda_{1}, Y_{m} \Rightarrow c c^{\text {Deters. }}$ consinit.
THEN: $\left|\hat{X}_{m}+\tilde{y}_{n} \Rightarrow \dot{X}_{y}+c\right| \tilde{X}_{m}, \tilde{Y}_{n} \Rightarrow \tilde{X}_{i} \cdot c$

$$
X_{m} / y_{n} \Rightarrow X_{1 / c} \quad \text { IF } \quad c \neq 0 .
$$

 RANDOM VECTOR WHICH IS UNIFORMLY distributed on the surface of the m- DIMENGIONAL EUCLIDEAN BALL OF RADIUS \sqrt{n}. AbOUT THE ORIGIN. GHOW THAT

$$
\lambda_{1}^{n} \Longrightarrow N(0,1) \text { AS } n \rightarrow \infty \text {. }
$$

SOLUTION: NEXT PAGE
PAGE 53

LET $\mathcal{Y}_{1}, \mathcal{q}_{2}, \ldots$ 1.1.d. $N(0,1)$. then the JOINT P.D.F, OF $\left(y_{1}, \ldots, y_{n}\right)$ ON \mathbb{R}^{n} is $f_{n}(\underline{x})=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-x_{i}^{2} / 2}=\frac{1}{\sqrt{2 \pi^{n}}} \cdot e^{-\|x\|^{2} / 2}$, WHERE $\underline{x}=\left(x_{1}, \ldots, x_{n}\right),\|\underline{x}\|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$, HENCE THE DISTRIBUTION OF $\underline{y}^{n}=\left(y_{1}, \ldots, Y_{n}\right)$ is INVARIANT UNDER ROTATIONS AROUND THE ORIGIN IN \mathbb{R}^{n}. THUS $\underline{y}^{n} /\|\underline{y}\|$ is UNIFORMLY DIST RIBUTED ON THE SURFACE OF THE UNIT BALL OF \mathbb{R}^{n}.
THUS $\left(\sqrt{n} \cdot \frac{Y_{1}}{\| \underline{Y}_{1}}, \ldots, \sqrt{n} \cdot \frac{Y_{n}}{\left\|\underline{Y_{1}}\right\|}\right) \underset{\text { 国 }}{\sim}\left(X_{X_{1}}^{n}, \ldots, X_{n}^{n}\right)$
NOTE: $\frac{\|\underline{\underline{Y}}\|}{\sqrt{n}}=\sqrt{\frac{1}{n}\left(y_{1}^{2}+\ldots+y_{n}^{2}\right)} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} 1$ BY WEAK LAW OF LARGE NUMBERS ($\left.\mathbb{E}\left(Y_{i}^{2}\right)=1\right)$ THUS $\frac{y_{1}}{\left\|\mathcal{I}_{1}\right\| / \sqrt{n}} \Rightarrow y_{1} \sim N(0,1)$ BY slutsky.
$\underline{E X}: \lim _{n \rightarrow \infty} e^{-n} \cdot\left(\frac{n^{0}}{0!}+\frac{n^{1}}{1!}+\frac{n^{2}}{2!}+\ldots+\frac{n^{n}}{n!}\right)=2$
(NOTE: $e^{-n} \cdot \sum_{r=0}^{\infty} \frac{n^{r}}{r!}=e^{-n} \cdot e^{n}=1$)
SOLUTION: $e^{-n} \cdot \sum_{n=0}^{n} \frac{n^{r}}{r!}=\mathbb{P}\left(\mathbb{X}_{1 n} \leq n\right)$, WHERE X_{m} ~POI(m). WE KNOW FROM

$$
\mathbb{P}\left(x_{n} \leqslant n\right)=\mathbb{P}\left(\frac{x_{n}-n}{\sqrt{n}} \leqslant 0\right) \xrightarrow[\infty]{\eta} \Phi(0)=\frac{1}{2}
$$

EX: $S_{n} \sim B \left\lvert\, N\left(n, \frac{1}{2}\right)\right., L E T P_{n}(r):=\mathbb{P}\left(S_{n}=r\right)$ HW 4.3 : $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{2} \cdot P_{n}\left(\left\lfloor\frac{n}{2}+\frac{\sqrt{n}}{2} \cdot x\right\rfloor\right) \stackrel{A}{=} \varphi(x)$ LET US NOW SNOW THAT THIS IMPLIES C.L.T.: $\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}}=\frac{S_{n}-\frac{\eta}{2}}{\sqrt{n / 2}} \Rightarrow J \sqrt{ }(0,1)$

PAGE 55

LET $y_{n} \sim U_{N}[0,1]$, INDEP，FROM S_{n} ， LET Z Znin ${ }^{\circ} S_{n}+Y_{n}$ ，THUS THE P．D．F．

OF 安m $15 g_{n}(x) \frac{\text { 目 }}{P_{m}}\left(L^{x} \perp\right), x \in \mathbb{R}$ ，
THOS THE P．D．F．OF $\frac{z_{m}-\frac{m}{2}}{\sqrt{m} / 2}$ is
$f_{n}(x)=\frac{\sqrt{n}}{2} \cdot g_{n}\left(\frac{n}{2}+\frac{\sqrt{n} \text { 目 }}{2}\right)$ ，THUS BY
HWV 4．3 $3^{\text {日 }}: f_{n}(x) \underset{\infty}{\stackrel{y}{\rightarrow}} \varphi(x)$ FOR ANY $x \in \mathbb{R}$ ，
THUS BY GHEFFÉ：$\frac{z_{n}-\frac{n}{2}}{\sqrt{m / 2}} \Rightarrow N(0,1)$
NOW $\frac{S_{m}-\frac{n}{2}}{\sqrt{n} / 2}=\frac{Z_{m}-\frac{n}{2}}{\sqrt{n / 2}}-\frac{Y_{n}}{\sqrt{n / 2}}$ AND

$$
\frac{y_{n}}{\sqrt{n / 2}} \Rightarrow 0 \text { THUS } \frac{S_{m}-\frac{n}{2}}{\sqrt{m / 2}} \Rightarrow N(0,1)
$$

BY SLUTSKY．

SIMPLE RANDOM WALK ON \mathbb{Z} :
$\chi_{1 m}=y_{1}+\ldots+y_{n}$, wHERE $y_{1}, y_{2}, \ldots 1.1 . D$.

$$
\mathbb{P}\left(\tilde{y}_{r}=+1\right)=\mathbb{P}\left(\tilde{y}_{r}=-1\right)=\frac{1}{2}
$$

NOTE: $\frac{X_{M}+n}{2} \sim \operatorname{BIN}\left(n, \frac{1}{2}\right)$, SO C.L.T.
FOLLOWS FROM PAFE 55-56:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(n^{-1 / 2} x_{n} \leqslant x\right)=\Phi(x), x \in \mathbb{R}
$$

DEF: $M_{n}:=\max \left\{\mathbb{x}_{0}, \mathbb{X}_{1}, \ldots, X_{n}\right\}$
CHM: LET $\chi^{2} \sim N(0,1)$, THEN

$$
n^{-1 / 2} M_{n} \Rightarrow|\hat{X}|
$$

NOTE: $\mathbb{P}(\mid$ 送 $\mid \geqslant x) \stackrel{D}{=} 2 \cdot(1-\Phi(x)), x \geqslant 0$
THUS $F(x)=\mathbb{P}(|X| \mid \leq x)= \begin{cases}2 \cdot \Phi(x)-1, & x \geqslant 0 \\ 0, & x \leqslant 0\end{cases}$
PROOF: NEXT PAGE
PAGE 57

LEMMA: FOR ANY $r=0,1,2,3, \ldots$

$$
\mathbb{P}\left(M_{M} \geqslant r\right)=2 \cdot \mathbb{P}\left(\chi_{m}>r\right)+\mathbb{P}\left(x^{\prime} / n\right)
$$

PROOF: $\mathbb{P}\left(M_{m} \geqslant r\right)$

$$
\underbrace{\mathbb{P R O O F}: \mathbb{P}\left(M_{n} \geqslant r\right)=}_{(1)}
$$

WE SHOW (1) = (2) USING REFLECTION PRINCIPLE:

IF A R.W. PATH HITS LEVEL k 国 WE CAN REFLECT THE PART
of the path that comes after that W.R.T. THE HORIZONTAL LINE THAT PASSES THROUGH k : PATHS WITH AN ENDPOINT ABOVE k ARE MAPPED INTO PATHS WITH AN END POINT BELOW k AND VICE VERSA. THUS (1) = (2) AND

$$
\begin{aligned}
\mathbb{P}\left(M_{n} \geqslant r\right) & =2 \cdot(2)+(3)= \\
& =2 \cdot \mathbb{P}\left(\mathbb{x}_{M}>r\right)+\mathbb{P}\left(\mathbb{x}_{m}=r\right)
\end{aligned}
$$

PAGE 58

PROOF OF THM USING LEMMA: $x \geqslant 0$:

$$
\begin{aligned}
& \mathbb{P}\left(n^{-1 / 2} M_{n} \geqslant x\right)=\mathbb{P}\left(M_{n} \geqslant\left\lceil n^{1 / 2} x\right\rceil\right)= \\
& 2 \cdot \underbrace{\lambda_{1-\Phi}}_{\left.n \lambda_{1-\Phi(x)}^{\infty} \mathbb{P}\left(x_{n}\right\rangle\left\lceil n^{1 / 2} x\right\rceil\right)} \mathbb{P (x _ { 1 m } = \lceil n ^ { 1 / 2 } x])}
\end{aligned}
$$

THUS $\lim _{n \rightarrow \infty} \mathbb{P}\left(n^{-1 / 2} \mu_{n} \geqslant x\right)=2 \cdot(1-\Phi(x))=\mathbb{P}(|x| \geqslant x)$
DEF: $k=0,1,2, \ldots$ LET
$T_{k}:=\inf \left\{n \geqslant 0: X_{m}=r\right\} \quad \mid N$ WORDS:
Tr IS THE HITTING TIME OF LEVEL r

CLAIM: IF $\eta_{1}, \eta_{2}, \ldots, \xi_{r}$ ARE I.I.D. WITH THE SAME DISTRIBUTION AS TI, THEN $T_{r} \sim \eta_{1}+\ldots+\eta_{r}$
PROOF:
IN ORDER TO HIT LEVEL r, FIRST YOU need to hit level 1, then you restart YOUR CLOCK (BY STRONG MARKOV PROPERTY) AND...

$$
\text { PAGE } 59
$$

AND THEN YOU WAIT UNTIL YOU HIT Level 2，eTc．，LEVEC \＆：

SURPRISING LIMIT TM FOR T_{r} ，VERY DIFFERENT FROM C．L．T．： LÉVY

TH：$X, \sim N(0,1):$

$$
\frac{T r}{k^{2}} \xlongequal{\Rightarrow} \frac{1}{\left.|x|\right|^{2}}
$$

PROOF：NOTE： $\mathbb{P}\left(T_{k} \leqslant n\right)$ 囩 $\mathbb{P}\left(M_{n} \geqslant r\right)$ ，THUS

$$
\begin{aligned}
& \left.\mathbb{P}\left(h^{-2} \cdot T_{r} \leqslant t\right)=\mathbb{P}\left(T_{r} \leqslant L^{2} \cdot t\right\rfloor\right)=\text { 回 }
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.\mathbb{P}\left(\frac{1}{\left.|x|\right|^{2}} \leq t\right)=\mathbb{P}\left(\frac{1}{\sqrt{t}} \leq|\lambda|\right) \right\rvert\,\right)=2 \cdot\left(1-\Phi\left(\frac{1}{\sqrt{t}}\right)\right) \tag{园}
\end{align*}
$$

