DHM: (1) $\Leftrightarrow(2)$, WHERE
(1) $X_{n} \Rightarrow A_{1}$
(2) $\mathbb{E}\left(g\left(\chi_{n}\right)\right) \rightarrow \mathbb{E}\left(g\left(\mathcal{X}_{1}\right)\right)$ FOR ANY BOUNDED \& CONTINUOUS $g: \mathbb{R} \rightarrow \mathbb{R}$
PROOF OF (2) $\Rightarrow(1)$: ENOUGH TO SHOW: $\forall x_{0} \in \mathbb{R}, \forall \varepsilon>0$:
A $F\left(x_{0}-\varepsilon\right) \leqslant \operatorname{limin}_{m \rightarrow \infty} f F_{n}\left(x_{0}\right) \leqslant \operatorname{limmp}_{m \rightarrow \infty} F_{n}\left(x_{0}\right) \leqslant F\left(x_{0}+\varepsilon\right)$
WHERE $F_{n}(x)=\mathbb{P}\left(\mathbb{X}_{n} \leq x\right), F(x)=\mathbb{P}(x, x \leq x)$
GIVEN x_{0} AND ε, LET US DEFINE $g: \mathbb{R} \rightarrow \mathbb{R}$
LIVE THIS: $\frac{1}{8}$

THEN
$\operatorname{limim}_{n \rightarrow \infty} F_{n}\left(x_{0}\right)=\operatorname{limip}_{m \rightarrow \infty} \mathbb{E}\left(\mathbb{1}\left[x_{m} \leq x_{0}\right]\right) \stackrel{\square}{\square} \lim _{n \rightarrow \infty} \mathbb{E}\left(g\left(x_{m}\right)\right)$ 立

$$
\begin{aligned}
& =\mathbb{E}(g(\hat{X})))_{F}^{-} \mathbb{E}\left(\mathbb{1}\left[\hat{y} \leqslant x_{0}+\varepsilon\right]\right)=F\left(x_{0}+\varepsilon\right)
\end{aligned}
$$

GFOR THE OTHER BOUND, REPEAT THIS ARGUMENT USING
 PAGE 81

PROOF OF $(1) \Rightarrow(2)$: GIVEN g, ENOUGH TO SHOW:
A $\forall \varepsilon>0: \operatorname{limmp}_{n \rightarrow \infty}|\mathbb{E}(g(x, y))-\mathbb{E}(g(x, y))| \leq 4 \varepsilon$
LET US $F\left|X \quad g: \mathbb{R} \rightarrow \mathbb{R}, \quad M:=\|g\|_{\infty}=\operatorname{mp}_{x}\right| g(x) \mid$
B USE TIGHTNESS OF $\left(\lambda_{y}, m\right)_{m=1}^{\infty}$ TO CHOOSE $K \in \mathbb{R}$
SUCH THAT $\mathbb{P}\left(\left|X_{y}\right| \geqslant K\right) \leqslant \frac{\varepsilon}{c}, n=1,2,3, \ldots$
MOREOVER $\mathbb{P}\left(x_{y}=K\right)=\mathbb{P}\left(x_{y}=-K\right)=0$ D
E NOTE THAT g is UNIFORMLY CONTINUOUS ON $[-K, K]^{\text {a }}$, SO CHOOSE $\delta>0$ SUCH THAT F1 $\forall x, y \in[-k, k],|x-y| \leqslant \delta \Rightarrow|g(x)-g(y)| \leqslant \varepsilon$

CHOOSE $-K=x_{0}<x_{1} \angle \ldots<x_{N}=K$ SUCH THAT
F2 $\left|x_{j+1}-x_{j}\right| \leqslant \delta$ AND $\left.\mathbb{P}\left(X_{1}=x_{j}\right)\right)_{G} 0, j=0,1, \ldots, N$
$\overline{\text { NOTATION }}: \mathbb{E}(g(x) ; A):,=\mathbb{E}\left(g\left(x_{1}\right) \cdot \mathbb{I}[A]\right)$
NOTE:
AN EVENT

$$
(G I M I C A R C Y \text { FOR } \mathcal{X}, n)
$$

PAGE \& 2

$$
\begin{aligned}
& \mid \bar{E}(g(x,))-\mathbb{E}(g(\not x)) ;-k<x \leq k) \mid \underbrace{\infty}_{1} \\
& \leqslant\|g\|_{\infty} \cdot \mathbb{P}\left(\left|x_{j}\right| \geqslant K\right) \underset{j}{\leqslant} M \cdot \frac{\varepsilon}{M}=\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \text { THUS: }|\mathbb{E}(g(\chi, n))-\mathbb{E}(g(X,))| \leqslant \\
& \text { Ar }\left|\mathbb{E}\left(g\left(\chi_{y}\right) ;-k<\chi_{n} \leqslant k\right)-\mathbb{E}\left(g\left(x_{1}\right) j-k<x_{1} \leqslant k\right)\right|+2 \varepsilon \\
& \left.{ }^{\mathrm{B}} \mathbb{E}\left(g(X, X) ;-K<\mathcal{X}_{1} \leqslant K\right)=\sum_{c}^{\infty} \sum_{r=1}^{N} \mathbb{E}\left(g\left(X_{y}\right) ; x_{r-1}<\notin\right\rangle \leqslant x_{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& E=\sum_{\mathrm{E}}^{\mathrm{E}} \sum_{r=1}^{N} g\left(x_{r}\right)^{\mathrm{F}} \cdot\left(F\left(x_{r}\right)-F\left(x_{r-1}\right)\right)+ \\
& \left.|A|\right|_{G} ^{\leqslant} \sum_{r=1}^{N} \mathbb{E}(\underbrace{\left|g\left(x_{1}\right)-g\left(x_{r}\right)\right|}_{B_{H} \leqslant \varepsilon} ; x_{r-1}<x, \leqslant x_{r}) \leqslant \\
& \leqslant \sum_{r=1}^{N} \varepsilon \cdot \mathbb{P}\left(x_{r-1}<x_{1} \leqslant x_{r}\right) \leqslant \varepsilon \quad \text { THUS }{ }_{j}{ }^{[}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\sum_{r=1}^{N} g\left(x_{k}\right) \cdot\left(F_{n}\left(x_{r}\right)-F_{n}\left(x_{r-1}\right)\right)-\sum_{r=1}^{N} g\left(x_{r}\right) \cdot\left(F\left(x_{r}\right)-F\left(x_{r-1}\right)\right)\right|+2 \varepsilon \sum_{N}^{N} \\
& \begin{array}{c}
\sum_{r=1}^{N} g\left(x_{r}\right) \cdot \underbrace{\left(F_{n}\right)}_{n_{n}\left(F_{n}\right)-F\left(x_{r}\right)}+\sum_{r=1}^{N} g\left(x_{r}\right)
\end{array} \underbrace{(\underbrace{}_{0}\left(x_{r-1}\right)-F_{n}\left(x_{r-1}\right))}_{N_{n}}) \mid+2 \varepsilon
\end{aligned}
$$

EX: LET

$$
I_{n}:=\int_{0}^{A} \int_{0}^{1} \ldots \int_{0}^{1} \frac{x_{1}^{2}+\ldots+x_{n}^{2}}{x_{1}+\ldots+x_{n}} d x_{1} \ldots d x_{n} \lim _{n \rightarrow \infty} I_{n}=?
$$

SOLUTION: LET $\mathcal{N}_{1}, \mathcal{X}_{22}, \ldots$ I.1.D. UNI $[0,1]$
THEN $I_{n} \stackrel{c}{=} \mathbb{E}\left(\frac{\dot{x}_{1}^{2}+\ldots+\dot{x}_{n}^{2}}{\dot{x}_{1}+\ldots+\dot{x}_{n}}\right)$

$$
\text { LET } \psi_{n}:=\frac{\hat{x}_{1}^{2}+\ldots+\hat{x}_{1 n}^{2}}{n} \quad z_{1 n}:=\frac{x_{1}+\ldots+\hat{x}_{1 n}}{n}
$$

WEAK LAW OF LARGE NUMBERS:

$$
\left.\begin{aligned}
& \mathrm{x} y_{n} \Rightarrow \mathbb{E}\left(x_{11}^{2}\right)=\int_{0}^{1} x^{2} d x=\frac{1}{3} \\
& E z_{1 n} \Rightarrow \mathbb{E}\left(x_{11}\right)=\int_{0}^{1} x d x=\frac{1}{2}
\end{aligned} \right\rvert\, \begin{aligned}
& F \\
& =
\end{aligned}
$$

sLuTsky: $\frac{\text { inn }_{\text {n }}^{\xi_{n}}}{\Rightarrow} \stackrel{G}{\Rightarrow} \frac{1 / 3}{1 / 2}=\frac{2}{3}$

THUS IF $g(x):=\left\{\begin{array}{lll}0 & \text { IF } & x \leq 0 \\ x & \text { IF } & 0 \leq x \leq 1 \\ 1 & \text { IF } & x \geqslant 1\end{array}\right.$ THEN

$$
I_{n=1}^{=}=\mathbb{E}\left(g\left(\frac{\eta_{n}}{\eta_{n}}\right)\right) \xrightarrow[\jmath]{\square} \mathbb{E}\left(g\left(\frac{2}{3}\right)\right)_{k}^{\square}=\frac{2}{3}
$$

(SINCE g IS BOUNDED, CONTINUOUS)
PAGE 84

DEF：CHARACTERISTIC FUNCTION OF THE RANDOM VARIABLE \neq ：

$$
\begin{aligned}
& \text { RANDOM VARIABLE } \\
& \varphi: \mathbb{R} \rightarrow \mathbb{C} \quad \varphi(t):=\mathbb{E}\left(e^{i \cdot t \cdot \lambda}\right)
\end{aligned}
$$

NOTE：$e^{i \cdot t \cdot x^{B}}=\cos (t x)+i \cdot \sin (t x)$ ，THUS

$$
\varphi(t) \frac{1}{c} \mathbb{E}(\cos (t \cdot x, y))+i \cdot \mathbb{E}(\sin (t \cdot x, y))
$$

IF $A, 15$ ABS．CONT，WITH P．D．F．f ，THEN

$$
\varphi(t)=\int_{D}^{\infty} e^{i \cdot t \cdot x} \cdot f(x) d x
$$

NOTE：If the mOMENT GENE RATING FUNCTION $Z(\lambda) \stackrel{E}{=} \mathbb{E}\left(e^{\lambda \cdot y_{y}}\right) 15$ FINITE $F O R \quad \lambda \in(-R, R)$
THEN BY $e^{a+b \cdot i}=e^{a} \cdot(\cos (b)+i \cdot \sin (b))$
WE HAVE $\left|e^{a+b i}\right| \underset{\sigma}{=} e^{a}$ ，THUS
$\left|z\left(a+b_{i}\right)\right| \sum_{\mathrm{H}}^{\text {皿 }} z(a)<+\infty$ IF $a \in(-R, R)$ 圆
THUS $|\varphi(t)|<+\infty$ IF $I_{m}(t) \in(-R, R)$
AND φ IS AN ANALYTIC FUNCTION ON THE STRIP $\{t \in \mathbb{C}: \operatorname{Im}(t) \in(-R, R)\}$
IN PARTICULAR：$\varphi(t) \doteqdot Z(i \cdot t)$ 回 PAGE 85
in particular
$X^{*} \sim N(0,1) \Rightarrow Z(\lambda)=e^{\lambda^{2} / 2}$ (SEE PAGE 14)
so $\varphi(t)=\mathbb{E}\left(e^{i t)_{1}}\right) \sum_{A}^{D} e^{-t^{2} / 2}$
$\mathcal{X}_{1} \sim \operatorname{EXP}(1) \Rightarrow Z(\lambda)=\frac{1}{1-\lambda}$ IF $\quad \lambda<1$
$\operatorname{so} \varphi(t) \underset{\mathrm{B}}{=} \frac{1}{1-i \cdot t}, t \in \mathbb{R}$
NOTE: IF THE DISTRIBUTION OF \&\& is SYMMETRIC, IE. IF X, $\sim(-\dot{y})$, THEN $\varphi(t) \in \mathbb{R} \operatorname{AND} \quad \varphi(t)_{c}=\mathbb{E}(\cos (t \cdot \hat{x}))$ BECAUSE $\sin (-x)=-\sin (x)$, THUS

$$
\begin{gathered}
\mathbb{E}(\sin (t \cdot x))=\mathbb{E}(\sin (-t \cdot x)))_{D}^{D}-\mathbb{E}\left(\sin \left(t \cdot x_{x}\right)\right) \\
x, \sim(-x)]
\end{gathered}
$$

$\operatorname{THUS} \mathbb{E}(\sin (t x, y))=0$

