RECALL: $\left(\mathcal{X}_{M}\right)$ SIMPLE ROW. ON \mathbb{Z}

$$
\pi_{n}:=\#\left\{j \in(0, n]: \mathcal{\chi}_{j-1}+\psi_{j}>0\right\} A
$$

(TIME SPENT ON POSITIVE HALF-LINE BY TIME n)
THM: (PAUL LÉVY's archine THM):

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\pi_{2 n}}{2 n} \leqslant x\right)^{\text {B }}=\left\{\begin{array}{l}
0 \quad \text { IF } x \leqslant 0 \\
\frac{2}{\pi} \cdot \arcsin (\sqrt{x}), 0 \leqslant x \leqslant 1 \\
1 \text { IF } x \geqslant 1
\end{array}\right.
$$

THE ONLY THING LEFT TO PROVE:
MAGIC LEMMA: $r=0,1,2, \ldots, n$

$$
\begin{aligned}
& \mathbb{P}\left(\pi_{2 n}=2 r\right)^{c}=u(2 r) \cdot u(2 \cdot(n-r)) \text {, WHERE } \\
& u(2 r) \underset{\mathrm{D}}{=} \mathbb{P}\left(X_{1,2 r}=0\right) \quad \frac{\text { NOTE: SYMMETRY: }}{\mathbb{P}\left(\pi_{2 n}=2 r\right)=\mathbb{P}\left(\pi_{2 n}=2(n-r)\right)}
\end{aligned}
$$

FIRST LET'S PROVE IT WHEN $k=0$ (OR $k=n)$:
FACT: $\mathbb{P}\left(\pi_{2 n}=0\right)_{F}=u(2 n)(=\underbrace{u(2 \cdot 0)}_{\|_{1}} \cdot u(2 \cdot(n-0)))$
 $=\mathbb{P}\left(\chi_{y, 2 n}=0\right)+\mathbb{P}\left(x_{12 n}=1\right)=u(2 n)+0=u(2 n)$ a see the solution of HW5.1

WE WILL PROVE MAGIC LEMMA BY INDUCTION ON n.
DEF: $R_{1} \stackrel{\operatorname{Din}}{=}\left\{n \geqslant 1: \mathcal{X i n}_{n}=0\right\}$

$$
L E T_{\text {в }} f(r):=\mathbb{P}\left(R_{1}=r\right)
$$

C
(NOTE: $\quad f(1)=f(3)=f(5)=\ldots=0)$
CLAIM: $u(2 n)=\sum_{r=1}^{n} f(2 r) \cdot u(2(n-r))$
PROOF: $\left\{\hat{X}_{12 n}=0\right\} \begin{aligned} & \underset{E}{=}\left\{\lambda_{y_{2 n}}=0\right\} n\left\{R_{1} \leqslant 2 n\right\}= \\ & = \\ & =\end{aligned}$

$$
\begin{aligned}
& \underset{\mathrm{G}}{\mathbf{=}} \underset{r=1}{n}\left\{R_{1}=2 n, \quad \lambda_{2 m}=0\right\} \\
& u(2 n)=\mathbb{P}\left(X_{, 2 n}=0\right){\underset{H}{=}}_{=\sum_{r=1}^{n} \mathbb{P}\left(R_{1}=2 r, \mathcal{X}_{2 n}=0\right)=}= \\
& \sum_{1}^{\equiv} \sum_{r=1}^{m} \underbrace{\mathbb{P}\left(R_{1}=2 r\right)}_{f(2 r)} \cdot \underbrace{\mathbb{P}\left(\lambda_{2}(n-r)=0\right)}_{u(2(n-r))}
\end{aligned}
$$

PROOF OF MAGIC LEMMA: (INDUCTION ON n): BY FACT (PAGE 73), WE MAY J ASSUME $0<h<n$, THUS $R_{1} \leq 2 m$ THE FIRST EXCURSION OF THE ROW. IS EITHER TO THE POSITIVE SIDE OR TO THE NEGATIVE SIDE (WITH $\frac{1}{2}-\frac{1}{2}$ CHANCE), SO (sEE NEXT PAGE)

SO:

$$
\begin{aligned}
& \mathbb{P}\left(\pi_{2 n}=2 r\right)=\frac{\square}{A} \\
& \text { B } \frac{1}{2} \sum_{r=1}^{k} f(2 r)^{A} \cdot \mathbb{P}\left(\pi_{2(n-r)}=2(r-r)\right)+ \\
& \text { c } \frac{1}{2} \sum_{r=1}^{m-r} f(2 r) \cdot \mathbb{P}\left(\pi_{2(n-r)}=2 r\right)=\text { INDUCTION } \\
& =\frac{1}{2} \sum_{r=1}^{\mathrm{r}} \mathrm{~m}_{r=1}^{r}(2 r) \cdot u(2 \cdot(r-r)) \cdot u(2 \cdot(n-r))+ \\
& \text { CLAIM } \\
& \text { FROM } \\
& \text { PAGE } 74 \\
& F \frac{1}{2} \sum_{r=1}^{m-r} f(2 r) \cdot u(2 r) \cdot u(2 \cdot(n-r-r)) \xlongequal{\underline{r}} \\
& \stackrel{G}{=} \frac{1}{2} \cdot u(2 \cdot(n-r)) \cdot u(2 r)+\frac{1}{2} \cdot u(2 r) \cdot u(2 \cdot(n-r)) \\
& =u(2 r) \cdot u(2 \cdot(n-r))
\end{aligned}
$$

DEF :H $\lambda_{n}:=\max \left\{\dot{\gamma} \in(0, n]: \chi_{j}=0\right\}$ (LAST VISIT TO THE ORIGIN BY TIME n)

- THY: (ANOTHER ARCSINE THM BY PAUL LÉUY):

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\lambda_{2 n}}{2 n} \leq x\right)=\left\{\begin{array}{lll}
0 & \mathbb{F} \quad x \leq 0 \\
\frac{2}{\pi} \cdot \arcsin (\sqrt{x}), & \text { 国 } \\
1 & \mathbb{F} \quad x \geqslant 1 & \text { 国 }
\end{array}\right.
$$

PROOF: SEE NEXT PAGE
alt is EnOUGH TO show that $\lambda_{2 n}$ has the same distribution as π_{2} n
we wIll show that

$$
\mathbb{P}\left(\lambda_{2 n}=2 r\right)_{=}^{B}=u(2 r) \cdot u(2 \cdot(n-r)), r=0,1, \ldots, n
$$

LEMMA: $\mathbb{P}\left(X_{i} ; \neq 0, j=1,2, \ldots, 2 n\right)^{c}=u(2 n)$

$$
\begin{aligned}
& =2 \cdot \frac{1}{2} \cdot \mathbb{P}\left(\mathcal{X}_{j} \leqslant 0, j=1,2, \ldots, 2 m-1\right) \text { 回 } \\
& \stackrel{F}{=} \mathbb{P}\left(\mathcal{X}_{j} \leqslant 0, j=1,2, \ldots, 2 n\right)=\mathbb{P}\left(M_{2 n}=0\right)_{H}=u(2 n)
\end{aligned}
$$

$$
\begin{aligned}
& \text { PROOF OF : } \\
& \mathbb{P}\left(\lambda_{2 n}=2 r\right)^{\prime}=\mathbb{P}\left(X_{2 r}=0, x_{j} \neq 0, j=2 r+1, \ldots, 2 n\right)
\end{aligned}
$$

MORE ON THE THEORY OF WEAK CONV:
DEF: (TIGHTNESS OF A FAMILY OF PROBAB.
DISTRIBUTIONS
$\chi_{y_{11}} \mathcal{X}_{12}, \mathcal{X}_{13}, \ldots$ is A tIgHT SEQUENCE IF

$$
\lim _{k \rightarrow \infty} \inf _{n} \mathbb{P}\left(\left|\mathcal{k}_{n}\right| \leqslant k\right)=1
$$

(IN WORDS: NO MASS ESCAPES TO ∞ AS $n \rightarrow \infty$) ALTERNATIVE, FANCY DEF:回B2 $\forall \varepsilon>0 \quad \exists H \subseteq \mathbb{R}$ wHERE H is COMPACT

$$
\begin{aligned}
& \forall \varepsilon>0 \quad \exists H \subseteq \mathbb{R} \text { wHERE } \\
& \text { AND } \mathbb{P}\left(X_{n} \in H\right) \geqslant 1-\varepsilon, n=1,2,3, \ldots
\end{aligned}
$$

LEMMA: IF $\chi_{m} \Rightarrow \lambda_{\gamma}$ THEN $\left(\chi_{m}\right)_{m=1}^{\infty}$ IS TIGHT.
PROOF: GIVEN $\varepsilon>0$, CHOOSE $\tilde{K} \in \mathbb{R}+$ SUCH THAT $\mathbb{P}(|\nmid y| \leqslant \tilde{K}) \geqslant 1-\frac{\varepsilon}{2}$ AND

$$
\begin{aligned}
& E \mathbb{P}\left(\left|X_{1}\right| \leqslant V_{1}\right) \geqslant 2 \\
& F \mathbb{P}\left(X_{1}=-\tilde{K}\right)=\mathbb{P}(\dot{X}, \tilde{K})=0 \text { 目 }
\end{aligned}
$$

THEN $\lim _{n \rightarrow \infty} \mathbb{P}\left(\mathcal{X}_{n} \leqslant \tilde{k}\right)^{G} \mathbb{P}\left(\mathcal{x}_{y} \leqslant \tilde{k}\right)$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\mathcal{X}_{n}<-\tilde{K}\right) \stackrel{H}{=} \mathbb{P}\left(\mathcal{X}_{i}<-\tilde{K}\right)
$$

THUS $\exists n_{0}: \forall n \geqslant n_{0}:$

$$
\| \mathbb{P}\left(-\tilde{K} \leqslant x_{n} \leqslant \tilde{K}\right)-\left.\mathbb{P}\left(-\tilde{K} \leqslant X_{y} \leqslant \tilde{K}\right)\right|^{A} \leqslant \frac{\varepsilon}{2}
$$

THUS $\forall n \geqslant m_{0}: \mathbb{P}\left(\left|X_{n}\right| \leq \tilde{K}\right)^{B} \geqslant 1-\varepsilon$
NOW CHOOSE $K \geqslant \widetilde{K}$ SUCH THAT FOR ALL $1 \leqslant n \leqslant n$ O WE HAVE $\mathbb{P}\left(\left|\hat{X}_{n}\right| \leqslant K\right) \geqslant 1-\varepsilon$

DTHM (HELLY): IF ($\left.X_{m}\right)_{m=1}^{\infty}$ is A TIGHT SEQUENCE THEN THERE EXISTS A SUBSEQUENCE $\left(n_{r}\right)_{r=1}^{\infty}$ SUCH TAT $\mathcal{X}_{m r}$ CONVERGES WEAKLY AS $k \rightarrow \infty$. PROOF: LET $\left(q_{l}\right)_{l=1}^{\infty}$ BE A DENUMERATION OF (Q) DENOTE BY $F_{n}(x):=\mathbb{P}(X, n \leq x)$.
WE WILL CONSTRUCT A SEQUENCE $\left(m_{r}\right)_{r=1}^{\infty}$ SUCH THAT $\lim _{k \rightarrow \infty} m_{r}=+\infty$ AND
$\forall q \in \mathbb{Q}: F_{m r}(q)$ CONVERGES AS $r \rightarrow \infty$.
WE WILL USE CANTOR'S DIAGONAL
ARGUMENT.
PAGE 78
(1) CHOOSE A SUBSEQUENCE $\binom{n}{r}$ OF IN SUCH THAT $F_{n^{(1)} r}\left(q_{1}\right)$ CONVERGES: LET $n_{1}:=n_{1}^{(1)}$.
(2) CHOOSE A SUBSEQUENCE $\left(n_{r}^{(2)}\right)$ OF $\left(n_{r}^{(1)}\right)$ ST. $F_{n_{r}^{(2)}}\left(q_{2}\right)$ CONVERGES. LET $m_{2}:=n_{2}^{(2)}$
(3) Choose a subsequence $\left(\begin{array}{l}n_{r}^{(3)} \\ \underset{r}{ }) \text { of }\left(n_{r}^{(2)}\right) \text { S.T. }\end{array}\right.$ $F_{n}^{(3)}\left(q_{3}\right)$ CONVERGES. LET $n_{3}:=n_{3}^{(3)}$
$\frac{\text { (4) ETC... }}{\text { THIS WAY: }}$
A $n_{1}, n_{2}, n_{3}, \ldots$ is A SUBSEQ, OF $\left(n^{(1)} n_{r}\right)$
B $n_{2}, n_{31} \ldots$ is $A-11-\operatorname{OF}\binom{n_{n}^{(2)}}{\pi}$
C $n_{31} n_{4}, \ldots$ IS A -1 1-OF $\left(n^{(3)} r\right)$, ETC.
THUS $F_{m_{r}}(q)$ CONVERGES FOR ALL $q \in \mathbb{Q}$.
$L E T \quad F(q):=\lim _{r \rightarrow \infty} F_{m r}(q), q \in \mathbb{Q}$
THEN F is NON-DECREASING ⿴AND
$\lim _{q \rightarrow+\infty} F(q)=1 \lim _{q \rightarrow-\infty} F(q)=0$ BY TIGHTNESS.

$$
\text { PAGE } 79
$$

ENOW FOR ANY $x \in \mathbb{R}$, LET

$$
\tilde{F}(x):=\inf _{\mathrm{A}}^{\mathrm{q}>x} \mathrm{~F}(q) \quad \text { THEN: }
$$

B EXTENDED \tilde{F} ls NON-DECREASING
$\bar{c} \lim _{x \rightarrow \infty} \tilde{F}(x)=1, \lim _{x \rightarrow-\infty} \tilde{F}(x)=0$
D \tilde{F} IS RIGNT-CONTINUOUS:

$$
E \tilde{F}\left(x_{+}\right)=\inf _{y>x} \tilde{F}(y)=\inf _{y>x \inf _{q>y} F(q)=\inf _{q>x} F(q)=\tilde{F}(x), ~}^{x}
$$

FTHUS \tilde{F} is THE C.D.F. OF A R.V. X ,
IT REMAINS TO PROVE THAT $F_{\text {mr }} \Rightarrow \tilde{F}$:
ENOUGH TO SHOW THAT $\forall \varepsilon>0$: H

$$
\tilde{F}(x-\varepsilon) \leqslant \operatorname{limin}_{h \rightarrow \infty} f_{m} F_{m}(x) \leqslant \operatorname{limmp}_{r \rightarrow \infty} F_{m r}(x) \leqslant \tilde{F}(x+\varepsilon)
$$

, LET $x-\varepsilon<\tilde{q}<x$, THEN

$$
\begin{aligned}
& \text { ET } x-\varepsilon<q_{1}<x \\
& \tilde{F}(x-\varepsilon) \leqslant F(\tilde{q})=\lim _{r \rightarrow \infty} F_{m_{r}}(\tilde{q}) \leqslant \liminf _{n \rightarrow \infty} F_{m_{r}}(x)
\end{aligned}
$$

SIMILARLY: IF $x<\hat{q}<x+\varepsilon$, THEN

$$
\begin{aligned}
& \text { sIMILARLY: IF } x<\hat{q}<x+\varepsilon \text {, THEN } \\
& \tilde{F}(x+\varepsilon) \geqslant F(\hat{q})=\lim _{r \rightarrow \infty} F_{\text {mr }}(\hat{q}) \geqslant \operatorname{limip}_{r \rightarrow \infty} F_{m r}(x)
\end{aligned}
$$

