
Limit / large dev. thms. exercises before second midterm
1. Prove that the uniform distribution UNI[−1, 1] cannot be expressed as the difference of two i.i.d. random

variables. Hint: Use the method of characteristic functions!

Solution:(by Joco, approved by Balázs) Let ξ be a RV with distribution UNI[−1, 1], then the CF of ξ
is:

E(eitξ) =
∫ 1

−1

1

2
eitxdx =

1

2it
(eit − e−it) = sin(t)

t
.

Suppose that ξ can be expressed as the the difference of two IID random variables: ξ = X − Y , where X
and Y has CF ψ. Then:

E(eitξ) = E(eit(X−Y )) = E(eitX)E(e−itY ) = ψ(t)ψ(t) = |ψ(t)|2

but this can not be the case because E(eitξ) is not non-negative, but |ψ(t)|2 is. Thus ξ can’t be expressed
this way.

2. Let Xn be uniformly distributed on the set {1, 2, . . . , n}. Use the method of characteristic functions to
show that Xn/n⇒ UNI[0, 1].

Solution:(by Joco, approved by Balázs) We will show that the CF of Xn/n converges pointwise to the
CF of X ∼ UNI[0, 1].

E
(
eit

Xn
n

)
=

n∑
k=1

eit
k
n 1
n = 1

n

n∑
k=1

eit
k
n

︸ ︷︷ ︸
B

= 1
ne

i t
n
1− eit

1− ei t
n︸ ︷︷ ︸

A

Now there is two way to finish this. The first is that we can say B is a Riemann-sum, thus

B →
∫ 1

0

eitxdx as n→∞. (1)

where the RHS of (1) is the CF of X. The other way is to calculate limn→∞A:

lim
n→∞

ei
t
n (1− eit) 1/n

1− ei t
n

L′H
= (1− eit) lim

n→∞

−1/n2
it
n2 eit/n

=
eit − 1

it
lim
n→∞

1

eit/n
=
eit − 1

it
. (2)

where the RHS of (2) is the CF of X.

3. Use the method of characteristic functions to show that the difference of two independent EXP(1) random
variables has the same distribution as XY , where P(X = 1) = P(X = −1) = 1

2 and Y ∼ EXP(1) and X
and Y are independent.

Solution:(by Joco, approved by Balázs) Let Z1, Z2 ∼ EXP (1) be IID. We will show that XY has the
same CF as Z1 − Z2:

E(eitXY ) Law of
=

tot. prob.
E(eitXY |X = 1)P(X = 1) + E(eitXY |X = −1)P(X = −1) = 1

2
E(eitY )︸ ︷︷ ︸
ϕY (t)

+
1

2
E(e−itY )︸ ︷︷ ︸
ϕY (−t)

=
1

2

∫ ∞
0

eitxe−xdx+
1

2
ϕY (−t) =

1

2(it− 1)

[
ex(it−1)

]∞
0

+
1

2
ϕY (−t) =

1

2(1− it)
+

1

2(1 + it)

=
1

1 + t2
=

1

1− it
1

1 + it
= ϕZ1−Z2

(t).

4. Show by an example that φX+Y (u) = φX(u)φY (u) does not necessarily imply that the random variables
X and Y are independent. Hint: Think of a famous distribution!

Solution: (by Dani, approved by Balázs)
Let X be standard Cauchy distributed random variable. It is known that φX(u) = e−|u|. Thus, with
Y := X we get

φX+Y (u) = φ2X(u) = φX(2u) = e−|2u| = e−|u|e−|u| = φX(u)φY (u),

though, X and Y are obviously not independent.
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5. Let U , X and Y be independent random variables distributed as follows: U ∼ UNI[0, 1], X,Y ∼ EXP(1).
Use the method of characteristic functions to prove that

Z := U · (X + Y ) ∼ EXP(1).

Solution (by Anonymous, approved by Balázs): ϕX(t) = ϕY (t) =
1

1−it and X and Y are indepen-

dent, thus ϕX+Y (t) =
(

1
1−it

)2
. f is the p.d.f. of U, (f(u) = 11[0,1](u)).

ϕZ(t) = E(eitU(X+Y ))
(∗)
=

∫ ∞
−∞

E(eitu(X+Y ) |U = u)f(u) du
(∗∗)
=

∫ ∞
−∞

E(eitu(X+Y ))f(u) du =∫ ∞
−∞

ϕX+Y (ut)f(u) du =

∫ 1

0

(
1

1− itu

)2

du =

−1
it

∫ 1

0

−it (1− itu)−2 =
−1
it

[
(1− itu)−1

−1

]1
u=0

=
1

1− it
, (3)

where in (∗) we used the tower rule and in (∗∗) we used the independence of U and X + Y . Now 1
1−it is

the characteristic function of an EXP(1) random variable, thus Z has EXP(1) distribution.

6. The Lévy distribution is stable. Let X denote a random variable with standard Lévy distribution. On the
one hand, we have already learnt that Sn/n2 ⇒ X, where Sn = η1 + · · ·+ ηn, where η1, η2, . . . are i.i.d.
and ηk has the same distribution as the hitting time of level one by a one dimensional simple symmetric
random walk starting from the origin. On the other hand, we have learnt that E(eitX) = e−

√
−2it. Denote

by LEVY(a) the distribution of aX, where a ∈ R+.
Give two different proofs of the fact that for any a, b ∈ R+ we have

LEVY(a) ∗ LEVY(b) ∼ LEVY((
√
a+
√
b)2). (4)

(The ∗ symbol denotes convolution)

Solution (by Laci, simplified a bit by Balázs):
Solution 1: Characteristic Function method:
We will show that ϕLevy(a)∗Levy(b) = ϕLevy((

√
a+
√
b)2)

By page 89 of the lecture notes:

ϕLevy(a)∗Levy(b) = ϕLevy(a) · ϕLevy(b) = e−
√
−2ita−

√
−2itb = e−

√
−2it(

√
a+
√
b)

= e−
√
−2it(

√
a+
√
b)2 = ϕLevy((

√
a+
√
b)2)

Solution 2: Sn/n2 ⇒ X, so for any α ∈ R+ we have Sbαnc/bαnc2 ⇒ X. This and Slutsky imply

Sbαnc/n
2 ⇒ α2X ∼ LEVY(α2). (5)

Note that then Sn+m − Sn has the same distribution as Sm, thus, analogously to (5), we obtain

Sb(α+β)nc − Sbαnc
n2

⇒ β2X ′ ∼ LEVY(β2). (6)

Also note that Sn+m − Sn is independent of Sn, moreover (Sn+m − Sn) + Sn = Sn+m, thus

Sb(α+β)nc

n2
=
Sb(α+β)nc − Sbαnc

n2
+
Sbαnc

n2
⇒ α2X + β2X ′ ∼ LEVY(α2) ∗ LEVY(β2). (7)

On the other hand, analogously to (5), we have

Sb(α+β)nc

n2
⇒ (α+ β)2X ∼ LEVY((α+ β)2) (8)

Thus, putting together (7) and (8), we obtain LEVY(α2)∗LEVY(β2) ∼ LEVY((α+β)2). Taking α =
√
a

and β =
√
b, we obtain the desired (4).
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7. Let X1, X2, X3, . . . denote i.i.d. r.v.’s with UNI[0, 1] distribution. Use Lindeberg to show that

n∑
k=1

kXk − n2

4

1
6n

3
2

⇒ N(0, 1)

Solution (by Marci, approved by Balázs):

Let Yk := kXk. Then Yk ∼ UNI[0, k], therefore EYk = k
2 and VarYk = k2

12 . Let us also denote

Sn :=
n∑
k=1

kXk =
n∑
k=1

Yk. Then ESn = n2+n
4 and VarSn = 1

12 ·
(
n3

3 + n2

2 + n
6

)
, since Yk’s are independent.

First let us use Lindeberg’s theorem for the random variables ξn,k = Yk, k = 1, 2, . . . , n. We have to
check Lindeberg’s condition. Using the notation of the theorem we have σ2

n = VarSn = n3

36 +O(n2) and
|ξ̃n,k| = |Yk − k

2 | ≤
k
2 ≤

n
2 for every k = 1, 2, . . . , n. Hence for a fixed ε > 0 we have

lim
n→∞

1

σ2
n

n∑
k=1

E
[
|ξ̃n,k|2 · 1

[
|ξ̃n,k| > εσn

]]
≤ lim
n→∞

36

n3
· n · E

[
n2

4
· 1
[n
2
> εσn

]]
=

= 9 lim
n→∞

E
[
1

[n
2
> εσn

]]
= 9 · lim

n→∞
1

[n
2
> εσn

]
(∗)
= 0,

where at (∗) we used that σn = n3/2

6 + O(n), therefore there exists n0 such that the condition in the
indicator fails for every n ≥ n0.
Thus by Lindeberg’s theorem we get

n∑
k=1

kXk − n2

4 −
n
4

σn
⇒ N(0, 1).

Hence we can conclude
n∑
k=1

kXk − n2

4

1
6n

3
2

⇒ N(0, 1)

by Slutsky.

8. For any s ∈ (1,+∞) let Xs denote an N+-valued random variable satisfying P(Xs = n) = n−s/ζ(s),
where ζ(s) =

∑∞
n=1 n

−s. Denote by Ys the number of distinct primes that divide Xs. Show that

Y1+ε − ln(1/ε)√
ln(1/ε)

⇒ N (0, 1), ε→ 0+ (9)

Hint: To approximate
∑
p∈P p

−s, take the log of the Euler formula for the Riemann zeta function ζ(s).

Solution (by Dani, streamlined by Balázs):

Throughout the proof we will use the notation s = 1 + ε.

Let Zp,s be the indicator of the event that p divides Xs. It is easy to see that

Ys =
∑
p∈P

Zp,s.

From page 128 of the lecture notes we know that the indicator variables (Zp,s)p∈P are independent,
moreover

E (Zp,s) = P (Zp,s = 1) = p−s. (10)

Thus

E (Ys) =
∑
p∈P

E (Zp,s) =
∑
p∈P

p−s, D2 (Ys) =
∑
p∈P

D2 (Zp,s) =
∑
p∈P

p−s(1−p−s) =
∑
p∈P

p−s−
∑
p∈P

p−2s (11)
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Our first goal is to show

E (Y1+ε) = log

(
1

ε

)
+O(1), ε→ 0. (12)

We will prove this by taking the log of both sides of the Euler product formula for the Riemann zeta
function. We begin by showing

log ζ(1 + ε) = log

(
1

ε

)
+O(1), ε→ 0+ (13)

using classical bounds obtained from the monotonicity of x−s.

ζ(s) =

∞∑
n=1

n−s ≥
∫ ∞
1

x−sdx =

[
−x
−ε

ε

]∞
1

=
1

ε
⇒ log ζ(1 + ε) ≥ log

(
1

ε

)

ζ(s) =

∞∑
n=1

n−s = 1 +

∞∑
n=2

n−s ≤ 1 +

∫ ∞
1

x−sdx = 1 +
1

ε
⇒ log ζ(1 + ε) ≤ log

(
1 +

1

ε

)
The two bounds differ by O(1), since 0 < log

(
1 + 1

ε

)
− log

(
1
ε

)
= log (1 + ε) ≤ log 2.

Another technical observation is ∑
p∈P

p−2s = O(1), (14)

which comes from 0 <
∑
p∈P p

−2s ≤
∑
p∈P p

−2 ≤
∑∞
n=1 n

−2 < +∞.
With all in this in mind, we will show (12). Notice that taking the log of both sides of Euler’s product
formula for the Riemann zeta function (see page 128) we get

log ζ(s) = log

∏
p∈P

1

1− p−s

 = −
∑
p∈P

log
(
1− p−s

) (∗)
=
∑
p∈P

(p−s +O(p−2s))
(14)
=
∑
p∈P

p−s +O(1),

where in (∗) we used the first order Taylor expansion log(1+ x) = x+O(x2). Putting this together with
(13) we obtain (12). Next we observe

D2 (Ys)
(11),(14)

=
∑
p∈P

p−s +O(1)
(12)
= log

(
1

ε

)
+O(1). (15)

This means that instead of proving (9), it is enough to prove

Y1+ε − E (Y1+ε)

D (Y1+ε)
⇒ N (0, 1), ε→ 0, (16)

because D (Y1+ε) /
√
log
(
1
ε

)
→ 1 and

(
E (Y1+ε)− log

(
1
ε

))
/
√

log
(
1
ε

)
→ 0 as ε → 0, so (9) and (16) are

indeed equivalent by Slutsky.
To show (16), we only need to check Lindeberg’s condition. We make two technical observations before
that. Firstly, Y1+ε is formally an infinite sum, but of course only finitely many terms are non-zero, since
P(Ys < +∞) = 1 implies that Ys only has finitely many distinct prime divisors. Thus it makes sense to
use Lindeberg in this case even when Nn = ∞. Secondly, we do not have a triangular array where the
rows are indexed by n = 1, 2, . . . but they are indexed by a continuous parameter ε. But this is not a
problem, because is we show that (16) holds along any sequence εn → 0 as n→∞ using Lindeberg, then
(16) also follows.
Since he symbol ε is already taken, we will fix a δ > 0 instead in Lindeberg’s condition. Let us define the
centered random variables Z̃p,1+ε = Zp,1+ε − E(Zp,1+ε). We need to check that

1

D2 (Y1+ε)

∑
p∈P

E
(∣∣∣Z̃p,1+ε∣∣∣2 χ{|Z̃p,1+ε|>δD(Y1+ε)}

)
→ 0, ε→ 0.

Now observe that |Zp,1+ε| is bounded by 1 yet for all fixed δ > 0 we have δD (Y1+ε) → ∞ as ε → 0+,
hence all the terms inside the expectation become simultaneously 0 for small enough ε. Thus Lindeberg’s
condition holds and by Lindeberg’s theorem (16) follows.
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9. Prove that Xn converges to 0 in probability if and only if ϕn(t)→ 1 in an open neighbourhood of t = 0.

Solution (by Laci and Dani, approved by Balázs):

⇒: (by Laci) If Xn converges to 0 in probability then Xn ⇒ 0, thus ϕn(t) = E(eitX) → E(eit0) = 1 by
the second theorem on page 91 of the scanned lecture notes.

⇐: (by Dani)

Let [−δ, δ] be an interval in which ϕn(t)→ 1 as n→∞.

Let us recall a calculation from the proof of Lévy’s continuity theorem (see page 109):

1

2δ

∫ δ

−δ
ϕn(t)dt =

1

2δ

∫ δ

−δ
E
(
eitXn

)
dt = E

(
1

2δ

∫ δ

−δ
eitXndt

)
=

E
(
eiδXn − e−iδXn

2iδXn

)
= E

(
sh (iδXn)

iδXn

)
= E

(
sin (δXn)

δXn

)
Idea: the l.h.s. obviously converges to 1 as n→∞ by the dominated convergence theorem. On the r.h.s.
though we have the expectation of function of the form sin x

x where it is defined as 1 at the x = 0 case.
We know that the unique maximum of x 7→ sin x

x is attained at x = 0 with value 1. This means all of the
mass should concentrate at x = 0, otherwise, the expectation would be less than 1. This means Xn ⇒ 0.

The precise version of this observation is the following:

E
(
sin (δXn)

δXn

)
= E

(
sin (δXn)

δXn
11[|Xn|≥ε]

)
+ E

(
sin (δXn)

δXn
11[|Xn|<ε]

)
≤

sin(δε)

δε
P (|Xn| ≥ ε) + P (|Xn| < ε) =

(
sin(δε)

δε
− 1

)
P (|Xn| ≥ ε) + 1

Since 1
2δ

∫ δ
−δ ϕn(t)dt =

1
2δ

∫ δ
−δ E

(
eitXn

)
dt → 1 as n → ∞ for all ρ > 0 we can choose an N such that

n ≥ N imply 1
2δ

∫ δ
−δ ϕn(t)dt =

1
2δ

∫ δ
−δ E

(
eitXn

)
dt ≥ 1− ρ, thus

1− ρ ≤
(
sin(δε)

δε
− 1

)
P (|Xn| ≥ ε) + 1

P (|Xn| ≥ ε) ≤
ρ

1− sin(δε)
δε

=: ρ′

ρ′ can be set arbitrarily small for a given ε by setting ρ small enough. Hence, Xn ⇒ 0.

10. Let X1, X2, . . . be i.i.d. random variables. Assume P(Xi ≥ 0) = 1, EXi = 1 and Var(Xi) = σ2 < ∞.
Prove that

2
(√

Sn −
√
n
)
⇒ N (0, σ2).

Solution (by Dani, approved by Balázs):

N (0, σ2)⇐ Sn − n√
n

= 2
(√

Sn −
√
n
) √Sn +

√
n

2
√
n

= 2
(√

Sn −
√
n
) √Sn

n + 1

2︸ ︷︷ ︸
⇒1

The last limit comes from the law of large numbers. The rest of the proof is a simple application of
Slutsky’s theorem.

11. For each n ∈ N, let ξn,k, k = 1, . . . , n denote i.i.d. random variables with BER(1/n) distribution. These
random variables form a triangular array. Let Sn = ξn,1 + · · ·+ ξn,n. Find the weak limit of

Sn − E(Sn)√
Var(Sn)

, n→∞.

Explain why this is a valuable lesson in the context of Lindeberg’s theorem.
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Solution (By Dani, expanded a bit by Balázs): Sn ∼ BIN(n, 1/n), so E(Sn) = 1 and D2(Sn) = 1− 1
n ,

which goes to 1 as n → ∞. We know from page 91-92 of the scanned lecture notes that Sn =⇒ Y ,
where Y ∼ POI(1). Thus by Slutsky we obtain

Sn − E(Sn)√
Var(Sn)

=⇒ Y − 1, n→∞.

Obviously, the limiting distribution is not standard normal, so something must go wrong with Lindeberg’s
condition. If we denote σ2

n,k = Var(ξn,k) =
1
n (1 −

1
n ) and σ

2
n = Var(Sn) (this is the standard Lindeberg

notation used on page 116), then we see that in our case

lim
n→∞

max
1≤k≤n

σ2
n,k

σ2
n

= lim
n→∞

1

n
= 0, (17)

which looks promising (c.f. equation A from page 117), however (17) is weaker than Lindeberg’s condition!

To see how the Lindeberg condition fails, let ξ̃n,k = ξn,k −E(ξn,k) = ξn,k − 1/n, and let us take a look at

1

σ2
n

n∑
k=1

E
(
|ξ̃n,k|2χ{|ξ̃n,k|>εσn}

)

Note that by choosing ε < 1
2 we can get εσn = ε

√
1− 1

n < ε < 1
2 . Thus, |ξ̃n,k| > εσn implies ξn,k = 1

and ξ̃n,k = 1− 1
n for n ≥ 3. Hence,

1

σ2
n

n∑
k=1

E
(
|ξ̃n,k|2χ{|ξ̃n,k|>εσn}

)
=

1

1− 1
n

n∑
k=1

(
1− 1

n

)2

P (ξn,k = 1) = 1− 1

n
→ 1 6= 0.

Thus Lindeberg’s condition fails for this exercise.
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