9. Cryptography

Coding Technology

Objective

Objective: secure communication over a public channel.

Construct cryptography algorithms which present high complexity for the attacker, but which can easily be deciphered using the key.

Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. $n=26$ for English texts),

$$
E_{k}(x)=y=x+k \quad \bmod n,
$$

where k is the value of the key.
If k is unknown, k can be either guessed by trying (26 possibilities for the English alphabet).

Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. $n=26$ for English texts),

$$
E_{k}(x)=y=x+k \quad \bmod n,
$$

where k is the value of the key.
If k is unknown, k can be either guessed by trying (26 possibilities for the English alphabet).

Linear cypher:

$$
E_{k}(x)=y=a x+b \quad \bmod n
$$

where $k=(a, b)$ is the value of the key. $\operatorname{gcd}(a, n)=1$ must hold!

Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. $n=26$ for English texts),

$$
E_{k}(x)=y=x+k \quad \bmod n,
$$

where k is the value of the key.
If k is unknown, k can be either guessed by trying (26 possibilities for the English alphabet).

Linear cypher:

$$
E_{k}(x)=y=a x+b \bmod n
$$

where $k=(a, b)$ is the value of the key. $\operatorname{gcd}(a, n)=1$ must hold! Decryption is also linear:

$$
D_{k}(y)=a^{-1} y-a^{-1} b \quad \bmod n
$$

If the key is unknown, statistical analysis can help in guessing.

Problem 1

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y=x+k \bmod 26$.

Problem 1

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y=x+k \bmod 26$.

Solution. Guess k by trying:

- $k=1$: HYHUBERGB \rightarrow GXGTADQFA;

Problem 1

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y=x+k \bmod 26$.

Solution. Guess k by trying:

- $k=1$: HYHUBERGB \rightarrow GXGTADQFA;
- $k=2$: HYHUBERGB \rightarrow FWFSZCPEZ;

Problem 1

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y=x+k \bmod 26$.

Solution. Guess k by trying:

- $k=1$: HYHUBERGB \rightarrow GXGTADQFA;
- $k=2:$ HYHUBERGB \rightarrow FWFSZCPEZ;
- $k=3:$ HYHUBERGB \rightarrow EVERYBODY. \checkmark

Problem 2

Decypher the following cyphertext if we know that linear encryption is used.

FMXVEDKAPHFERBNDKRXRSREFMORU DSDKDVSHVUFEDKAPRKDLYEVLRHHRH

Problem 2

Decypher the following cyphertext if we know that linear encryption is used.

FMXVEDKAPHFERBNDKRXRSREFMORU DSDKDVSHVUFEDKAPRKDLYEVLRHHRH

Solution. We use statistical analysis.

English text letter probabilities

letter	prob.	letter	prob.
A	.082	N	.067
B	.015	O	.075
C	.028	P	.019
D	.043	Q	.001
E	.127	R	.060
F	.022	S	.063
G	.020	T	.091
H	.061	U	.028
I	.070	V	.010
J	.002	W	.023
K	.008	X	.001
L	.040	Y	.020
M	.024	Z	.001

cyphertext letter frequencies

letter	freq.	letter	freq.
A	2	N	1
B	1	O	1
C	0	P	2
D	7	Q	0
E	5	R	8
F	4	S	3
G	0	T	0
H	5	U	2
I	0	V	4
J	0	W	0
K	5	X	2
L	2	Y	1
M	2	Z	0

Problem 2

In the cyphertext, the most frequent letters are: $R(8), D(7), E(5)$, $\mathrm{H}(5), \mathrm{K}(5)$.

These are good candidates for E and T (the two most frequent letters in English texts).

Problem 2

In the cyphertext, the most frequent letters are: $R(8), D(7), E(5)$, $\mathrm{H}(5), \mathrm{K}(5)$.

These are good candidates for E and T (the two most frequent letters in English texts).

Guess 1: $\mathrm{R} \rightarrow \mathrm{E}, \mathrm{D} \rightarrow \mathrm{T}$. Then $E_{k}(4)=17$, and $E_{k}(19)=3$, that is,

$$
\begin{aligned}
4 a+b & =17 \quad \bmod 26 \\
19 a+b & =3 \quad \bmod 26
\end{aligned}
$$

Problem 2

In the cyphertext, the most frequent letters are: $R(8), D(7), E(5)$, $\mathrm{H}(5), \mathrm{K}(5)$.

These are good candidates for E and T (the two most frequent letters in English texts).

Guess 1: $\mathrm{R} \rightarrow \mathrm{E}, \mathrm{D} \rightarrow \mathrm{T}$. Then $E_{k}(4)=17$, and $E_{k}(19)=3$, that is,

$$
\begin{aligned}
4 a+b & =17 \quad \bmod 26 \\
19 a+b & =3 \quad \bmod 26
\end{aligned}
$$

Subtraction gives

$$
15 a=12 \bmod 26
$$

but then a must be even, so $\operatorname{gcd}(a, 26)>1 \rightarrow$ incorrect guess.

Problem 2

Guess 2: $\mathrm{R} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow \mathrm{T}$. Then

$$
\begin{aligned}
4 a+b & =17 \quad \bmod 26 \\
19 a+b & =4 \quad \bmod 26
\end{aligned}
$$

Then

$$
\begin{aligned}
15 a & =13 \bmod 26, \\
a & =13 \bmod 26,
\end{aligned}
$$

so $\operatorname{gcd}(a, 26)>1$ again \rightarrow incorrect guess.

Problem 2

Guess 3: $\mathrm{R} \rightarrow \mathrm{E}, \mathrm{K} \rightarrow \mathrm{T}$. Then

$$
\begin{array}{r}
4 a+b=17 \quad \bmod 26, \\
19 a+b=10 \quad \bmod 26 .
\end{array}
$$

Then

$$
\begin{aligned}
15 a & =19 \bmod 26, \\
a & =3 \bmod 26, \\
b & =5 \bmod 26
\end{aligned}
$$

$k=(3,5)$ is a valid key.

Problem 2

Guess 3: $\mathrm{R} \rightarrow \mathrm{E}, \mathrm{K} \rightarrow \mathrm{T}$. Then

$$
\begin{array}{r}
4 a+b=17 \quad \bmod 26 \\
19 a+b=10 \quad \bmod 26
\end{array}
$$

Then

$$
\begin{aligned}
15 a & =19 \bmod 26 \\
a & =3 \bmod 26 \\
b & =5 \bmod 26
\end{aligned}
$$

$k=(3,5)$ is a valid key. We still need to check if we get meaningful decrypted text.

$$
D_{k}(y)=3^{-1} y-3^{-1} \cdot 5=9 y-19 \bmod 26
$$

ALGORITHMSAREQUITEGENERALDEF INITIONSOFARITHMETICPROCESSES

Simple cyphers II

Permutation cypher: the message is cut into blocks of equal length, and the letters within each block are reordered according to the key permutation.
Example.
1234567
2147356

(12)(34765)

Cypher: MORNING \rightarrow OMIRNGN

Simple cyphers II

Permutation cypher: the message is cut into blocks of equal length, and the letters within each block are reordered according to the key permutation.

Example.

$$
\begin{align*}
& 1234567 \\
& 2147356 \tag{12}
\end{align*}
$$

Cypher: MORNING \rightarrow OMIRNGN
One time pad (OTP): both the sender and the receiver have the same random bit sequence k; the encryption is bitwise addition of the message and the key. Example:

$$
\begin{aligned}
x & =0100110101011101 \ldots \\
+k & =1101000011101011 \ldots \\
\hline y & =1001110110110110 \ldots
\end{aligned}
$$

As long as the key is used only once, OTP offers perfect secrecy. (Also, it is essentially the only such method.)

Problem 3

Using OTP encryption with key $k=(110011000001111)$, we receive the cyphertext $y=(011100010100011)$. Compute the plaintext c.

Problem 3

Using OTP encryption with key $k=(110011000001111)$, we receive the cyphertext $y=(011100010100011)$. Compute the plaintext c.

Solution. $x=y+k \bmod 2$, so

$$
\begin{array}{r}
y=011100010100011 \\
+\mathrm{k}=110011000001111 \\
\hline x=10111010101100
\end{array}
$$

Problem 4 - OTP without key exchange

A and B want to communicate using OTP without a common secret key. Assume A has key k_{A} and B has key k_{B}. A has a message x to send; he sends the message $y_{1}=x+k_{A}$ to B , then B returns $y_{2}=y_{1}+k_{B}$, finally, A returns $y_{3}=y_{2}+k_{A}$. From the information

$$
y_{1}=(0111000100), \quad y_{2}=(1000100100), \quad y_{3}=(1000111011)
$$

derive the plain text x and keys k_{A} and k_{B}.

Problem 4 - OTP without key exchange

A and B want to communicate using OTP without a common secret key. Assume A has key k_{A} and B has key k_{B}. A has a message x to send; he sends the message $y_{1}=x+k_{A}$ to B , then B returns $y_{2}=y_{1}+k_{B}$, finally, A returns $y_{3}=y_{2}+k_{A}$. From the information

$$
y_{1}=(0111000100), \quad y_{2}=(1000100100), \quad y_{3}=(1000111011)
$$

derive the plain text x and keys k_{A} and k_{B}.
Solution.

$$
\begin{aligned}
& y_{1}=x+k_{A}, \quad y_{2}=x+k_{A}+k_{B}, \quad y_{3}=x+k_{B} \\
& y_{1}+y_{2}+y_{3}=x+k_{A}+x+k_{A}+k_{B}+x+k_{B}=x .
\end{aligned}
$$

From this,

$$
\begin{aligned}
x & =y_{1}+y_{2}+y_{3}=(0111011011) \\
k_{A} & =x+y_{1}=(0000011111) \\
k_{B} & =x+y_{3}=(1111100000)
\end{aligned}
$$

Problem 4 - OTP without key exchange

A and B want to communicate using OTP without a common secret key. Assume A has key k_{A} and B has key k_{B}. A has a message x to send; he sends the message $y_{1}=x+k_{A}$ to B , then B returns $y_{2}=y_{1}+k_{B}$, finally, A returns $y_{3}=y_{2}+k_{A}$. From the information

$$
y_{1}=(0111000100), \quad y_{2}=(1000100100), \quad y_{3}=(1000111011)
$$

derive the plain text x and keys k_{A} and k_{B}.
Solution.

$$
y_{1}=x+k_{A}, \quad y_{2}=x+k_{A}+k_{B}, \quad y_{3}=x+k_{B}
$$

From this,

$$
\begin{aligned}
x & =y_{1}+y_{2}+y_{3}=(0111011011) \\
k_{A} & =x+y_{1}=(0000011111) \\
k_{B} & =x+y_{3}=(1111100000)
\end{aligned}
$$

Problem 4 - OTP without key exchange

A and B want to communicate using OTP without a common secret key. Assume A has key k_{A} and B has key k_{B}. A has a message x to send; he sends the message $y_{1}=x+k_{A}$ to B , then B returns $y_{2}=y_{1}+k_{B}$, finally, A returns $y_{3}=y_{2}+k_{A}$. From the information

$$
y_{1}=(0111000100), \quad y_{2}=(1000100100), \quad y_{3}=(1000111011)
$$

derive the plain text x and keys k_{A} and k_{B}.
Solution.

$$
\begin{aligned}
& y_{1}=x+k_{A}, \quad y_{2}=x+k_{A}+k_{B}, \quad y_{3}=x+k_{B} \\
& y_{1}+y_{2}+y_{3}=x+k_{A}+x+k_{A}+k_{B}+x+k_{B}=x .
\end{aligned}
$$

Problem 4 - OTP without key exchange

A and B want to communicate using OTP without a common secret key. Assume A has key k_{A} and B has key k_{B}. A has a message x to send; he sends the message $y_{1}=x+k_{A}$ to B , then B returns $y_{2}=y_{1}+k_{B}$, finally, A returns $y_{3}=y_{2}+k_{A}$. From the information

$$
y_{1}=(0111000100), \quad y_{2}=(1000100100), \quad y_{3}=(1000111011)
$$

derive the plain text x and keys k_{A} and k_{B}.
Solution.

$$
\begin{aligned}
& y_{1}=x+k_{A}, \quad y_{2}=x+k_{A}+k_{B}, \quad y_{3}=x+k_{B} \\
& y_{1}+y_{2}+y_{3}=x+k_{A}+x+k_{A}+k_{B}+x+k_{B}=x .
\end{aligned}
$$

From this,

$$
\begin{aligned}
x & =y_{1}+y_{2}+y_{3}=(0111011011) \\
k_{A} & =x+y_{1}=(0000011111) \\
k_{B} & =x+y_{3}=(1111100000)
\end{aligned}
$$

Problem 5 - stochastic encryption

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key.

Problem 5 - stochastic encryption

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key. Consider the following setup:

- the space of the plaintext is $\{a, b\}$ with probabilities

$$
\operatorname{Pr}(a)=1 / 3, \operatorname{Pr}(b)=2 / 3
$$

- the space of the cyphertext is $\{1,2,3,4,5\}$.
- the keys are $\{1,2,3,4,5\}$, chosen with probability $\{2 / 5,1 / 5,1 / 5,1 / 10,1 / 10\}$ respectively.

Problem 5 - stochastic encryption

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key. Consider the following setup:

- the space of the plaintext is $\{a, b\}$ with probabilities

$$
\operatorname{Pr}(\mathrm{a})=1 / 3, \operatorname{Pr}(\mathrm{~b})=2 / 3
$$

- the space of the cyphertext is $\{1,2,3,4,5\}$.
- the keys are $\{1,2,3,4,5\}$, chosen with probability $\{2 / 5,1 / 5,1 / 5,1 / 10,1 / 10\}$ respectively.
The plaintext \rightarrow cyphertext assignment is the following:

$$
\begin{array}{lll}
k=1: & a \rightarrow 1 & b \rightarrow 2 \\
k=2: & a \rightarrow 2 & b \rightarrow 4 \\
k=3: & a \rightarrow 3 & b \rightarrow 1 \\
k=4: & a \rightarrow 5 & b \rightarrow 3 \\
k=5: & a \rightarrow 4 & b \rightarrow 5
\end{array}
$$

Problem 5 - stochastic encryption

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key. Consider the following setup:

- the space of the plaintext is $\{a, b\}$ with probabilities

$$
\operatorname{Pr}(\mathrm{a})=1 / 3, \operatorname{Pr}(\mathrm{~b})=2 / 3
$$

- the space of the cyphertext is $\{1,2,3,4,5\}$.
- the keys are $\{1,2,3,4,5\}$, chosen with probability $\{2 / 5,1 / 5,1 / 5,1 / 10,1 / 10\}$ respectively.
The plaintext \rightarrow cyphertext assignment is the following:

$$
\begin{array}{lll}
k=1: & a \rightarrow 1 & b \rightarrow 2 \\
k=2: & a \rightarrow 2 & b \rightarrow 4 \\
k=3: & a \rightarrow 3 & b \rightarrow 1 \\
k=4: & a \rightarrow 5 & b \rightarrow 3 \\
k=5: & a \rightarrow 4 & b \rightarrow 5
\end{array}
$$

(a) Compute the cyphertext distribution.
(b) Are the plaintext and cyphertext independent (is this a perfect encryption)?

Problem 5 - stochastic encryption

Solution.
(a) The cyphertext distribution can be computed using total probability:

$$
\begin{aligned}
\operatorname{Pr}(Y=1) & =\operatorname{Pr}(Y=1 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=1 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =2 / 5 \cdot 1 / 3+1 / 5 \cdot 2 / 3=4 / 15=0.2667 \\
\operatorname{Pr}(Y=2) & =\operatorname{Pr}(Y=2 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=2 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =1 / 5 \cdot 1 / 3+2 / 5 \cdot 2 / 3=5 / 15=0.3333 \\
\operatorname{Pr}(Y=3) & =\operatorname{Pr}(Y=3 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=3 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =1 / 5 \cdot 1 / 3+1 / 10 \cdot 2 / 3=4 / 30=0.1333 \\
\operatorname{Pr}(Y=4) & =\operatorname{Pr}(Y=4 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=4 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =1 / 10 \cdot 1 / 3+1 / 5 \cdot 2 / 3=5 / 30=0.1667 \\
\operatorname{Pr}(Y=5) & =\operatorname{Pr}(Y=5 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=5 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =1 / 10 \cdot 1 / 3+1 / 10 \cdot 2 / 3=1 / 10=0.1
\end{aligned}
$$

Problem 5 - stochastic encryption

Solution.
(a) The cyphertext distribution can be computed using total probability:

$$
\begin{aligned}
\operatorname{Pr}(Y=1) & =\operatorname{Pr}(Y=1 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=1 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =2 / 5 \cdot 1 / 3+1 / 5 \cdot 2 / 3=4 / 15=0.2667 \\
\operatorname{Pr}(Y=2) & =\operatorname{Pr}(Y=2 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=2 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =1 / 5 \cdot 1 / 3+2 / 5 \cdot 2 / 3=5 / 15=0.3333 \\
\operatorname{Pr}(Y=3) & =\operatorname{Pr}(Y=3 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=3 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =1 / 5 \cdot 1 / 3+1 / 10 \cdot 2 / 3=4 / 30=0.1333 \\
\operatorname{Pr}(Y=4) & =\operatorname{Pr}(Y=4 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=4 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =1 / 10 \cdot 1 / 3+1 / 5 \cdot 2 / 3=5 / 30=0.1667 \\
\operatorname{Pr}(Y=5) & =\operatorname{Pr}(Y=5 \mid X=\mathrm{a}) \operatorname{Pr}(X=\mathrm{a})+\operatorname{Pr}(Y=5 \mid X=\mathrm{b}) \operatorname{Pr}(X=\mathrm{b})= \\
& =1 / 10 \cdot 1 / 3+1 / 10 \cdot 2 / 3=1 / 10=0.1
\end{aligned}
$$

(b) No, e.g.

$$
\operatorname{Pr}(Y=1 \mid X=a)=2 / 5 \neq \operatorname{Pr}(Y=1 \mid X=b)=1 / 5
$$

Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to find $\operatorname{gcd}(a, b)$ and also to solve

$$
\operatorname{gcd}(a, b)=s \cdot a+t \cdot b
$$

Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to find $\operatorname{gcd}(a, b)$ and also to solve

$$
\operatorname{gcd}(a, b)=s \cdot a+t \cdot b
$$

Assume $a>b$; initialize $r_{0}=a, r_{1}=b$ and also $s_{0}=1, t_{0}=0, s_{1}=0, t_{1}=1$. In each step, we write

$$
r_{k-1}=r_{k} \cdot q_{k+1}+r_{k+1} \quad r_{k}=s_{k} \cdot a+t_{k} \cdot b
$$

where $0 \leq r_{k+1}<r_{k}$, and s_{k+1} and $t_{k_{+} 1}$ are computed from

$$
s_{k+1}=s_{k-1}-q_{k} s_{k}, \quad t_{k+1}=t_{k-1}-q_{k} t_{k}
$$

Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to find $\operatorname{gcd}(a, b)$ and also to solve

$$
\operatorname{gcd}(a, b)=s \cdot a+t \cdot b
$$

Assume $a>b$; initialize $r_{0}=a, r_{1}=b$ and also $s_{0}=1, t_{0}=0, s_{1}=0, t_{1}=1$. In each step, we write

$$
r_{k-1}=r_{k} \cdot q_{k+1}+r_{k+1} \quad r_{k}=s_{k} \cdot a+t_{k} \cdot b
$$

where $0 \leq r_{k+1}<r_{k}$, and s_{k+1} and $t_{k_{+} 1}$ are computed from

$$
s_{k+1}=s_{k-1}-q_{k} s_{k}, \quad t_{k+1}=t_{k-1}-q_{k} t_{k}
$$

The algorithm stops when $r_{k+1}=0$; then $r_{k}=\operatorname{gcd}(a, b)$, and $\operatorname{gcd}(a, b)=s_{k} \cdot a+t_{k} \cdot b$; at most $\log _{1.62}(\min (a, b))$ steps are needed.

Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to find $\operatorname{gcd}(a, b)$ and also to solve

$$
\operatorname{gcd}(a, b)=s \cdot a+t \cdot b
$$

Assume $a>b$; initialize $r_{0}=a, r_{1}=b$ and also $s_{0}=1, t_{0}=0, s_{1}=0, t_{1}=1$. In each step, we write

$$
r_{k-1}=r_{k} \cdot q_{k+1}+r_{k+1} \quad r_{k}=s_{k} \cdot a+t_{k} \cdot b
$$

where $0 \leq r_{k+1}<r_{k}$, and s_{k+1} and $t_{k_{+} 1}$ are computed from

$$
s_{k+1}=s_{k-1}-q_{k} s_{k}, \quad t_{k+1}=t_{k-1}-q_{k} t_{k} .
$$

The algorithm stops when $r_{k+1}=0$; then $r_{k}=\operatorname{gcd}(a, b)$, and $\operatorname{gcd}(a, b)=s_{k} \cdot a+t_{k} \cdot b$; at most $\log _{1.62}(\min (a, b))$ steps are needed.

For $\operatorname{gcd}(n, e)=1$, the algorithm gives $1=\operatorname{gcd}(n, e)=s \cdot n+t \cdot e$, so $e^{-1}=t \bmod n$.

Problem 5

Compute the greatest common divisor (gcd) of $b=8387$ and $c=1243$, and also compute s and t so that

$$
\operatorname{gcd}(8387,1243)=s \cdot 8387+t \cdot 1243
$$

Problem 5

Compute the greatest common divisor (gcd) of $b=8387$ and $c=1243$, and also compute s and t so that

$$
\operatorname{gcd}(8387,1243)=s \cdot 8387+t \cdot 1243
$$

Solution.

$$
8387=1243 \cdot 6+929 \quad 929=b-6 c
$$

Problem 5

Compute the greatest common divisor (gcd) of $b=8387$ and $c=1243$, and also compute s and t so that

$$
\operatorname{gcd}(8387,1243)=s \cdot 8387+t \cdot 1243
$$

Solution.

$$
\begin{array}{ll}
8387=1243 \cdot 6+929 & 929=b-6 c \\
1243=929 \cdot 1+314 & 314=-b+7 c
\end{array}
$$

Problem 5

Compute the greatest common divisor (gcd) of $b=8387$ and $c=1243$, and also compute s and t so that

$$
\operatorname{gcd}(8387,1243)=s \cdot 8387+t \cdot 1243
$$

Solution.

$$
\begin{array}{rlrl}
8387 & =1243 \cdot 6+929 & 929 & =b-6 c \\
1243 & =929 \cdot 1+314 & 314 & =-b+7 c \\
929 & =314 \cdot 2+301 & 301 & =3 b-20 c
\end{array}
$$

Problem 5

Compute the greatest common divisor (gcd) of $b=8387$ and $c=1243$, and also compute s and t so that

$$
\operatorname{gcd}(8387,1243)=s \cdot 8387+t \cdot 1243
$$

Solution.

$$
\begin{array}{rlrl}
8387 & =1243 \cdot 6+929 & 929 & =b-6 c \\
1243 & =929 \cdot 1+314 & 314 & =-b+7 c \\
929 & =314 \cdot 2+301 & 301 & =3 b-20 c \\
314 & =301 \cdot 1+13 & 13 & =-4 b+27 c
\end{array}
$$

Problem 5

Compute the greatest common divisor (gcd) of $b=8387$ and $c=1243$, and also compute s and t so that

$$
\operatorname{gcd}(8387,1243)=s \cdot 8387+t \cdot 1243
$$

Solution.

$$
\begin{array}{rlrl}
8387 & =1243 \cdot 6+929 & 929 & =b-6 c \\
1243 & =929 \cdot 1+314 & 314 & =-b+7 c \\
929 & =314 \cdot 2+301 & 301 & =3 b-20 c \\
314 & =301 \cdot 1+13 & 13 & =-4 b+27 c \\
301 & =13 \cdot 23+2 & 2 & =95 b-641 c
\end{array}
$$

Problem 5

Compute the greatest common divisor (gcd) of $b=8387$ and $c=1243$, and also compute s and t so that

$$
\operatorname{gcd}(8387,1243)=s \cdot 8387+t \cdot 1243
$$

Solution.

$$
\begin{array}{rlrl}
8387 & =1243 \cdot 6+929 & 929 & =b-6 c \\
1243 & =929 \cdot 1+314 & 314 & =-b+7 c \\
929 & =314 \cdot 2+301 & 301 & =3 b-20 c \\
314 & =301 \cdot 1+13 & 13 & =-4 b+27 c \\
301 & =13 \cdot 23+2 & 2 & =95 b-641 c \\
13 & =2 \cdot 6+1 & 1 & =-574 b+3873 c
\end{array}
$$

Problem 5

Compute the greatest common divisor (gcd) of $b=8387$ and $c=1243$, and also compute s and t so that

$$
\operatorname{gcd}(8387,1243)=s \cdot 8387+t \cdot 1243
$$

Solution.

$$
\begin{array}{rlrl}
8387 & =1243 \cdot 6+929 & 929 & =b-6 c \\
1243 & =929 \cdot 1+314 & 314 & =-b+7 c \\
929 & =314 \cdot 2+301 & 301 & =3 b-20 c \\
314 & =301 \cdot 1+13 & 13 & =-4 b+27 c \\
301 & =13 \cdot 23+2 & 2 & =95 b-641 c \\
13 & =2 \cdot 6+1 & 1 & =-574 b+38 \\
2 & =1 \cdot 2+0 . & &
\end{array}
$$

Finally,

$$
\operatorname{gcd}(8387,1243)=-574 \cdot 8387+3873 \cdot 1243
$$

Public key cryptography

Instead of a common key k which is known by both the sender and the receiver, public key cryptography works the following way:

- the receiver has a (d, e) pair of keys
- d is a private key known only by the receiver
- e is a public key known by everyone

RSA algorithm

The steps of the RSA algorithm are the following:

- Key generation:
- select 2 large primes p and $q ; n=p q$.
- $\phi(n)=(p-1)(q-1)$.
- Select a coding exponent e so that $\operatorname{gcd}(e, \phi(n))=1$ and $1<e<\phi(n)$.
- Solve $d e=1 \bmod m$ to obtain the decoding key d.
- (n, e) is the public key;
- $p, q, \phi(n)$ and d are kept secret.

RSA algorithm

The steps of the RSA algorithm are the following:

- Key generation:
- select 2 large primes p and $q ; n=p q$.
- $\phi(n)=(p-1)(q-1)$.
- Select a coding exponent e so that $\operatorname{gcd}(e, \phi(n))=1$ and $1<e<\phi(n)$.
- Solve $d e=1 \bmod m$ to obtain the decoding key d.
- (n, e) is the public key;
- $p, q, \phi(n)$ and d are kept secret.
- Encryption (using the public key):
- the plaintext is cut into sections which can be turned into numbers x such that $0 \leq x<n$.
- the cyphertext is $c=x^{e} \bmod n$.

RSA algorithm

The steps of the RSA algorithm are the following:

- Key generation:
- select 2 large primes p and $q ; n=p q$.
- $\phi(n)=(p-1)(q-1)$.
- Select a coding exponent e so that $\operatorname{gcd}(e, \phi(n))=1$ and $1<e<\phi(n)$.
- Solve $d e=1 \bmod m$ to obtain the decoding key d.
- (n, e) is the public key;
$-p, q, \phi(n)$ and d are kept secret.
- Encryption (using the public key):
- the plaintext is cut into sections which can be turned into numbers x such that $0 \leq x<n$.
\rightarrow the cyphertext is $c=x^{e} \bmod n$.
- Decryption:
- $x=c^{d} \bmod n$.

RSA algorithm

Why does the RSA algorithm work?

RSA algorithm

Why does the RSA algorithm work?
Key generation is easy:

- Primality testing (checking whether a given number is a prime or not) is computationally fast.
- There are many primes even among large numbers: the Prime Number Theorem says that among numbers of order N, on average 1 out of $\log (N)$ numbers is a prime.
- So we can just start prime checking large numbers randomly, and we will soon find two primes for p and q.
- gcd and $d e=1 \bmod \phi(n)$ can be solved fast using the Extended Euclidean Algorithm.

RSA algorithm

Decryption and encryption are indeed inverse operations due to Euler's Theorem:

$$
d e=1 \bmod \phi(n) \quad \Longrightarrow \quad x^{d e}=x \bmod n .
$$

RSA algorithm

Decryption and encryption are indeed inverse operations due to Euler's Theorem:

$$
d e=1 \bmod \phi(n) \quad \Longrightarrow \quad x^{d e}=x \bmod n .
$$

Modular exponentiation (for x^{e} or c^{d}) can be computed fast along the exponents $1,2,4,8,16, \ldots$

RSA algorithm

Decryption and encryption are indeed inverse operations due to Euler's Theorem:

$$
d e=1 \bmod \phi(n) \quad \Longrightarrow \quad x^{d e}=x \bmod n
$$

Modular exponentiation (for x^{e} or c^{d}) can be computed fast along the exponents $1,2,4,8,16, \ldots$

On the other hand, integer factorization (to a product of primes) is computationally difficult for large numbers. So even though n is public, p and q are difficult to compute, and without p and q, we cannot compute $\phi(n)$ and d either. Overall, if p and q are sufficiently large, attacking RSA is computationally infeasible.

RSA algorithm
Example. $p=3, q=11 \rightarrow n=33$.

RSA algorithm

Example. $p=3, q=11 \rightarrow n=33$.
Then $\phi(n)=(p-1)(q-1)=20$.

RSA algorithm

Example. $p=3, q=11 \rightarrow n=33$.
Then $\phi(n)=(p-1)(q-1)=20$. We select $e=3$. Solving

$$
d e=1 \quad \bmod 20
$$

gives

RSA algorithm

Example. $p=3, q=11 \rightarrow n=33$.
Then $\phi(n)=(p-1)(q-1)=20$. We select $e=3$. Solving

$$
d e=1 \bmod 20
$$

gives $d=7$.
Public key: $(n, e)=(20,3)$. Private key: $d=7$.
Encrypting $x=4$ gives

RSA algorithm

Example. $p=3, q=11 \rightarrow n=33$.
Then $\phi(n)=(p-1)(q-1)=20$. We select $e=3$. Solving

$$
d e=1 \bmod 20
$$

gives $d=7$.
Public key: $(n, e)=(20,3)$. Private key: $d=7$.
Encrypting $x=4$ gives

$$
c=x^{e}=4^{3} \bmod 33=31
$$

Decryption gives

$$
x=c^{d}=31^{7}=(-2)^{7}=-128=4 \bmod 33
$$

Problem 6

The parameters of RSA are generated by $p=7, q=17$.
(a) What is the smallest possible choice of the coding exponent e ?
(b) What is the cyphertext belonging to the plaintext $x=11$?
(c) What is the decoding key d ?

Problem 6

The parameters of RSA are generated by $p=7, q=17$.
(a) What is the smallest possible choice of the coding exponent e ?
(b) What is the cyphertext belonging to the plaintext $x=11$?
(c) What is the decoding key d ?

Solution.
(a) $\phi(n)=(p-1)(q-1)=6 \cdot 16=96$.

Problem 6

The parameters of RSA are generated by $p=7, q=17$.
(a) What is the smallest possible choice of the coding exponent e ?
(b) What is the cyphertext belonging to the plaintext $x=11$?
(c) What is the decoding key d ?

Solution.
(a) $\phi(n)=(p-1)(q-1)=6 \cdot 16=96$.

We need e to have $\operatorname{gcd}(e, 96)=1$ and $1<e<96$, so the smallest possible choice for e is

Problem 6

The parameters of RSA are generated by $p=7, q=17$.
(a) What is the smallest possible choice of the coding exponent e ?
(b) What is the cyphertext belonging to the plaintext $x=11$?
(c) What is the decoding key d ?

Solution.
(a) $\phi(n)=(p-1)(q-1)=6 \cdot 16=96$.

We need e to have $\operatorname{gcd}(e, 96)=1$ and $1<e<96$, so the smallest possible choice for e is $e=5$.

Problem 6

The parameters of RSA are generated by $p=7, q=17$.
(a) What is the smallest possible choice of the coding exponent e ?
(b) What is the cyphertext belonging to the plaintext $x=11$?
(c) What is the decoding key d ?

Solution.
(a) $\phi(n)=(p-1)(q-1)=6 \cdot 16=96$.

We need e to have $\operatorname{gcd}(e, 96)=1$ and $1<e<96$, so the smallest possible choice for e is $e=5$.
(b) $c=x^{e} \bmod n=11^{5} \bmod 119=160051 \bmod 119=44$.

Problem 6

The parameters of RSA are generated by $p=7, q=17$.
(a) What is the smallest possible choice of the coding exponent e ?
(b) What is the cyphertext belonging to the plaintext $x=11$?
(c) What is the decoding key d ?

Solution.
(a) $\phi(n)=(p-1)(q-1)=6 \cdot 16=96$.

We need e to have $\operatorname{gcd}(e, 96)=1$ and $1<e<96$, so the smallest possible choice for e is $e=5$.
(b) $c=x^{e} \bmod n=11^{5} \bmod 119=160051 \bmod 119=44$.
(c) We need to solve $d e=1 \bmod \phi(n)$ where $e=5$ and $n=96$.

We use the Extended Euclidean Algorithm for $b=96$ and $c=5$:

$$
96=5 \cdot 19+1 \quad 1=b-19 c
$$

Problem 6

The parameters of RSA are generated by $p=7, q=17$.
(a) What is the smallest possible choice of the coding exponent e ?
(b) What is the cyphertext belonging to the plaintext $x=11$?
(c) What is the decoding key d ?

Solution.
(a) $\phi(n)=(p-1)(q-1)=6 \cdot 16=96$.

We need e to have $\operatorname{gcd}(e, 96)=1$ and $1<e<96$, so the smallest possible choice for e is $e=5$.
(b) $c=x^{e} \bmod n=11^{5} \bmod 119=160051 \bmod 119=44$.
(c) We need to solve $d e=1 \bmod \phi(n)$ where $e=5$ and $n=96$.

We use the Extended Euclidean Algorithm for $b=96$ and $c=5$:

$$
96=5 \cdot 19+1 \quad 1=b-19 c
$$

so $d=-19=77 \bmod 96$.

Problem 6

We use RSA with $p=73, q=151$.
(a) Compute n and $\phi(n)$.
(b) Is $e=11$ a possible choice?
(c) Compute d.

Problem 6

We use RSA with $p=73, q=151$.
(a) Compute n and $\phi(n)$.
(b) Is $e=11$ a possible choice?
(c) Compute d.

Solution.
(a) $n=73 \cdot 151=11023$ and $\phi(n)=72 \cdot 150=10800$.
(b) $e=11$ is a possible choice because $\operatorname{gcd}(10800,11)=1$.
(c) Compute d.

$$
10800=11 \cdot 981+9 \quad 9=1 \cdot 10800-981 \cdot 11
$$

Problem 6

We use RSA with $p=73, q=151$.
(a) Compute n and $\phi(n)$.
(b) Is $e=11$ a possible choice?
(c) Compute d.

Solution.
(a) $n=73 \cdot 151=11023$ and $\phi(n)=72 \cdot 150=10800$.
(b) $e=11$ is a possible choice because $\operatorname{gcd}(10800,11)=1$.
(c) Compute d.

$$
\begin{aligned}
& 10800=11 \cdot 981+9 \quad 9=1 \cdot 10800-981 \cdot 11 \\
& 11=9 \cdot 1+2 \quad 2=(-1) \cdot 10800+982 \cdot 11
\end{aligned}
$$

Problem 6

We use RSA with $p=73, q=151$.
(a) Compute n and $\phi(n)$.
(b) Is $e=11$ a possible choice?
(c) Compute d.

Solution.
(a) $n=73 \cdot 151=11023$ and $\phi(n)=72 \cdot 150=10800$.
(b) $e=11$ is a possible choice because $\operatorname{gcd}(10800,11)=1$.
(c) Compute d.

$$
\begin{array}{rlrl}
10800 & =11 \cdot 981+9 & & =1 \cdot 10800-981 \cdot 11 \\
11 & =9 \cdot 1+2 & 2 & =(-1) \cdot 10800+982 \cdot 11 \\
9 & =2 \cdot 4+1 & 1 & =5 \cdot 10800-4909 \cdot 11
\end{array}
$$

Problem 6

We use RSA with $p=73, q=151$.
(a) Compute n and $\phi(n)$.
(b) Is $e=11$ a possible choice?
(c) Compute d.

Solution.
(a) $n=73 \cdot 151=11023$ and $\phi(n)=72 \cdot 150=10800$.
(b) $e=11$ is a possible choice because $\operatorname{gcd}(10800,11)=1$.
(c) Compute d.

$$
\begin{aligned}
& 10800=11 \cdot 981+9 \quad 9=1 \cdot 10800-981 \cdot 11 \\
& 11=9 \cdot 1+2 \quad 2=(-1) \cdot 10800+982 \cdot 11 \\
& 9=2 \cdot 4+1 \quad 1=5 \cdot 10800-4909 \cdot 11 \\
& 2=1 \cdot 2+0 \text {. }
\end{aligned}
$$

Problem 6

We use RSA with $p=73, q=151$.
(a) Compute n and $\phi(n)$.
(b) Is $e=11$ a possible choice?
(c) Compute d.

Solution.
(a) $n=73 \cdot 151=11023$ and $\phi(n)=72 \cdot 150=10800$.
(b) $e=11$ is a possible choice because $\operatorname{gcd}(10800,11)=1$.
(c) Compute d.

$$
\begin{aligned}
& 10800=11 \cdot 981+9 \quad 9=1 \cdot 10800-981 \cdot 11 \\
& 11=9 \cdot 1+2 \quad 2=(-1) \cdot 10800+982 \cdot 11 \\
& 9=2 \cdot 4+1 \quad 1=5 \cdot 10800-4909 \cdot 11 \\
& 2=1 \cdot 2+0 \text {. }
\end{aligned}
$$

So $d=-4909=5891 \bmod 10800$.

Problem 7

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext $x=17$.

Problem 7

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext $x=17$.

Solution. We need to compute $17^{11} \bmod 11023$.

Problem 7

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext $x=17$.

Solution. We need to compute $17^{11} \bmod 11023$.

$$
\begin{aligned}
& 17^{2}=289 \bmod 11023 \\
& 17^{4}=289^{2}=83521=6360 \bmod 11023 \\
& 17^{8}=6360^{2}=40449600=6213 \bmod 11023 .
\end{aligned}
$$

Problem 7

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext $x=17$.

Solution. We need to compute $17^{11} \bmod 11023$.

$$
\begin{aligned}
& 17^{2}=289 \bmod 11023 \\
& 17^{4}=289^{2}=83521=6360 \bmod 11023 \\
& 17^{8}=6360^{2}=40449600=6213 \bmod 11023 \\
& 11=8+2+1, \text { so } x^{11}=x^{8} \cdot x^{2} \cdot x, \text { and we have } \\
& y=17^{11}=6213 \cdot 289 \cdot 17=30524469=1782 \bmod 11023 .
\end{aligned}
$$

Problem 7

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext $x=17$.

Solution. We need to compute $17^{11} \bmod 11023$.

$$
\begin{aligned}
& 17^{2}=289 \bmod 11023 \\
& 17^{4}=289^{2}=83521=6360 \bmod 11023 \\
& 17^{8}=6360^{2}=40449600=6213 \bmod 11023 .
\end{aligned}
$$

$11=8+2+1$, so $x^{11}=x^{8} \cdot x^{2} \cdot x$, and we have

$$
y=17^{11}=6213 \cdot 289 \cdot 17=30524469=1782 \bmod 11023 .
$$

(In actual applications, $e=2^{16}+1=65537$ is often chosen; it is a prime, so $\operatorname{gcd}(n, e)>1$ is unlikely, and $x^{e}=x^{2^{16}} \cdot x$ only has 2 terms.)

