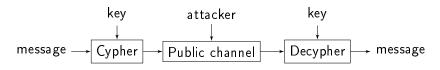
9. Cryptography

Coding Technology

Objective

Objective: secure communication over a public channel.



Construct cryptography algorithms which present high complexity for the attacker, but which can easily be deciphered using the key.

Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. n=26 for English texts),

$$E_k(x) = y = x + k \mod n,$$

where k is the value of the key.

If k is unknown, k can be either guessed by trying (26 possibilities for the English alphabet).

Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for English texts),

$$E_k(x) = y = x + k \mod n,$$

where k is the value of the key.

If k is unknown, k can be either guessed by trying (26 possibilities for the English alphabet).

Linear cypher:

$$E_k(x) = y = ax + b \mod n$$
,

where k = (a, b) is the value of the key. gcd(a, n) = 1 must hold!

Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for English texts),

$$E_k(x) = y = x + k \mod n,$$

where k is the value of the key.

If k is unknown, k can be either guessed by trying (26 possibilities for the English alphabet).

Linear cypher:

$$E_k(x) = y = ax + b \mod n,$$

where k = (a, b) is the value of the key. gcd(a, n) = 1 must hold! Decryption is also linear:

$$D_k(y) = a^{-1}y - a^{-1}b \mod n.$$

If the key is unknown, statistical analysis can help in guessing.

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y = x + k \mod 26$.

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y = x + k \mod 26$.

Solution. Guess k by trying:

▶ k = 1: HYHUBERGB \rightarrow GXGTADQFA;

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y = x + k \mod 26$.

Solution. Guess k by trying:

- ▶ k = 1: HYHUBERGB \rightarrow GXGTADQFA;
- ▶ k = 2: HYHUBERGB \rightarrow FWFSZCPEZ;

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y = x + k \mod 26$.

Solution. Guess k by trying:

- ▶ k = 1: HYHUBERGB \rightarrow GXGTADQFA;
- ▶ k = 2: HYHUBERGB \rightarrow FWFSZCPEZ;
- ▶ k = 3: HYHUBERGB \rightarrow EVERYBODY. \checkmark

Decypher the following cyphertext if we know that linear encryption is used.

FMXVEDKAPHFERBNDKRXRSREFMORU DSDKDVSHVUFEDKAPRKDLYEVLRHHRH

Decypher the following cyphertext if we know that linear encryption is used.

FMXVEDKAPHFERBNDKRXRSREFMORU DSDKDVSHVUFEDKAPRKDLYEVLRHHRH

Solution. We use statistical analysis.

English text letter probabilities

letter	prob.	letter	prob.		
А	.082	N	.067		
В	.015	0	.075		
С	.028	Р	.019		
D	.043	Q	.001		
E	.127	R	.060		
F	.022	S	.063		
G	.020	Т	.091		
Н	.061	U	.028		
	.070	V	.010		
J	.002	W	.023		
K	.008	Х	.001		
L	.040	Y	.020		
М	.024	Z	.001		

cyphertext letter frequencies

0, p o.	of burgers and a control of				
letter	freq.	letter	freq.		
Α	2	N	1		
В	1	0	1		
С	0	Р	2		
D	7	Q	0		
E	5	R	8		
F	4	S	3		
G	0	Т	0		
Н	5	U	2		
	0	V	4		
J	0	W	0		
K	5	Х	2		
L	2	Y	1		
М	2	Z	0		

In the cyphertext, the most frequent letters are: R(8), D(7), E(5), H(5), K(5).

These are good candidates for E and T (the two most frequent letters in English texts).

In the cyphertext, the most frequent letters are: R(8), D(7), E(5), H(5), K(5).

These are good candidates for E and T (the two most frequent letters in English texts).

Guess 1: R ightarrow E, D ightarrow T. Then $E_k(4)=17,$ and $E_k(19)=3,$ that is,

$$4a + b = 17 \mod 26,$$

 $19a + b = 3 \mod 26.$

In the cyphertext, the most frequent letters are: R(8), D(7), E(5), H(5), K(5).

These are good candidates for E and T (the two most frequent letters in English texts).

Guess 1: R ightarrow E, D ightarrow T. Then $E_k(4)=17,$ and $E_k(19)=3,$ that is,

$$4a + b = 17 \mod 26$$
, $19a + b = 3 \mod 26$.

Subtraction gives

$$15a = 12 \mod 26$$
,

but then a must be even, so $gcd(a, 26) > 1 \rightarrow incorrect$ guess.

Guess 2:
$$R \rightarrow E, E \rightarrow T$$
. Then

$$4a + b = 17 \mod 26,$$

 $19a + b = 4 \mod 26.$

Then

$$15a = 13 \mod 26,$$

 $a = 13 \mod 26,$

so $\gcd(a,26)>1$ again \rightarrow incorrect guess.

Guess 3:
$$R \rightarrow E, K \rightarrow T.$$
 Then

$$4a + b = 17 \mod 26,$$

 $19a + b = 10 \mod 26.$

Then

$$15a = 19 \mod 26,$$

 $a = 3 \mod 26,$
 $b = 5 \mod 26.$

$$k = (3,5)$$
 is a valid key.

Guess 3:
$$R \rightarrow E, K \rightarrow T$$
. Then

$$4a + b = 17 \mod 26,$$

 $19a + b = 10 \mod 26.$

Then

$$15a = 19 \mod 26,$$

 $a = 3 \mod 26,$
 $b = 5 \mod 26.$

k = (3,5) is a valid key. We still need to check if we get meaningful decrypted text.

$$D_k(y) = 3^{-1}y - 3^{-1} \cdot 5 = 9y - 19 \mod 26.$$

ALGORITHMSAREQUITEGENERALDEF INITIONSOFARITHMETICPROCESSES

Simple cyphers II

Permutation cypher: the message is cut into blocks of equal length, and the letters within each block are reordered according to the key permutation.

Example.

$$\begin{array}{ccc}
1234567 \\
2147356
\end{array} \iff (12)(34765)$$

Cypher: MORNING → OMIRNGN

Simple cyphers II

Permutation cypher: the message is cut into blocks of equal length, and the letters within each block are reordered according to the key permutation.

Example.

$$\begin{array}{ccc}
1234567 \\
2147356
\end{array} \iff (12)(34765)$$

Cypher: MORNING → OMIRNGN

One time pad (OTP): both the sender and the receiver have the same random bit sequence k; the encryption is bitwise addition of the message and the key. Example:

$$x = 01001101 \ 01011101 \dots$$

 $+k = 11010000 \ 11101011 \dots$
 $y = 10011101 \ 10110110 \dots$

As long as the key is used only once, OTP offers perfect secrecy. (Also, it is essentially the only such method.)

Using OTP encryption with key k=(110011000001111), we receive the cyphertext y=(011100010100011). Compute the plaintext c.

Using OTP encryption with key k=(110011000001111), we receive the cyphertext y=(011100010100011). Compute the plaintext c.

Solution.
$$x = y + k \mod 2$$
, so

$$y = 011100010100011$$

 $+k = 110011000001111$
 $x = 101111010101100$

A and B want to communicate using OTP without a common secret key. Assume A has key k_A and B has key k_B . A has a message x to send; he sends the message $y_1 = x + k_A$ to B, then B returns $y_2 = y_1 + k_B$, finally, A returns $y_3 = y_2 + k_A$. From the information

 $y_1 = (0111000100), \quad y_2 = (1000100100), \quad y_3 = (1000111011),$ derive the plain text x and keys k_A and k_B .

A and B want to communicate using OTP without a common secret key. Assume A has key k_A and B has key k_B . A has a message x to send; he sends the message $y_1 = x + k_A$ to B, then B returns $y_2 = y_1 + k_B$, finally, A returns $y_3 = y_2 + k_A$. From the information

$$y_1 = (0111000100), \quad y_2 = (1000100100), \quad y_3 = (1000111011),$$
 derive the plain text x and keys k_A and k_B . Solution.

$$y_1 = x + k_A$$
, $y_2 = x + k_A + k_B$, $y_3 = x + k_B$
 $y_1 + y_2 + y_3 = x + k_A + x + k_A + k_B + x + k_B = x$.

From this,

$$x = y_1 + y_2 + y_3 = (0111011011),$$

 $k_A = x + y_1 = (0000011111),$
 $k_B = x + y_3 = (1111100000).$

A and B want to communicate using OTP without a common secret key. Assume A has key k_A and B has key k_B . A has a message x to send; he sends the message $y_1 = x + k_A$ to B, then B returns $y_2 = y_1 + k_B$, finally, A returns $y_3 = y_2 + k_A$. From the information

$$y_1=$$
 (0111000100), $y_2=$ (1000100100), $y_3=$ (1000111011), derive the plain text x and keys k_A and k_B . Solution.

$$y_1 = x + k_A$$
, $y_2 = x + k_A + k_B$, $y_3 = x + k_B$

From this,

$$x = y_1 + y_2 + y_3 = (0111011011),$$

 $k_A = x + y_1 = (0000011111),$
 $k_B = x + y_3 = (1111100000).$

A and B want to communicate using OTP without a common secret key. Assume A has key k_A and B has key k_B . A has a message x to send; he sends the message $y_1 = x + k_A$ to B, then B returns $y_2 = y_1 + k_B$, finally, A returns $y_3 = y_2 + k_A$. From the information

 $y_1 = (0111000100), \quad y_2 = (1000100100), \quad y_3 = (1000111011),$ derive the plain text x and keys k_A and k_B . Solution.

$$y_1 = x + k_A$$
, $y_2 = x + k_A + k_B$, $y_3 = x + k_B$
 $y_1 + y_2 + y_3 = x + k_A + x + k_A + k_B + x + k_B = x$.

A and B want to communicate using OTP without a common secret key. Assume A has key k_A and B has key k_B . A has a message x to send; he sends the message $y_1 = x + k_A$ to B, then B returns $y_2 = y_1 + k_B$, finally, A returns $y_3 = y_2 + k_A$. From the information

$$y_1 = (0111000100), \quad y_2 = (1000100100), \quad y_3 = (1000111011),$$
 derive the plain text x and keys k_A and k_B . Solution.

$$y_1 = x + k_A$$
, $y_2 = x + k_A + k_B$, $y_3 = x + k_B$
 $y_1 + y_2 + y_3 = x + k_A + x + k_A + k_B + x + k_B = x$.

From this,

$$x = y_1 + y_2 + y_3 = (0111011011),$$

 $k_A = x + y_1 = (0000011111),$
 $k_B = x + y_3 = (1111100000).$

Problem 5 – stochastic encryption

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key.

Problem 5 - stochastic encryption

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key. Consider the following setup:

- he space of the plaintext is $\{a,b\}$ with probabilities Pr(a) = 1/3, Pr(b) = 2/3.
- ▶ the space of the cyphertext is $\{1,2,3,4,5\}$.
- ▶ the keys are $\{1,2,3,4,5\}$, chosen with probability $\{2/5, 1/5, 1/5, 1/10, 1/10\}$ respectively.

Problem 5 - stochastic encryption

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key. Consider the following setup:

- he space of the plaintext is $\{a,b\}$ with probabilities Pr(a) = 1/3, Pr(b) = 2/3.
- \blacktriangleright the space of the cyphertext is $\{1,2,3,4,5\}$.
- ▶ the keys are $\{1,2,3,4,5\}$, chosen with probability $\{2/5, 1/5, 1/5, 1/10, 1/10\}$ respectively.

The plaintext o cyphertext assignment is the following:

$$k = 1$$
: $a \rightarrow 1$ $b \rightarrow 2$
 $k = 2$: $a \rightarrow 2$ $b \rightarrow 4$
 $k = 3$: $a \rightarrow 3$ $b \rightarrow 1$
 $k = 4$: $a \rightarrow 5$ $b \rightarrow 3$
 $k = 5$: $a \rightarrow 4$ $b \rightarrow 5$

Problem 5 - stochastic encryption

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key. Consider the following setup:

- he space of the plaintext is $\{a,b\}$ with probabilities Pr(a) = 1/3, Pr(b) = 2/3.
- \blacktriangleright the space of the cyphertext is $\{1,2,3,4,5\}$.
- ▶ the keys are $\{1,2,3,4,5\}$, chosen with probability $\{2/5, 1/5, 1/5, 1/10, 1/10\}$ respectively.

The plaintext o cyphertext assignment is the following:

$$k = 1$$
: $a \rightarrow 1$ $b \rightarrow 2$
 $k = 2$: $a \rightarrow 2$ $b \rightarrow 4$
 $k = 3$: $a \rightarrow 3$ $b \rightarrow 1$
 $k = 4$: $a \rightarrow 5$ $b \rightarrow 3$
 $k = 5$: $a \rightarrow 4$ $b \rightarrow 5$

- (a) Compute the cyphertext distribution.
- (b) Are the plaintext and cyphertext independent (is this a perfect encryption)?

Problem 5 – stochastic encryption

Solution.

(a) The cyphertext distribution can be computed using total probability:

$$\begin{split} \Pr(Y=1) &= \Pr(Y=1|X=a) \Pr(X=a) + \Pr(Y=1|X=b) \Pr(X=b) = \\ &= 2/5 \cdot 1/3 + 1/5 \cdot 2/3 = 4/15 = 0.2667 \\ \Pr(Y=2) &= \Pr(Y=2|X=a) \Pr(X=a) + \Pr(Y=2|X=b) \Pr(X=b) = \\ &= 1/5 \cdot 1/3 + 2/5 \cdot 2/3 = 5/15 = 0.3333 \\ \Pr(Y=3) &= \Pr(Y=3|X=a) \Pr(X=a) + \Pr(Y=3|X=b) \Pr(X=b) = \\ &= 1/5 \cdot 1/3 + 1/10 \cdot 2/3 = 4/30 = 0.1333 \\ \Pr(Y=4) &= \Pr(Y=4|X=a) \Pr(X=a) + \Pr(Y=4|X=b) \Pr(X=b) = \\ &= 1/10 \cdot 1/3 + 1/15 \cdot 2/3 = 5/30 = 0.1667 \\ \Pr(Y=5) &= \Pr(Y=5|X=a) \Pr(X=a) + \Pr(Y=5|X=b) \Pr(X=b) = \\ &= 1/10 \cdot 1/3 + 1/10 \cdot 2/3 = 1/10 = 0.1 \end{split}$$

Problem 5 – stochastic encryption

Solution.

(a) The cyphertext distribution can be computed using total probability:

$$\begin{split} \Pr(Y=1) &= \Pr(Y=1|X=a) \Pr(X=a) + \Pr(Y=1|X=b) \Pr(X=b) = \\ &= 2/5 \cdot 1/3 + 1/5 \cdot 2/3 = 4/15 = 0.2667 \\ \Pr(Y=2) &= \Pr(Y=2|X=a) \Pr(X=a) + \Pr(Y=2|X=b) \Pr(X=b) = \\ &= 1/5 \cdot 1/3 + 2/5 \cdot 2/3 = 5/15 = 0.3333 \\ \Pr(Y=3) &= \Pr(Y=3|X=a) \Pr(X=a) + \Pr(Y=3|X=b) \Pr(X=b) = \\ &= 1/5 \cdot 1/3 + 1/10 \cdot 2/3 = 4/30 = 0.1333 \\ \Pr(Y=4) &= \Pr(Y=4|X=a) \Pr(X=a) + \Pr(Y=4|X=b) \Pr(X=b) = \\ &= 1/10 \cdot 1/3 + 1/5 \cdot 2/3 = 5/30 = 0.1667 \\ \Pr(Y=5) &= \Pr(Y=5|X=a) \Pr(X=a) + \Pr(Y=5|X=b) \Pr(X=b) = \\ &= 1/10 \cdot 1/3 + 1/10 \cdot 2/3 = 1/10 = 0.1 \end{split}$$

(b) No, e.g.

$$Pr(Y = 1|X = a) = 2/5 \neq Pr(Y = 1|X = b) = 1/5.$$

The Extended Euclidean Algorithm can be used to find gcd(a, b) and also to solve

$$\gcd(a,b)=s\cdot a+t\cdot b.$$

The Extended Euclidean Algorithm can be used to find gcd(a, b) and also to solve

$$\gcd(a,b)=s\cdot a+t\cdot b.$$

Assume a > b; initialize $r_0 = a$, $r_1 = b$ and also $s_0 = 1$, $t_0 = 0$, $s_1 = 0$, $t_1 = 1$. In each step, we write

$$r_{k-1} = r_k \cdot q_{k+1} + r_{k+1} \qquad r_k = s_k \cdot a + t_k \cdot b,$$

where $0 \le r_{k+1} < r_k$, and s_{k+1} and t_{k+1} are computed from

$$s_{k+1} = s_{k-1} - q_k s_k, t_{k+1} = t_{k-1} - q_k t_k.$$

The Extended Euclidean Algorithm can be used to find gcd(a, b) and also to solve

$$\gcd(a,b)=s\cdot a+t\cdot b.$$

Assume a > b; initialize $r_0 = a$, $r_1 = b$ and also $s_0 = 1$, $t_0 = 0$, $s_1 = 0$, $t_1 = 1$. In each step, we write

$$r_{k-1} = r_k \cdot q_{k+1} + r_{k+1}$$
 $r_k = s_k \cdot a + t_k \cdot b,$

where $0 \le r_{k+1} < r_k$, and s_{k+1} and t_{k+1} are computed from

$$s_{k+1} = s_{k-1} - q_k s_k, t_{k+1} = t_{k-1} - q_k t_k.$$

The algorithm stops when $r_{k+1} = 0$; then $r_k = \gcd(a, b)$, and $\gcd(a, b) = s_k \cdot a + t_k \cdot b$; at most $\log_{1.62}(\min(a, b))$ steps are needed.

The Extended Euclidean Algorithm can be used to find gcd(a, b) and also to solve

$$\gcd(a,b)=s\cdot a+t\cdot b.$$

Assume a > b; initialize $r_0 = a$, $r_1 = b$ and also $s_0 = 1$, $t_0 = 0$, $s_1 = 0$, $t_1 = 1$. In each step, we write

$$r_{k-1} = r_k \cdot q_{k+1} + r_{k+1}$$
 $r_k = s_k \cdot a + t_k \cdot b,$

where $0 \le r_{k+1} < r_k$, and s_{k+1} and t_{k+1} are computed from

$$s_{k+1} = s_{k-1} - q_k s_k, t_{k+1} = t_{k-1} - q_k t_k.$$

The algorithm stops when $r_{k+1}=0$; then $r_k=\gcd(a,b)$, and $\gcd(a,b)=s_k\cdot a+t_k\cdot b$; at most $\log_{1.62}(\min(a,b))$ steps are needed.

For gcd(n, e) = 1, the algorithm gives $1 = gcd(n, e) = s \cdot n + t \cdot e$, so $e^{-1} = t \mod n$.

Compute the greatest common divisor (gcd) of b=8387 and c=1243, and also compute s and t so that

$$\gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

Compute the greatest common divisor (gcd) of b=8387 and c=1243, and also compute s and t so that

$$\gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

Compute the greatest common divisor (gcd) of b=8387 and c=1243, and also compute s and t so that

$$\gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

Compute the greatest common divisor (gcd) of b=8387 and c=1243, and also compute s and t so that

$$\gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

$$8387 = 1243 \cdot 6 + 929$$
 $929 = b - 6c$
 $1243 = 929 \cdot 1 + 314$ $314 = -b + 7c$
 $929 = 314 \cdot 2 + 301$ $301 = 3b - 20c$

Compute the greatest common divisor (gcd) of b=8387 and c=1243, and also compute s and t so that

$$\gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

$$8387 = 1243 \cdot 6 + 929$$
 $929 = b - 6c$
 $1243 = 929 \cdot 1 + 314$ $314 = -b + 7c$
 $929 = 314 \cdot 2 + 301$ $301 = 3b - 20c$
 $314 = 301 \cdot 1 + 13$ $13 = -4b + 27c$

Compute the greatest common divisor (gcd) of b=8387 and c=1243, and also compute s and t so that

$$\gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

$$8387 = 1243 \cdot 6 + 929$$
 $929 = b - 6c$
 $1243 = 929 \cdot 1 + 314$ $314 = -b + 7c$
 $929 = 314 \cdot 2 + 301$ $301 = 3b - 20c$
 $314 = 301 \cdot 1 + 13$ $13 = -4b + 27c$
 $301 = 13 \cdot 23 + 2$ $2 = 95b - 641c$

Compute the greatest common divisor (gcd) of b=8387 and c=1243, and also compute s and t so that

$$\gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

Compute the greatest common divisor (gcd) of b=8387 and c=1243, and also compute s and t so that

$$\gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

Solution.

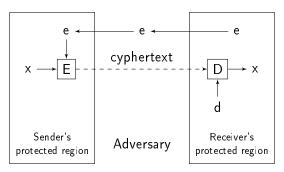
Finally,

$$gcd(8387, 1243) = -574 \cdot 8387 + 3873 \cdot 1243.$$

Public key cryptography

Instead of a common key k which is known by both the sender and the receiver, public key cryptography works the following way:

- ightharpoonup the receiver has a (d, e) pair of keys
- d is a private key known only by the receiver
- e is a public key known by everyone



The steps of the RSA algorithm are the following:

- Key generation:
 - ightharpoonup select 2 large primes p and q; n = pq.
 - $\phi(n) = (p-1)(q-1)$
 - Select a coding exponent e so that $gcd(e, \phi(n)) = 1$ and $1 < e < \phi(n)$.
 - Solve $de = 1 \mod m$ to obtain the decoding key d.
 - \triangleright (n, e) is the public key;
 - \triangleright $p, q, \phi(n)$ and d are kept secret.

The steps of the RSA algorithm are the following:

- Key generation:
 - \triangleright select 2 large primes p and q; n = pq.
 - $\phi(n) = (p-1)(q-1).$
 - Select a coding exponent e so that $gcd(e, \phi(n)) = 1$ and $1 < e < \phi(n)$.
 - Solve $de = 1 \mod m$ to obtain the decoding key d.
 - (n, e) is the public key;
 - $ightharpoonup p, q, \phi(n)$ and d are kept secret.
- Encryption (using the public key):
 - the plaintext is cut into sections which can be turned into numbers x such that 0 < x < n.</p>
 - ▶ the cyphertext is $c = x^e \mod n$.

The steps of the RSA algorithm are the following:

- Key generation:
 - ▶ select 2 large primes p and q; n = pq.
 - $\phi(n) = (p-1)(q-1).$
 - Select a coding exponent e so that $gcd(e, \phi(n)) = 1$ and $1 < e < \phi(n)$.
 - Solve $de = 1 \mod m$ to obtain the decoding key d.
 - \triangleright (n, e) is the public key;
 - $ightharpoonup p, q, \phi(n)$ and d are kept secret.
- Encryption (using the public key):
 - the plaintext is cut into sections which can be turned into numbers x such that 0 < x < n.</p>
 - ▶ the cyphertext is $c = x^e \mod n$.
- ▶ Decryption:
 - $x = c^d \mod n$.

Why does the RSA algorithm work?

Why does the RSA algorithm work?

Key generation is easy:

- Primality testing (checking whether a given number is a prime or not) is computationally fast.
- ► There are many primes even among large numbers: the Prime Number Theorem says that among numbers of order N, on average 1 out of log(N) numbers is a prime.
- So we can just start prime checking large numbers randomly, and we will soon find two primes for p and q.
- **Proof** gcd and $de = 1 \mod \phi(n)$ can be solved fast using the Extended Euclidean Algorithm.

Decryption and encryption are indeed inverse operations due to Euler's Theorem:

$$de = 1 \mod \phi(n) \implies x^{de} = x \mod n.$$

Decryption and encryption are indeed inverse operations due to Euler's Theorem:

$$de = 1 \mod \phi(n) \implies x^{de} = x \mod n.$$

Modular exponentiation (for x^e or c^d) can be computed fast along the exponents $1, 2, 4, 8, 16, \ldots$

Decryption and encryption are indeed inverse operations due to Euler's Theorem:

$$de = 1 \mod \phi(n) \implies x^{de} = x \mod n.$$

Modular exponentiation (for x^e or c^d) can be computed fast along the exponents $1, 2, 4, 8, 16, \ldots$

On the other hand, integer factorization (to a product of primes) is computationally difficult for large numbers. So even though n is public, p and q are difficult to compute, and without p and q, we cannot compute $\phi(n)$ and d either. Overall, if p and q are sufficiently large, attacking RSA is computationally infeasible.

Example. $p = 3, q = 11 \rightarrow n = 33$.

Example. $p = 3, q = 11 \rightarrow n = 33$.

Then
$$\phi(n) = (p-1)(q-1) = 20$$
.

Example.
$$p=3, q=11 o n=33.$$
 Then $\phi(n)=(p-1)(q-1)=20.$ We select $e=3.$ Solving $de=1 \mod 20$

gives

Example. $p = 3, q = 11 \rightarrow n = 33$.

Then
$$\phi(n)=(p-1)(q-1)=20.$$
 We select $e=3.$ Solving
$$de=1\mod 20$$

gives d = 7.

Public key: (n, e) = (20, 3). Private key: d = 7.

Encrypting x = 4 gives

Example. $p = 3, q = 11 \rightarrow n = 33$.

Then
$$\phi(n)=(p-1)(q-1)=20$$
. We select $e=3$. Solving

$$de = 1 \mod 20$$

gives d = 7

Public key: (n, e) = (20, 3). Private key: d = 7.

Encrypting x = 4 gives

$$c = x^e = 4^3 \mod 33 = 31.$$

Decryption gives

$$x = c^d = 31^7 = (-2)^7 = -128 = 4 \mod 33.$$

The parameters of RSA are generated by p = 7, q = 17.

- (a) What is the smallest possible choice of the coding exponent e?
- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

The parameters of RSA are generated by p = 7, q = 17.

- (a) What is the smallest possible choice of the coding exponent e?
- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96$$
.

The parameters of RSA are generated by p = 7, q = 17.

- (a) What is the smallest possible choice of the coding exponent e?
- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96$$
.

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is

The parameters of RSA are generated by p = 7, q = 17.

- (a) What is the smallest possible choice of the coding exponent e?
- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96$$
.

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is e = 5.

The parameters of RSA are generated by p = 7, q = 17.

- (a) What is the smallest possible choice of the coding exponent e?
- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a) $\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96$.

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is e = 5.

(b) $c = x^e \mod n = 11^5 \mod 119 = 160051 \mod 119 = 44$.

The parameters of RSA are generated by p = 7, q = 17.

- (a) What is the smallest possible choice of the coding exponent e?
- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a) $\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96$.

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is e = 5.

- (b) $c = x^e \mod n = 11^5 \mod 119 = 160051 \mod 119 = 44$.
- (c) We need to solve $de=1 \mod \phi(n)$ where e=5 and n=96. We use the Extended Euclidean Algorithm for b=96 and c=5:

$$96 = 5 \cdot 19 + 1$$
 $1 = b - 19c$

The parameters of RSA are generated by p = 7, q = 17.

- (a) What is the smallest possible choice of the coding exponent e?
- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96$$
.

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is e = 5.

- (b) $c = x^e \mod n = 11^5 \mod 119 = 160051 \mod 119 = 44$.
- (c) We need to solve $de=1 \mod \phi(n)$ where e=5 and n=96. We use the Extended Euclidean Algorithm for b=96 and c=5:

$$96 = 5 \cdot 19 + 1$$
 $1 = b - 19c$

so $d = -19 = 77 \mod 96$.

We use RSA with p = 73, q = 151.

- (a) Compute n and $\phi(n)$.
- (b) Is e = 11 a possible choice?
- (c) Compute d.

We use RSA with p = 73, q = 151.

- (a) Compute n and $\phi(n)$.
- (b) Is e = 11 a possible choice?
- (c) Compute d.

- (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$.
- (b) e = 11 is a possible choice because gcd(10800, 11) = 1.
- (c) Compute d.

$$10800 = 11 \cdot 981 + 9$$
 $9 = 1 \cdot 10800 - 981 \cdot 11$

We use RSA with p = 73, q = 151.

- (a) Compute n and $\phi(n)$.
- (b) Is e = 11 a possible choice?
- (c) Compute d.

- (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$.
- (b) e = 11 is a possible choice because gcd(10800, 11) = 1.
- (c) Compute d.

$$10800 = 11 \cdot 981 + 9$$
 $9 = 1 \cdot 10800 - 981 \cdot 11$
 $11 = 9 \cdot 1 + 2$ $2 = (-1) \cdot 10800 + 982 \cdot 11$

We use RSA with p = 73, q = 151.

- (a) Compute n and $\phi(n)$.
- (b) Is e = 11 a possible choice?
- (c) Compute d.

- (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$.
- (b) e = 11 is a possible choice because gcd(10800, 11) = 1.
- (c) Compute d.

We use RSA with p = 73, q = 151.

- (a) Compute n and $\phi(n)$.
- (b) Is e = 11 a possible choice?
- (c) Compute d.

- (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$.
- (b) e = 11 is a possible choice because gcd(10800, 11) = 1.
- (c) Compute d.

We use RSA with p = 73, q = 151.

- (a) Compute n and $\phi(n)$.
- (b) Is e = 11 a possible choice?
- (c) Compute d.

Solution.

- (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$.
- (b) e = 11 is a possible choice because gcd(10800, 11) = 1.
- (c) Compute d.

So $d = -4909 = 5891 \mod 10800$.

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x=17.

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x=17.

Solution. We need to compute 17¹¹ mod 11023.

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x=17.

Solution. We need to compute 17¹¹ mod 11023.

$$17^2 = 289 \mod 11023$$

 $17^4 = 289^2 = 83521 = 6360 \mod 11023$
 $17^8 = 6360^2 = 40449600 = 6213 \mod 11023$.

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x=17.

Solution. We need to compute 17¹¹ mod 11023.

$$17^2 = 289 \mod 11023$$

 $17^4 = 289^2 = 83521 = 6360 \mod 11023$
 $17^8 = 6360^2 = 40449600 = 6213 \mod 11023$.

$$11=8+2+1$$
, so $x^{11}=x^8\cdot x^2\cdot x$, and we have
$$y=17^{11}=6213\cdot 289\cdot 17=30524469=1782 \mod 11023.$$

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x=17.

Solution. We need to compute 17¹¹ mod 11023.

$$17^2 = 289 \mod 11023$$

 $17^4 = 289^2 = 83521 = 6360 \mod 11023$
 $17^8 = 6360^2 = 40449600 = 6213 \mod 11023$.

$$11 = 8 + 2 + 1$$
, so $x^{11} = x^8 \cdot x^2 \cdot x$, and we have
$$y = 17^{11} = 6213 \cdot 289 \cdot 17 = 30524469 = 1782 \mod 11023.$$

(In actual applications, $e=2^{16}+1=65537$ is often chosen; it is a prime, so $\gcd(n,e)>1$ is unlikely, and $x^e=x^{2^{16}}\cdot x$ only has 2 terms.)