7. Entropy source coding and data compression

Coding Technology

Source coding and data compression

In any text, different characters typically have different frequencies. Normal coding (without compression) means that all characters are coded using the same amount of bits.

Source coding and data compression

In any text, different characters typically have different frequencies. Normal coding (without compression) means that all characters are coded using the same amount of bits.

If we allow different characters to have varying length codewords (assigning shorter codewords to more frequent characters), it is possible to get a lower average codeword length.

Source coding and data compression

In any text, different characters typically have different frequencies. Normal coding (without compression) means that all characters are coded using the same amount of bits.

If we allow different characters to have varying length codewords (assigning shorter codewords to more frequent characters), it is possible to get a lower average codeword length.

We assume that the distribution (long-term frequency) of characters in the text is known: the probabilities of the characters are

$$
p_{1}, \ldots, p_{K}
$$

where K is the size of the alphabet.

Source coding and data compression

If a coding assigns a codeword of length ℓ_{k} to character k, then the average codelength is

$$
L=\sum_{k=1}^{K} p_{k} \ell_{k}
$$

Source coding and data compression

If a coding assigns a codeword of length ℓ_{k} to character k, then the average codelength is

$$
L=\sum_{k=1}^{K} p_{k} \ell_{k}
$$

A coding is prefix-free if none of the codewords is a prefix of another codeword. This property is necessary for decoding.

Source coding and data compression

If a coding assigns a codeword of length ℓ_{k} to character k, then the average codelength is

$$
L=\sum_{k=1}^{K} p_{k} \ell_{k}
$$

A coding is prefix-free if none of the codewords is a prefix of another codeword. This property is necessary for decoding.

The entropy of the text source is

$$
H(X)=\sum_{k=1}^{K} p_{k} \log _{2}\left(1 / p_{k}\right)
$$

Theoretical lower bound: for any prefix-free coding,

$$
L \geq H(X)
$$

and the ratio $H(X) / L$ is called the efficiency of the code.

Shannon-Fano coding

For the Shannon-Fano coding, the codeword lengths are

$$
\ell_{k}=\left\lceil\log _{2}\left(1 / p_{k}\right)\right\rceil
$$

We construct a binary tree where the depths of the leaves are $\ell_{1}, \ldots, \ell_{K}$, and the codewords will be based on the route from the root to the leaves.

Shannon-Fano coding

For the Shannon-Fano coding, the codeword lengths are

$$
\ell_{k}=\left\lceil\log _{2}\left(1 / p_{k}\right)\right\rceil
$$

We construct a binary tree where the depths of the leaves are $\ell_{1}, \ldots, \ell_{K}$, and the codewords will be based on the route from the root to the leaves.
Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

Shannon-Fano coding

For the Shannon-Fano coding, the codeword lengths are

$$
\ell_{k}=\left\lceil\log _{2}\left(1 / p_{k}\right)\right\rceil .
$$

We construct a binary tree where the depths of the leaves are $\ell_{1}, \ldots, \ell_{K}$, and the codewords will be based on the route from the root to the leaves.
Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{array}{lll}
\ell_{1}=\left\lceil\log _{2}(1 / 0.37)\right\rceil=2, & \ell_{2}=\left\lceil\log _{2}(1 / 0.27)\right\rceil=2, \\
\ell_{3} & =\left\lceil\log _{2}(1 / 0.24)\right\rceil=3, & \ell_{4}=\left\lceil\log _{2}(1 / 0.12)\right\rceil=4 .
\end{array}
$$

Shannon-Fano coding

For the Shannon-Fano coding, the codeword lengths are

$$
\ell_{k}=\left\lceil\log _{2}\left(1 / p_{k}\right)\right\rceil
$$

We construct a binary tree where the depths of the leaves are $\ell_{1}, \ldots, \ell_{K}$, and the codewords will be based on the route from the root to the leaves.
Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{aligned}
& \ell_{1}=\left\lceil\log _{2}(1 / 0.37)\right\rceil=2, \quad \ell_{2}=\left\lceil\log _{2}(1 / 0.27)\right\rceil=2, \\
& \ell_{3}=\left\lceil\log _{2}(1 / 0.24)\right\rceil=3, \quad \ell_{4}=\left\lceil\log _{2}(1 / 0.12)\right\rceil=4 .
\end{aligned}
$$

Shannon-Fano coding

For the Shannon-Fano coding, the codeword lengths are

$$
\ell_{k}=\left\lceil\log _{2}\left(1 / p_{k}\right)\right\rceil .
$$

We construct a binary tree where the depths of the leaves are $\ell_{1}, \ldots, \ell_{K}$, and the codewords will be based on the route from the root to the leaves.
Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{array}{lll}
\ell_{1}=\left\lceil\log _{2}(1 / 0.37)\right\rceil=2, & \ell_{2}=\left\lceil\log _{2}(1 / 0.27)\right\rceil=2, \\
\ell_{3} & =\left\lceil\log _{2}(1 / 0.24)\right\rceil=3, & \ell_{4}=\left\lceil\log _{2}(1 / 0.12)\right\rceil=4 .
\end{array}
$$

Shannon-Fano coding

For the Shannon-Fano coding, the codeword lengths are

$$
\ell_{k}=\left\lceil\log _{2}\left(1 / p_{k}\right)\right\rceil .
$$

We construct a binary tree where the depths of the leaves are $\ell_{1}, \ldots, \ell_{K}$, and the codewords will be based on the route from the root to the leaves.
Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{aligned}
& \ell_{1}=\left\lceil\log _{2}(1 / 0.37)\right\rceil=2, \quad \ell_{2}=\left\lceil\log _{2}(1 / 0.27)\right\rceil=2, \\
& \ell_{3}=\left\lceil\log _{2}(1 / 0.24)\right\rceil=3, \quad \ell_{4}=\left\lceil\log _{2}(1 / 0.12)\right\rceil=4 .
\end{aligned}
$$

Shannon-Fano coding

For the Shannon-Fano coding, the codeword lengths are

$$
\ell_{k}=\left\lceil\log _{2}\left(1 / p_{k}\right)\right\rceil
$$

We construct a binary tree where the depths of the leaves are $\ell_{1}, \ldots, \ell_{K}$, and the codewords will be based on the route from the root to the leaves.
Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{aligned}
& \ell_{1}=\left\lceil\log _{2}(1 / 0.37)\right\rceil=2, \quad \ell_{2}=\left\lceil\log _{2}(1 / 0.27)\right\rceil=2, \\
& \ell_{3}=\left\lceil\log _{2}(1 / 0.24)\right\rceil=3, \quad \ell_{4}=\left\lceil\log _{2}(1 / 0.12)\right\rceil=4 .
\end{aligned}
$$

Symbol	Codeword
X_{1}	11
X_{2}	01
X_{3}	001
X_{4}	0000

Problem 1

Encode the following distribution using Shannon-Fano coding.

$$
\begin{array}{lll}
p_{1}=0.49, & p_{2}=0.14, & p_{3}=0.14, \\
p_{6}=0.04, & p_{7}=0.07, \quad p_{5}=0.02, & p_{8}=0.02,
\end{array} p_{9}=0.01,
$$

Problem 1

Encode the following distribution using Shannon-Fano coding.

$$
\begin{array}{llll}
p_{1}=0.49, & p_{2}=0.14, & p_{3}=0.14, & p_{4}=0.07, \\
p_{6}=0.04, & p_{7}=0.02, & p_{8}=0.02, & p_{9}=0.01
\end{array}
$$

Solution. Codeword lengths: $\ell_{i}=\left\lceil\log _{2} 1 / p_{i}\right\rceil$, so

$$
\begin{aligned}
\ell_{1} & =\left\lceil\log _{2} 1 / p_{1}\right\rceil=\lceil 1.029\rceil=2, \\
\ell_{2} & =\left\lceil\log _{2} 1 / p_{2}\right\rceil=\lceil 2.836\rceil=3, \\
\ell_{3} & =\left\lceil\log _{2} 1 / p_{3}\right\rceil=\lceil 2.836\rceil=3, \\
\ell_{4} & =\ell_{5}=4, \quad \ell_{6}=5, \quad \ell_{7}=\ell_{8}=6, \quad \ell_{9}=7 .
\end{aligned}
$$

(Instead of $\log _{2}$, the notation Id is also in use.)

Problem 1

Side note: prefix-free code \Leftrightarrow no codewords on inner nodes.

Problem 2

Conduct performance analysis for the previous code.

Problem 2

Conduct performance analysis for the previous code.
Solution. The entropy of the original distribution is

$$
H(X)=\sum_{i=1}^{9} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)=2.314
$$

and the average codeword length for the coding is

$$
\begin{aligned}
L= & 0.49 \cdot 2+0.28 \cdot 3+0.28 \cdot 3+0.14 \cdot 4+ \\
& 0.04 \cdot 5+0.04 \cdot 6+0.01 \cdot 7=2.89
\end{aligned}
$$

so the efficiency of the coding is

$$
\frac{H(X)}{L} \approx 0.8
$$

Huffman coding

Huffman coding builds the tree by adding the two smallest p_{k} probabilities in each step. After that, the coding works the same as for Shannon-Fano.

Huffman coding

Huffman coding builds the tree by adding the two smallest p_{k} probabilities in each step. After that, the coding works the same as for Shannon-Fano.

Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{aligned}
& p_{1}=0.37 \\
& p_{2}=0.27 \\
& p_{3}=0.24 \\
& p_{4}=0.12
\end{aligned}
$$

Huffman coding

Huffman coding builds the tree by adding the two smallest p_{k} probabilities in each step. After that, the coding works the same as for Shannon-Fano.

Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{aligned}
& p_{1}=0.37 \\
& p_{2}=0.27 \\
& p_{3}=0.24 \\
& p_{4}=0.12
\end{aligned} \quad \begin{aligned}
& 0.37 \\
& 0.27 \\
& 0.36
\end{aligned}
$$

Huffman coding

Huffman coding builds the tree by adding the two smallest p_{k} probabilities in each step. After that, the coding works the same as for Shannon-Fano.

Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{aligned}
& p_{1}=0.37 \\
& p_{2}=0.27 \\
& p_{3}=0.24 \\
& p_{4}=0.12
\end{aligned} \quad \begin{aligned}
& 0.37 \\
& 0.27 \\
& 0.36
\end{aligned} \square^{0.63} \begin{aligned}
& 0.37 \\
&
\end{aligned}
$$

Huffman coding

Huffman coding builds the tree by adding the two smallest p_{k} probabilities in each step. After that, the coding works the same as for Shannon-Fano.

Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{array}{lll}
p_{1}=0.37 \\
p_{2}=0.27 \\
p_{3}=0.24 \\
p_{4}=0.12
\end{array} \quad \begin{aligned}
& 0.37 \\
& 0.27 \\
& 0.36
\end{aligned} \square^{0.63} \text { 品 }
$$

Huffman coding

Huffman coding builds the tree by adding the two smallest p_{k} probabilities in each step. After that, the coding works the same as for Shannon-Fano.

Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

$$
\begin{array}{lll}
p_{1}=0.37 \\
p_{2}=0.27 \\
p_{3}=0.24 \\
p_{4}=0.12
\end{array} \quad \begin{aligned}
& 0.37 \\
& 0.27 \\
& 0.36
\end{aligned} \square^{0.63} \text { 品 }
$$

Huffman coding

Huffman coding builds the tree by adding the two smallest p_{k} probabilities in each step. After that, the coding works the same as for Shannon-Fano.

Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

Huffman coding

Huffman coding builds the tree by adding the two smallest p_{k} probabilities in each step. After that, the coding works the same as for Shannon-Fano.

Example. $p_{1}=0.37, \quad p_{2}=0.27, \quad p_{3}=0.24, \quad p_{4}=0.12$.

Problem 3

Encode the source of problem 1 by Huffman coding.

Problem 3

Encode the source of problem 1 by Huffman coding.
Solution. First the state graph is constructed.

$$
\begin{aligned}
& p_{1}=0.49 \\
& p_{2}=0.14 \\
& p_{3}=0.14 \\
& p_{4}=0.07 \\
& p_{5}=0.07 \\
& p_{6}=0.04 \\
& p_{7}=0.02 \\
& p_{8}=0.02 \\
& p_{9}=0.01
\end{aligned}
$$

Problem 3

Encode the source of problem 1 by Huffman coding.
Solution. First the state graph is constructed.

$$
\begin{array}{ll}
p_{1}=0.49 & 0.49 \\
p_{2}=0.14 & 0.14 \\
p_{3}=0.14 & 0.14 \\
p_{4}=0.07 & 0.07 \\
p_{5}=0.07 & 0.07 \\
p_{6}=0.04 & 0.04 \\
p_{7}=0.02 & 0.02 \\
p_{8}=0.02 \\
p_{9}=0.01
\end{array} \quad \begin{aligned}
& 0.03 \\
&
\end{aligned}
$$

Problem 3

Encode the source of problem 1 by Huffman coding.
Solution. First the state graph is constructed.

$$
\begin{array}{lll}
p_{1}=0.49 & 0.49 & 0.49 \\
p_{2}=0.14 & 0.14 & 0.14 \\
p_{3}=0.14 & 0.14 & 0.14 \\
p_{4}=0.07 & 0.07 & 0.07 \\
p_{5}=0.07 & 0.07 & 0.07 \\
p_{6}=0.04 & 0.04 & 0.04 \\
p_{7}=0.02 & 0.02 \\
p_{8}=0.02 \\
p_{9}=0.01
\end{array} \quad 0.03-1.05
$$

Problem 3

Encode the source of problem 1 by Huffman coding.
Solution. First the state graph is constructed.

$p_{1}=0.49$	0.49	0.49	0.49
$p_{2}=0.14$	0.14	0.14	0.14
$p_{3}=0.14$	0.14	0.14	0.14
$p_{4}=0.07$	0.07	0.07	0.07
$p_{5}=0.07$	0.07	0.07	0.07
$p_{6}=0.04$	0.04		09
$p_{7}=0.02$			
$\begin{aligned} & p_{8}=0.02 \\ & p_{9}=0.01 \end{aligned}$	0.03		

Problem 3

Encode the source of problem 1 by Huffman coding.
Solution. First the state graph is constructed.

$p_{1}=0.49$	0.49	0.49	0.49	0.49
$p_{2}=0.14$	0.14	0.14	0.14	0.14
$p_{3}=0.14$	0.14	0.14	0.14	0.14
$p_{4}=0.07$	0.07	0.07	0.07	
$p_{5}=0.07$	0.07	0.07	0.07	0.14
$p_{6}=0.04$	0.04	0.04		
$p_{7}=0.02$	0.02			
$p_{8}=0.02$				
p_{9}	$=0.01$			

Problem 3

Encode the source of problem 1 by Huffman coding.
Solution. First the state graph is constructed.

$p_{1}=0.49$	0.49	0.49	0.49	0.49	0.49
$p_{2}=0.14$	0.14	0.14	0.14	0.14	0.14
$p_{3}=0.14$	0.14	0.14	0.14	0.14	0.14
$p_{4}=0.07$	0.07	0.07	0.07	0.14	0.23
$p_{5}=0.07$	0.07	0.07	0.07	0.09	
$p_{6}=0.04$	0.04	0.04	0.09		
$p_{7}=0.02$	0.02	0.05			
$p_{8}=0.02$	0.03				

Problem 3

Encode the source of problem 1 by Huffman coding.
Solution. First the state graph is constructed.

$p_{1}=0.49$	0.49	0.49	0.49	0.49	0.49	0.49
$p_{2}=0.14$	0.14	0.14	0.14	0.14	0.14	
$p_{3}=0.14$	0.14	0.14	0.14	0.14	0.14	0.28
$p_{4}=0.07$	0.07	0.07	0.07	0.14	0.23	
$p_{5}=0.07$	0.07	0.07	0.07	0.09		
$p_{6}=0.04$	0.04	0.04				
$p_{7}=0.02$	0.02	0.09				
$p_{8}=0.02$	0.03					

Problem 3

Encode the source of problem 1 by Huffman coding.
Solution. First the state graph is constructed.

Problem 3

Encode the source of problem 1 by Huffman coding.
Solution. First the state graph is constructed.

$p_{1}=0.49$	0.49	0.49	0.49	0.49	0.49	0.49	0.49
$p_{2}=0.14$	0.14	0.14	0.14	0.14	$\begin{aligned} & 0.14 \\ & 0.14 \end{aligned}>\begin{aligned} & 0.28 \\ & 0.23 \end{aligned}$		0.51
$p_{3}=0.14$	0.14	0.14	0.14	0.14			
$p_{4}=0.07$	0.07	0.07	$0.07>^{0.14}>^{0.23}$				
$p_{5}=0.07$	0.07	0.07					
$p_{6}=0.04$	0.04	$0.04>0.09$					
$p_{7}=0.02$		$0.02-0.05$					
$\begin{aligned} & p_{8}=0.02 \\ & p_{9}=0.01 \end{aligned}$							

Problem 3

Then the code tree and coding LUT can be obtained:

Symbol	Codeword
X_{1}	1
X_{2}	011
X_{3}	010
X_{4}	0010
X_{5}	0011
X_{6}	0001
X_{7}	00001
X_{8}	000001
X_{9}	000000

Problem 4

Compare the performance of the Shannon-Fano coding and the Huffman coding for the previous source for sampling frequency $f_{s}=160 \mathrm{MHz}$.

Problem 4

Compare the performance of the Shannon-Fano coding and the Huffman coding for the previous source for sampling frequency $f_{s}=160 \mathrm{MHz}$.

Solution. We first compute the average codelength for both HUFF and SF coding.

$$
\begin{aligned}
L^{\text {HUFF }}= & 0.49 \cdot 1+0.14 \cdot 3+0.14 \cdot 3+0.07 \cdot 4+0.07 \cdot 4+ \\
& +0.04 \cdot 4+0.02 \cdot 5+0.02 \cdot 6+0.01 \cdot 6=2.33 \\
L^{S F}= & 0.49 \cdot 2+0.28 \cdot 3+0.14 \cdot 4+0.04 \cdot 5+0.04 \cdot 6+ \\
& +0.01 \cdot 7=2.89
\end{aligned}
$$

Problem 4

Compare the performance of the Shannon-Fano coding and the Huffman coding for the previous source for sampling frequency $f_{s}=160 \mathrm{MHz}$.

Solution. We first compute the average codelength for both HUFF and SF coding.

$$
\begin{aligned}
L^{\text {HUFF }}= & 0.49 \cdot 1+0.14 \cdot 3+0.14 \cdot 3+0.07 \cdot 4+0.07 \cdot 4+ \\
& +0.04 \cdot 4+0.02 \cdot 5+0.02 \cdot 6+0.01 \cdot 6=2.33 \\
L^{S F}= & 0.49 \cdot 2+0.28 \cdot 3+0.14 \cdot 4+0.04 \cdot 5+0.04 \cdot 6+ \\
& +0.01 \cdot 7=2.89
\end{aligned}
$$

At $f_{s}=160 \mathrm{MHz}$, the rates are

$$
R_{\text {HUFF }}=372.8 \mathrm{Mbps}, \quad R_{S F}=462 \mathrm{Mbps} .
$$

Side note: 9 source symbols \rightarrow without compression, 4 bits are required, and the rate is $R=640 \mathrm{Mbps}$.

Problem 5

We have a source with the following distribution and code table:

Source symbol	Probability	Codeword
X_{1}	0.4	0
X_{2}	0.2	10
X_{3}	0.2	110
X_{4}	0.2	1111

(a) Is this a prefix-free code?
(b) What is the average codelength?
(c) How far is the average codelength from the theoretical lower bound of compressibility?
(d) Is this an optimal code?

Problem 5

Solution.
(a) Yes, the code is prefix-free.

Problem 5

Solution.
(a) Yes, the code is prefix-free.
(b) $L=\sum_{i=1}^{4} p_{i} \ell_{i}=0.4 \cdot 1+0.2 \cdot 2+0.2 \cdot 3+0.2 \cdot 4=2.2$.

Problem 5

Solution.
(a) Yes, the code is prefix-free.
(b) $L=\sum_{i=1}^{4} p_{i} \ell_{i}=0.4 \cdot 1+0.2 \cdot 2+0.2 \cdot 3+0.2 \cdot 4=2.2$.
(c)

$$
\begin{aligned}
& H(X)=\sum_{i=1}^{4} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)=0.4 \cdot 1.31+3 \cdot 0.2 \cdot 2.322=1.922 \\
& L-H(X)=0.278
\end{aligned}
$$

Problem 5

Solution.
(a) Yes, the code is prefix-free.
(b) $L=\sum_{i=1}^{4} p_{i} \ell_{i}=0.4 \cdot 1+0.2 \cdot 2+0.2 \cdot 3+0.2 \cdot 4=2.2$.
(c)

$$
\begin{aligned}
& H(X)=\sum_{i=1}^{4} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)=0.4 \cdot 1.31+3 \cdot 0.2 \cdot 2.322=1.922 \\
& L-H(X)=0.278
\end{aligned}
$$

(d) No, for X_{4} the codeword 111 is sufficient instead of 1111. (The resulting code has the same codelengths as Huffman-coding, so it is optimal.)

Problem 6

Consider the source from Problem 1:

$$
\begin{array}{llll}
p_{1}=0.49, & p_{2}=0.14, & p_{3}=0.14, & p_{4}=0.07,
\end{array} p_{5}=0.07,
$$

(a) Compress the source using Shannon-Fano-Elias coding.
(b) Compute the average codelength.
(c) Compare the performance of this code with Shannon-Fano coding and Huffman coding for the same source for sampling frequency $f_{s}=160 \mathrm{MHz}$.

Problem 6

Solution.
(a)

i	p_{i}	$F(i)$	$\bar{F}(i)$	binary	ℓ_{i}	codeword
1	0.49	0	0.245	$0.0011111010 \ldots$	3	001
2	0.14	0.49	0.56	$0.1000111101 \ldots$	4	1000
3	0.14	0.63	0.7	$0.1011001100 \ldots$	4	1011
4	0.07	0.77	0.805	$0.1100111000 \ldots$	5	11001
5	0.07	0.84	0.875	$0.1110000000 \ldots$	5	11100
6	0.04	0.91	0.93	$0.1110111000 \ldots$	6	111011
7	0.02	0.95	0.96	$0.1111010111 \ldots$	7	1111010
8	0.02	0.97	0.98	$0.1111101011 \ldots$	7	1111101
9	0.01	0.99	0.995	$0.1111111010 \ldots$	8	11111110

$$
F(i)=\sum_{j=0}^{i-1} p_{i}, \quad \bar{F}(i)=F(i)+p_{i} / 2, \quad \ell_{i}=\left\lceil\log _{2}\left(1 / p_{i}\right)\right\rceil+1
$$

Problem 6

(b) Average codelength is

$$
\begin{aligned}
L^{S F E}= & 0.49 \cdot 3+0.14 \cdot 4+0.14 \cdot 4+0.07 \cdot 5+0.07 \cdot 5+ \\
& +0.04 \cdot 6+0.02 \cdot 7+0.02 \cdot 7+0.01 \cdot 8=3.89
\end{aligned}
$$

Problem 6

(b) Average codelength is

$$
\begin{aligned}
L^{S F E}= & 0.49 \cdot 3+0.14 \cdot 4+0.14 \cdot 4+0.07 \cdot 5+0.07 \cdot 5+ \\
& +0.04 \cdot 6+0.02 \cdot 7+0.02 \cdot 7+0.01 \cdot 8=3.89
\end{aligned}
$$

(c)

Recall: without coding, $R=640 \mathrm{Mbps}$.
Conclusion: small improvement in the average codelength L matters a lot in data speed!

Comparative analysis

performance	$f_{s}=160 \mathrm{MHz}$			alg. simpli
Code	Performance	Avg. length	Data speed	Complexity
Huffman	optimal L	2.33	372.8Mbps	search + tree
SF	$H(X)<L<H(X)+1$	2.89	462.4 Mbps	tree
SFE	$H(X)+1<L<H(X)+2$	3.89	622.4 Mbps	binary conv.

