7. Entropy source coding and data compression

Coding Technology
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Source coding and data compression

In any text, different characters typically have different frequencies.
Normal coding (without compression) means that all characters are
coded using the same amount of bits.

If we allow different characters to have varying length codewords
(assigning shorter codewords to more frequent characters), it is
possible to get a lower average codeword length.

We assume that the distribution (long-term frequency) of
characters in the text is known: the probabilities of the characters
are

P1,---5PK,

where K is the size of the alphabet.
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Source coding and data compression

If a coding assigns a codeword of length ¢, to character k, then
the average codelength is

K
L= Z pkgk.
k=1

A coding is prefix-free if none of the codewords is a prefix of
another codeword. This property is necessary for decoding.

The entropy of the text source is

K
H(X) = pilogs(1/px)-
k=1
Theoretical lower bound: for any prefix-free coding,

L > H(X),

and the ratio H(X)/L is called the efficiency of the code.
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Shannon—Fano coding
For the Shannon—Fano coding, the codeword lengths are

Cie = [logy(1/pi)l-
We construct a binary tree where the depths of the leaves are

l1,...,0K, and the codewords will be based on the route from the
root to the leaves.

Example. p1 =0.37, p»=0.27, p3=0.24, ps=0.12.
01 = [log,(1/0.37)] = 2, Uy = [log,(1/0.27)] = 2,
U3 = [log,(1/0.24)] = 3, Uy = [log,(1/0.12)] = 4.

X1 =(11)
Symbol | Codeword
X1 11
X, = (01
> = (01) X, 01
X3 = (001) X3 001
Xy 0000

0
X, = (0000)
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Problem 1

Encode the following distribution using Shannon—Fano coding.

p1 =0.49, p»=0.14, p3=0.14, p,=0.07, ps=0.07,
Pe — 0.04, Pr = 0.02, pPs — 0.027 P9 — 0.01

Solution. Codeword lengths: ¢; = [log, 1/pi], so

flogy 1/p1] = [1.029] =
— logy 1/p2] = [2.836] =

llogy 1/ps] = [2.836] =

ls =4, (=5, (;=103=6, (g=T.

£

(Instead of log,, the notation Id is also in use.)



Problem 1

Symbol | Codeword
X1 01

Xo 001

X3 101

Xy 1100

Xs 1101

Xs 11101

X7 111100
Xs 111101
Xo 1111101

Side note: prefix-free code < no codewords on inner nodes.
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Problem 2

Conduct performance analysis for the previous code.

Solution. The entropy of the original distribution is

9
1
H(X) = Z pi logs (p) = 2.314,
i—1 i
and the average codeword length for the coding is

L=049-2+0.28-3+4+0.28-3+0.14 -4+
0.04-5+0.04-6+0.01-7=2.89,

so the efficiency of the coding is

H(X)
I 0.8.
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Huffman coding

Huffman coding builds the tree by adding the two smallest py
probabilities in each step. After that, the coding works the same as
for Shannon—Fano.

Example. p1 =0.37, p, =027, p3=0.24 p,=0.12.

X1 =(1)

P2 = 0.27 0.27 7 0.63

p3 = 0.24 7 0.36
pPa = 0.12

X, = (01)

X; = (001)

X, = (000)
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Encode the source of problem 1 by Huffman coding.

Solution. First the state graph is constructed.

p1 = 0.49
p2=0.14
p3 =0.14
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/
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Problem 3

Then the code tree and coding LUT can be obtained:

Symbol | Codeword

o X=(1) X, = (011)
X1 1
N X3 = (010) X5 011
X4 = (0011)

X3 010
X5 = (0010) Xy 0010
X5 = (0001) Xs 0011
1 - X7 = (00001) Xo 0001
X7 00001

X = (000001)

< Xs 000001
Xo = (000000) Xo 000000
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Problem 4

Compare the performance of the Shannon-Fano coding and the
Huffman coding for the previous source for sampling frequency
fs =160 MHz.

Solution. We first compute the average codelength for both HUFF
and SF coding.

LHUFF —0.49.1+40.14-340.14-3 +0.07- 44 0.07 - 4+
+0.04-4+40.02-540.02-6+0.01-6 =2.33
[5F =0.49-24028-3+0.14-4+0.04-5+0.04- 6+
+0.01-7=2.89

At £, = 160 MHz, the rates are
RHUFF = 372.8/\41)[357 RSF = 462Mbp5.

Side note: 9 source symbols — without compression, 4 bits are
required, and the rate is R = 640Mbps.



Problem 5

We have a source with the following distribution and code table:

Source symbol  Probability Codeword

X1 0.4 0

Xo 0.2 10
X3 0.2 110
X4 0.2 1111

(a) Is this a prefix-free code?
(b) What is the average codelength?

(c) How far is the average codelength from the theoretical lower
bound of compressibility?

(d) Is this an optimal code?
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Problem 5

Solution.

(a) Yes, the code is prefix-free.

(b) L=S1 ,piti=04-1402-2+02-3+02-4=22.
(c)

4
1
H(X) = pilog, <p> =0.4-131+3-0.2-2.322 =1.922
i=1 i
L— H(X)=0.278
(d) No, for Xz the codeword 111 is sufficient instead of 1111.

(The resulting code has the same codelengths as
Huffman-coding, so it is optimal.)



Problem 6

Consider the source from Problem 1:

pr =049, p,=0.14, p3=0.14, ps=0.07, ps=0.07,
ps = 0.04, p;=0.02, ps=0.02, po=0.0L.

(a) Compress the source using Shannon-Fano-Elias coding.
(b) Compute the average codelength.

(c) Compare the performance of this code with Shannon-Fano
coding and Huffman coding for the same source for sampling
frequency f¢ = 160 MHz.



Problem 6

Solution.

(a) )
i pi  F(i) F() binary ¢;  codeword
1 0.49 0 0.245 0.0011111010... 3 001
2 0.14 049 0.56 0.1000111101... 4 1000
3 014 0.63 0.7 0.1011001100... 4 1011
4 0.07 0.77r 0.805 0.1100111000... 5 11001
5 0.07 0.84 0.875 0.1110000000... 5 11100
6 004 091 093 0.1110111000... 6 111011
7 0.02 095 0.96 0.1111010111... 7 1111010
8 0.02 097 098 0.1111101011... 7 1111101
9 001 0.99 099 0.1111111010... 8 11111110

ZP,, F(i)y= F(i)+ pi/2, ¢ = [logy(1/pi)] +1



Problem 6

(b) Average codelength is

[5FE = 0.49.34+0.14-4+0.14-4+0.07-5+ 0.07 - 5+
+0.04-6+0.02-7+0.02-7+0.01-8=3.80.



Problem 6

(b) Average codelength is

[5FE = 0.49.34+0.14-4+0.14-4+0.07-5+ 0.07 - 5+
+0.04-6+0.02-7+0.02-7+0.01-8=3.80.

LHUFF — 233 LSF =2.89 LSFE = 3.89

+ + +
RHUFF = 372.8Mbp5 RSF = 462Mbp5 RSFE = 622Mbp$

Recall: without coding, R = 640Mbps.

Conclusion: small improvement in the average codelength L
matters a lot in data speed!



Comparative analysis

performance fs = 160 MHz alg. simplicity
f :
! |
! I
| Code Performance Avg. length | Data speed | Complexity !
! | Huffman optimal L 2.33 372.8Mbps | search + tree | 1
‘ SF HX)<L< HX)+1 2.89 462.4Mbps tree 1
: SFE HX)+1<L<HX)+2 3.89 622.4Mbps | binary conv. :
! I
| |
| A\



