2. Basic concepts of codes and the generic coding scheme

Coding Technology

Problem 1

A code has codewords

$$
10100,01111,11110,00000 .
$$

(a) Calculate the n and k parameters of the code.
(b) What is the minimal Hamming distance between codewords?
(c) How many errors can the code detect? How many errors can the code correct?

Problem 1

Solution.
(a) The length of the codewords is $n=5$, and the number of codewords is $2^{k}=4$ (one for each message vector of length $k)$, so $k=2$. This is a $C(5,2)$ code.

Problem 1

Solution.
(a) The length of the codewords is $n=5$, and the number of codewords is $2^{k}=4$ (one for each message vector of length $k)$, so $k=2$. This is a $C(5,2)$ code.
(b) Using pairwise comparison, the minimal Hamming distance is

$$
d_{\min }=2
$$

Problem 1

Solution.
(a) The length of the codewords is $n=5$, and the number of codewords is $2^{k}=4$ (one for each message vector of length $k)$, so $k=2$. This is a $C(5,2)$ code.
(b) Using pairwise comparison, the minimal Hamming distance is

$$
d_{\min }=2
$$

(c) A code with $d_{\text {min }}=2$ can detect

$$
d_{\min }-1=1
$$

errors and correct

$$
\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor=0
$$

errors.

Problem 2

(a) Design a $C(5,2)$ code with maximal $d_{\text {min }}$.
(b) Implement the code with Look-Up-Tables (LUT).
(c) Determine the error correction and error detecting capabilities of the code.

Problem 2

(a) Design a $C(5,2)$ code with maximal $d_{\text {min }}$.
(b) Implement the code with Look-Up-Tables (LUT).
(c) Determine the error correction and error detecting capabilities of the code.
Solution.
(a) There are 32 binary vectors of length $n=5$, and we have to choose $2^{k}=2^{2}=4$ of them. We need to check their minimal pairwise Hamming distance, and choose 4 vectors where the minimal Hamming distance is as large as possible.

Problem 2

(a) For the code in the previous problem, $d_{\text {min }}=2$. Try to get $d_{\text {min }}=3$.

- The first codeword could be (00000).

Problem 2

(a) For the code in the previous problem, $d_{\text {min }}=2$. Try to get $d_{\text {min }}=3$.

- The first codeword could be (00000).
- The weight of every other codeword must be 3 or more. (00111) is a natural choice.

Problem 2

(a) For the code in the previous problem, $d_{\text {min }}=2$. Try to get $d_{\text {min }}=3$.

- The first codeword could be (00000).
- The weight of every other codeword must be 3 or more. (00111) is a natural choice.
- The next codeword also needs to have weight 3 or more, but it also has to differ from the previous codeword in at least 3 digits. (11100) is a suitable choice.

Problem 2

(a) For the code in the previous problem, $d_{\text {min }}=2$. Try to get $d_{\text {min }}=3$.

- The first codeword could be (00000).
- The weight of every other codeword must be 3 or more. (00111) is a natural choice.
- The next codeword also needs to have weight 3 or more, but it also has to differ from the previous codeword in at least 3 digits. (11100) is a suitable choice.
- (11111) is not suitable for the final codeword, because its Hamming distance from the previous two codewords is just 2. But if we change the third bit to 0 , it works: (11011).
For this code, $d_{\text {min }}=3$.

Problem 2

(a) For the code in the previous problem, $d_{\text {min }}=2$. Try to get $d_{\text {min }}=3$.

- The first codeword could be (00000).
- The weight of every other codeword must be 3 or more. (00111) is a natural choice.
- The next codeword also needs to have weight 3 or more, but it also has to differ from the previous codeword in at least 3 digits. (11100) is a suitable choice.
- (11111) is not suitable for the final codeword, because its Hamming distance from the previous two codewords is just 2. But if we change the third bit to 0 , it works: (11011).
For this code, $d_{\text {min }}=3$.
4 codewords of length 5 with $d_{\text {min }} \geq 4$ is not possible. (Even 3 codewords of length 5 with $d_{\text {min }} \geq 4$ is not possible. Why?)

Problem 2

(b) If we assign the messages to the codewords according to the following list, then the lookup-table (LUT) is the same assignment in reverse:

$$
\begin{aligned}
& 00 \rightarrow 00000 \\
& 01 \rightarrow 11100 \\
& 10 \rightarrow 00111 \\
& 11 \rightarrow 11011
\end{aligned}
$$

$\rightarrow \quad$| c^{\prime} | u^{\prime} |
| :---: | :---: |
| 00000 | 00 |
| 11100 | 01 |
| 00111 | 10 |
| 11011 | 11 |

The LUT above includes only the codewords, other received vectors are decoded to the codeword with minimal Hamming-distance.
(In case of $d=2$, the received vector may have minimal
Hamming-distance to multiple codewords. In such a situation, we may choose any of the codewords with minimal Hamming-distance for decoding.)

2. feladat

(b) The full $c^{\prime} \rightarrow u^{\prime}$ assignment for all possible received vectors is as follows:

c^{\prime}	u^{\prime}
$00000,00001,00010,00100,01000,10000$, $01001,10001,10010$	00
$11100,11101,11110,11000,10100,01100$, 01101,01110	01
00111,00110, 00101, 00011, 01111, 10111, 10110,10101	10
$11011,1110,11001,11111,10011,01011$, 01010	11

This table is significantly larger than the LUT, but it is not necessary to compute $\left\{c: \min d\left(c, c^{\prime}\right)\right\}$.

2. feladat

(b) The full $c^{\prime} \rightarrow u^{\prime}$ assignment for all possible received vectors is as follows:

c^{\prime}	u^{\prime}
$00000,00001,00010,00100,01000,10000$, $01001,10001,10010$	00
$11100,11101,11110,11000,10100,01100$, 01101,01110	01
$00111,00110,00101,00011,01111,10111$, 10110,10101	10
$11011,1110,11001,1111,10011,01011$, 01010	11

This table is significantly larger than the LUT, but it is not necessary to compute $\left\{c: \min d\left(c, c^{\prime}\right)\right\}$.
(c) Error detection: $d_{\text {min }}-1=2$.

Error correction: $\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor=1$.

Problem 3

We have the following coding scheme:

For $u=(11)$ and $e=(001000)$, determine the vectors $c, v, c^{\prime}, u^{\prime}$.

Problem 3

We have the following coding scheme:

For $u=(11)$ and $e=(001000)$, determine the vectors $c, v, c^{\prime}, u^{\prime}$.
Solution.

$$
\begin{aligned}
c & =(111111) \\
v & =c+e=(111111)+(001000)=(110111) \\
c^{\prime} & =\left\{c: \min _{c} d(v, c)\right\}=(111111) \\
u^{\prime} & =(11)
\end{aligned}
$$

Problem 4

Use the same coding scheme:

for $u=(01)$ and $e=(001011)$ to determine the vectors $c, v, c^{\prime}, u^{\prime}$.

Problem 4

Use the same coding scheme:

for $u=(01)$ and $e=(001011)$ to determine the vectors $c, v, c^{\prime}, u^{\prime}$.
Solution.

$$
\begin{aligned}
c & =(010101) \\
v & =c+e=(010101)+(001011)=(011110) \\
c^{\prime} & =\left\{c: \min _{c} d(v, c)\right\}=(111111) \\
u^{\prime} & =(11)
\end{aligned}
$$

Problem 5

For each of the following sets of codewords, give the appropriate (n, k, d) designation, where n is number of bits in each codeword, k is the number of message bits transmitted by each codeword and $d=d_{\text {min }}$ is the minimum Hamming distance between codewords. Also give the code rate.
(a) $\{111,100,010,001\}$
(b) $\{00000,01111,10100,11011\}$
(c) $\{00000\}$

Problem 5

Solution.
(a) $\{111,100,010,001\}$

- $n=3$ (the length of the codewords);
- $k=2$ (the number of codewords is $4=2^{k}$);
- $d=d_{\text {min }}=2$ (from pairwise comparison).
- the code rate is $k / n=2 / 3$.

Problem 5

Solution.
(a) $\{111,100,010,001\}$

- $n=3$ (the length of the codewords);
- $k=2$ (the number of codewords is $4=2^{k}$);
- $d=d_{\text {min }}=2$ (from pairwise comparison).
- the code rate is $k / n=2 / 3$.
(b) $\{00000,01111,10100,11011\}$

$$
n=5, k=2, d=2, \text { the code rate is } 2 / 5
$$

Problem 5

Solution.
(a) $\{111,100,010,001\}$

- $n=3$ (the length of the codewords);
- $k=2$ (the number of codewords is $4=2^{k}$);
- $d=d_{\text {min }}=2$ (from pairwise comparison).
- the code rate is $k / n=2 / 3$.
(b) $\{00000,01111,10100,11011\}$
$n=5, k=2, d=2$, the code rate is $2 / 5$.
(c) $\{00000\}$

A bit of a trick question. $n=5, k=0, d$ is undefined. The code rate is 0 .

With only one codeword, no useful information can be transmitted since the receiver knows in advance what the codeword is going to be.

Problem 6

The Registrar has asked for an encoding of classes according to year ("Freshman", "Sophomore", "Junior", "Senior") that will allow single error correction. Give an appropriate 5-bit binary encoding for each of the four years.

Problem 6

The Registrar has asked for an encoding of classes according to year ("Freshman", "Sophomore", "Junior", "Senior") that will allow single error correction. Give an appropriate 5-bit binary encoding for each of the four years.

Solution. We need a $C(5,2,3)$ block code. We have seen one like that in Problem 2, that code is suitable for this problem too: $\{(00000),(00111),(11100),(11011)\}$.

Problem 7

Pairwise Communications has developed a block code with three data bits $\left(D_{1}, D_{2}, D_{3}\right)$ and three parity bits $\left(P_{1}, P_{2}, P_{3}\right)$:

$$
P_{1}=D_{1}+D_{2}, \quad P_{2}=D_{2}+D_{3}, \quad P_{3}=D_{3}+D_{1}
$$

(a) Calculate (n, k) for this code.
(b) What are the codewords?
(c) What is the minimum Hamming distance of the code?

Problem 7

Solution.
(a) $n=6, k=3$.

Problem 7

Solution.
(a) $n=6, k=3$.
(b) The 8 possible codewords:

$$
\begin{array}{llll}
(000000), & (001011), & (010110), & (011101), \\
(100101), & (101110), & (110011), & (111000)
\end{array}
$$

Problem 7

Solution.
(a) $n=6, k=3$.
(b) The 8 possible codewords:

$$
\begin{array}{llll}
(000000), & (001011), & (010110), & (011101), \\
(100101), & (101110), & (110011), & (111000)
\end{array}
$$

(c) By pairwise inspection, the minimum Hamming distance is $d_{\text {min }}=3$.

Problem 8

The receiver computes three syndrome bits E_{1}, E_{2} and E_{3} from the (possibly corrupted) received data and parity bits:

$$
E_{1}=D_{1}+D_{2}+P_{1}, \quad E_{2}=D_{2}+D_{3}+P_{2}, \quad E_{3}=D_{3}+D_{1}+P_{3}
$$

The receiver performs maximum likelihood decoding using the syndrome bits. Determine the result of the maximum-likelihood decoder from among the following:

- no errors, or
- single error in a specific bit (state which one), or
- multiple errors, for each of the following combination of syndrome bits:

$$
\begin{array}{ll}
E_{1} E_{2} E_{3}=000, & E_{1} E_{2} E_{3}=010 \\
E_{1} E_{2} E_{3}=101, & E_{1} E_{2} E_{3}=111
\end{array}
$$

Problem 8

Solution. Main points to consider:

- no errors result in 0 for all of E_{1}, E_{2} and E_{3}.
- if there is only one error, and it is from among D_{1}, D_{2} or D_{3}, then two of E_{1}, E_{2} and E_{3} will be 1's.
- if there is only one error, and it is from among P_{1}, P_{2} or P_{3}, then one of E_{1}, E_{2} and E_{3} will be 1's.
- The ML decoder will pick the result with the fewest errors.

Problem 8

Solution. Main points to consider:

- no errors result in 0 for all of E_{1}, E_{2} and E_{3}.
- if there is only one error, and it is from among D_{1}, D_{2} or D_{3}, then two of E_{1}, E_{2} and E_{3} will be 1's.
- if there is only one error, and it is from among P_{1}, P_{2} or P_{3}, then one of E_{1}, E_{2} and E_{3} will be 1's.
- The ML decoder will pick the result with the fewest errors.

For $E_{1} E_{2} E_{3}=000$, the result is no errors.

Problem 8

Solution. Main points to consider:

- no errors result in 0 for all of E_{1}, E_{2} and E_{3}.
- if there is only one error, and it is from among D_{1}, D_{2} or D_{3}, then two of E_{1}, E_{2} and E_{3} will be 1's.
- if there is only one error, and it is from among P_{1}, P_{2} or P_{3}, then one of E_{1}, E_{2} and E_{3} will be 1's.
- The ML decoder will pick the result with the fewest errors.

For $E_{1} E_{2} E_{3}=000$, the result is no errors.
For $E_{1} E_{2} E_{3}=010$, the result is 1 error in P_{2}.

Problem 8

Solution. Main points to consider:

- no errors result in 0 for all of E_{1}, E_{2} and E_{3}.
- if there is only one error, and it is from among D_{1}, D_{2} or D_{3}, then two of E_{1}, E_{2} and E_{3} will be 1's.
- if there is only one error, and it is from among P_{1}, P_{2} or P_{3}, then one of E_{1}, E_{2} and E_{3} will be 1's.
- The ML decoder will pick the result with the fewest errors.

For $E_{1} E_{2} E_{3}=000$, the result is no errors.
For $E_{1} E_{2} E_{3}=010$, the result is 1 error in P_{2}.
For $E_{1} E_{2} E_{3}=101$, the result is 1 error in D_{1}.

Problem 8

Solution. Main points to consider:

- no errors result in 0 for all of E_{1}, E_{2} and E_{3}.
- if there is only one error, and it is from among D_{1}, D_{2} or D_{3}, then two of E_{1}, E_{2} and E_{3} will be 1's.
- if there is only one error, and it is from among P_{1}, P_{2} or P_{3}, then one of E_{1}, E_{2} and E_{3} will be 1's.
- The ML decoder will pick the result with the fewest errors.

For $E_{1} E_{2} E_{3}=000$, the result is no errors.
For $E_{1} E_{2} E_{3}=010$, the result is 1 error in P_{2}.
For $E_{1} E_{2} E_{3}=101$, the result is 1 error in D_{1}.
For $E_{1} E_{2} E_{3}=111$, the result is multiple errors.

Problem 9

Is the following code an MDS (Maximum Distance Separable) code?

$$
c_{1}=(00000), \quad c_{2}=(11111)
$$

Problem 9

Is the following code an MDS (Maximum Distance Separable) code?

$$
c_{1}=(00000), \quad c_{2}=(11111)
$$

Solution. $n=52^{k}=2$, so $k=1$, and $d_{\text {min }}=5$. A code is MDS if

$$
d_{\min }=n-k+1
$$

holds. In this case,

$$
d_{\min }=5=n-k+1=5-1+1
$$

holds, so this is an MDS.

Problem 10

Is the following code an MDS code?

$$
\begin{array}{llll}
(000000), & (001011), & (010110), & (011101) \\
(100101), & (101110), & (110011), & (111000)
\end{array}
$$

Problem 10

Is the following code an MDS code?

$$
\begin{array}{llll}
(000000), & (001011), & (010110), & (011101) \\
(100101), & (101110), & (110011), & (111000)
\end{array}
$$

Solution. $n=6, k=3, d_{\text {min }}=3$.

$$
n-k+1=6-3+1 \neq d_{\text {min }}=3
$$

No, it is not MDS.

Problem 11

A perfect code with $n=15$ corrects $t=1$ error. What is the value of k ?

Problem 11

A perfect code with $n=15$ corrects $t=1$ error. What is the value of k ?

Solution. For a perfect code, there is equality in the Hamming bound:

$$
\begin{aligned}
\sum_{i=0}^{t}\binom{n}{i} & =2^{n-k} \\
n+1 & =2^{n-k} \\
16 & =2^{15-k}
\end{aligned}
$$

so $k=11$.

