1. Operations with binary vectors and communication over Binary Symmetric Channel (BSC)

Coding Technology

Problem 1

(a) For a BSC, the input vector is $u=(0010011)$ and the randomly generated error vector is $e=(1000001)$. The bit error probability is $P_{b}=0.1$. What is the output vector of the channel?
(b) What is the probability of the error vector $e=(1000001)$?

Problem 1

(a) For a BSC, the input vector is $u=(0010011)$ and the randomly generated error vector is $e=(1000001)$. The bit error probability is $P_{b}=0.1$. What is the output vector of the channel?
(b) What is the probability of the error vector $e=(1000001)$?

Solution.
(a) The output is the mod 2 sum of the input and the error vector:

0010011
$+\quad 1000001$
1010010

Problem 1

(a) For a BSC, the input vector is $u=(0010011)$ and the randomly generated error vector is $e=(1000001)$. The bit error probability is $P_{b}=0.1$. What is the output vector of the channel?
(b) What is the probability of the error vector $e=(1000001)$?

Solution.
(a) The output is the mod 2 sum of the input and the error vector:

0010011
$+\quad 1000001$
1010010

(b) The probability of the error vector is

$$
P(e=1000001)=0.1^{2} \cdot(1-0.1)^{5} \approx 0.005905
$$

Problem 2

(a) $u=(0010011)$ is the input and $v=(1010010)$ is the corresponding output of a BSC. What is the Hamming distance between u and v ?
(b) What is the error vector generated by the BSC?

Problem 2

(a) $u=(0010011)$ is the input and $v=(1010010)$ is the corresponding output of a BSC. What is the Hamming distance between u and v ?
(b) What is the error vector generated by the BSC?

Solution.
(a)

Problem 2

(a) $u=(0010011)$ is the input and $v=(1010010)$ is the corresponding output of a BSC. What is the Hamming distance between u and v ?
(b) What is the error vector generated by the BSC?

Solution.
(a)

(b) $v=u+e \Longrightarrow e=u+v$
input: 0010011
output: 1010010
error: 1000001

Problem 3

(a) What is the error vector if the input vector is $u=(00100111)$ output vector is $v=(10100101)$?
(b) If the channel error probability is $P_{b}=0.01$, what is the conditional probability that the output vector is $v=(10100101)$, assuming that the input vector is $u=(00100111)$?

Problem 3

(a) What is the error vector if the input vector is $u=(00100111)$ output vector is $v=(10100101)$?
(b) If the channel error probability is $P_{b}=0.01$, what is the conditional probability that the output vector is $v=(10100101)$, assuming that the input vector is $u=(00100111)$?
Solution.
(a) The error vector is input + output mod 2 :

$$
e=u+v=(10000010)
$$

Problem 3

(a) What is the error vector if the input vector is $u=(00100111)$ output vector is $v=(10100101)$?
(b) If the channel error probability is $P_{b}=0.01$, what is the conditional probability that the output vector is $v=(10100101)$, assuming that the input vector is $u=(00100111)$?
Solution.
(a) The error vector is input + output mod 2 :

$$
e=u+v=(10000010)
$$

(b)

$$
\begin{aligned}
& P(v=(10100101) \mid u=(00100111))= \\
& P_{b}^{2}\left(1-P_{b}\right)^{6}=0.01^{2} \cdot 0.99^{6} \approx 0.00009415
\end{aligned}
$$

Problem 4

For a BSC, the bit error probability is $P_{b}=0.2$. Calculate how many errors we need to correct if the desired block error probability (QoS) is less than 0.001, and the block length is $n=30$.

Problem 4

For a BSC, the bit error probability is $P_{b}=0.2$. Calculate how many errors we need to correct if the desired block error probability (QoS) is less than 0.001, and the block length is $n=30$.
Solution. We use the following notation.

- i is the number of incorrect bits in a block;
- $30-i$ is the number of correct bits;
- t is the number of errors we can correct.

Problem 4

For a BSC, the bit error probability is $P_{b}=0.2$. Calculate how many errors we need to correct if the desired block error probability (QoS) is less than 0.001, and the block length is $n=30$.
Solution. We use the following notation.

- i is the number of incorrect bits in a block;
- $30-i$ is the number of correct bits;
- t is the number of errors we can correct.

We need to find the smallest t for which

$$
\sum_{i=t+1}^{30}\binom{30}{i} 0.2^{i} 0.8^{30-i} \leq 0.001
$$

Problem 4

For a BSC, the bit error probability is $P_{b}=0.2$. Calculate how many errors we need to correct if the desired block error probability (QoS) is less than 0.001, and the block length is $n=30$.
Solution. We use the following notation.

- i is the number of incorrect bits in a block;
- $30-i$ is the number of correct bits;
- t is the number of errors we can correct.

We need to find the smallest t for which

$$
\sum_{i=t+1}^{30}\binom{30}{i} 0.2^{i} 0.8^{30-i} \leq 0.001
$$

$$
\left.\begin{array}{l}
\sum_{i=13}^{30}\binom{30}{i} 0.2^{i} 0.8^{30-i} \approx 0.00311 \\
\sum_{i=14}^{30}\binom{30}{i} 0.2^{i} 0.8^{30-i} \approx 0.000902
\end{array}\right\} \Longrightarrow t=13
$$

Problem 5

(a) What is the number of 5-dimensional binary vectors with Hamming distance 3 from the vector (01010)?
(b) What is the number of binary vectors inside the sphere with radius 3 with center (01010)?

Problem 5

(a) What is the number of 5-dimensional binary vectors with Hamming distance 3 from the vector (01010)?
(b) What is the number of binary vectors inside the sphere with radius 3 with center (01010)?
Solution.
(a)

$$
\binom{5}{3}=\frac{5!}{3!\cdot 2!}=10
$$

Problem 5

(a) What is the number of 5-dimensional binary vectors with Hamming distance 3 from the vector (01010)?
(b) What is the number of binary vectors inside the sphere with radius 3 with center (01010)?
Solution.
(a)

$$
\binom{5}{3}=\frac{5!}{3!\cdot 2!}=10
$$

(b)

$$
\begin{aligned}
& \sum_{i=0}^{3}\binom{5}{i}=\binom{5}{0}+\binom{5}{1}+\binom{5}{2}+\binom{5}{3}= \\
& 1+5+10+10=26
\end{aligned}
$$

Problem 6

Calculate the weight of the vector (000100011000111101000).

Problem 6

Calculate the weight of the vector (000100011000111101000).
Solution. The vector contains 8 ones, so

$$
w(000100011000111101000)=8 .
$$

Problem 7

Calculate the following matrix-vector multiplication according to $\bmod 2$ arithmetics.

$$
\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

Problem 7

Solution.

$$
\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

(Add columns 2, 3 and 7 of the matrix componentwise.)

Problem 8

Calculate the following matrix-vector multiplication according to $\bmod 2$ arithmetics.

$$
(1001) \cdot\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Problem 8

Solution.
$(1001) \cdot\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right]=$
(01001110).
(Add rows 1 and 4 of the matrix componentwise.)

