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1 Introduction and historical overview

A billiard is a dynamical system where a point particle moves freely (neglecting fric-
tion) at unit speed in a domain Q (the "table") and bounces o� its boundary ∂Q (the
"wall") by the classical rule "the angle of incidence with the normal of the curve equals
to the angle of re�ection" (see Figure 1). The domain Q is �nite, and its boundary
may consist of convex or concave walls or bumpers. We assume that Q ⊂ R2 or T2,
and that the boundary is a �nite union of smooth curves.

α
α

Figure 1: The angles of incidence and re�ec-
tion

Figure 2: The rectangle billiard

The dynamical behavior of a billiard is determined by the properties of the bound-
ary ∂Q, and it may vary greatly from completely regular or integrable to strongly
chaotic. For example, the dynamics in simple containers (like circles or rectangles as
shown in Figure 2) are integrable, the trajectories can be computed analytically and
easily.

The �rst chaotic billiards were discovered by Sinai [20], who examined systems of
dispersing type corresponding to the case when ∂Q is the union of a �nite number
of concave pieces (concave boundaries, by convention, refer to boundary curves with
centers of curvature lying outside of Q). Two standard examples of billiards of this
type are (as shown in Figure 3.a) on the 2D-torus with a �nite number of scatterers
made up of disjoint convex regions and (like in Figure 3.b) those on planar domains.
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(a) (b)

Figure 3: Dispersing billiards

Sinai proved that the dynamics are hyperbolic, ergodic and mixing in the mentioned
billiards. Later on, such properties were proven in cases of other families of billiards:
Bunimovich [3, 4] in the 1970s, Wojtkowski [22], Markarian [16], Donnay [13], and
again Bunimovich [5] in the 1980s and early 1990s (and many others since) have
greatly contributed to the subject.

As one can see, even the ergodic properties of billiards have kept mathematicians
busy for over the past 35 years, though ergodicity is a very weak property. The cor-
relation functions' rate of decay is much �ner, has a lot higher physical meaning and
importance (see Section 3.1.1), though it is more di�cult to study.

The subject of this study is a special family of billiards that resemble the squash
vegetable and a special case of it called the Bunimovich stadium. We will discuss their
main properties, examine the decay of various correlation functions, and try to �nd
suitable explanations for the observed phenomenon.
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2 The "squash" billiard

The billiard to be studied in the latter is de�ned as follows: Consider a Q subset of
R2, where ∂Q consists of two arcs of circles, one with the radius of r, the other with
R, with centers placed at a distance d. The arcs are connected by their common outer
tangent of length L (see Fig. 4). There is only one "ball" that re�ects o� the boundary
elastically.

R

r

L

d

Figure 4: The "squash" billiard

The so called Bunimovich stadium is a special case of the squash billiard, where
the radii of the arcs are equal (Figure 5). The mathematically rigorous investigation
of the stadium started with [4] where Bunimovich showed (with respect to the natural
invariant measure) that the Lyapunov exponents are almost everywhere non-zero, and
that the system is ergodic. Non-dispersing billiards such as the squash only produce
hyperbolicity when certain conditions are met: Even though nearly parallel rays �rst
become convergent, they diverge after focusing, and expansion in phase space results
if, before the next collision, they have diverged more than they have converged. See
[22] for precise formulations.

Figure 5: The Bunimovich stadium
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By the state of the ball, we will mean its location on the plane (x ∈ Q) and the
unit vector that gives us the exact direction of its velocity (u) (as it is shown on Figure
6).

We study the process in discrete time, where one step corresponds to one collision,
so the state at the n-th step can be determined by the coordinates of the collision and
the direction of the outgoing velocity.

The process can be described by the evolution of two coordinates (l, α) instead of
the four (x1, x2, u1, u2), where l gives us the arc length parameter along the boundary
and α is the angle of re�ection (to the normal of ∂Q) (see Figure 7). The coordinate
l will be 0 at the meeting point of the left arc and the lower line, and will grow
counterclockwise. The angle α also grows counterclockwise, from −π/2 to π/2.

α2 u2

x2

r Φπ ΦπR

x1

α1 u1

L

L

Figure 6: The four dimensional model.

l1

ΦπR rΦπLL

−Π/2

1

Π/2

α

α 2

l2

Figure 7: The two dimensional phase space.

Both of the above two notations are used throughout the thesis, as the (l, α) coor-
dinates are more convenient for a theoretical approach, however it is more transparent
to work directly with the locations and the velocities when programming simulations.
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All of the functions and maps de�ned later (f, T, fn, T n) could be expressed both
in terms of the two and of the four coordinates. We shall use the same notations for
the resulting objects, this should cause no confusion.

2.1 The dynamics: de�nitions

I will only use the two dimensional convention here.
Let M = ∂Q × [−π

2
, π

2
] be the state space. Given x = (l, α) ∈ M , consider the

billiard trajectory starting out of x with the velocity given by α, and denote Tx =

(l′, α′) ∈ M , where l′ is the location and α′ is the outgoing velocity at the next moment
of collision. De�ned this way, we think of the map T : M → M and its higher iterates
T n : M → M as a discrete time dynamical system. As we shall see in Section 2.2,
there is a convenient measure µ preserved by T . Let f : M → R be a real-valued
measurable function. The following functions can be thought of as random variables,
and de�ne a stationary stochastic process with (M ; µ) as the underlying probability
space (stationarity following from the invariance of the measure µ):

fn = f ◦ T n, n ∈ Z . (2.1)

2.2 The invariant measure

The billiard dynamics preserves a natural measure on the phase space, that is abso-
lutely continuous with respect to the Lebesgue measure.

Lemma 2.1 The billiard map T preserves the smooth measure dµ = dldα cos α on M .

Proof Let us consider two consecutive moments of collision and introduce the
following notations:

• Let (l, α) be the �rst state,

• (l′, α′) be the second state, and

• Φ be the angle of the two normal vectors of the boundary-segments where the
collisions occur.

One can easily see that α′ = Φ− α, for the angles π/2− α, π/2− α′ and Φ add up to
π because they form the angles of a triangle (see Figure 8).
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φ

α

π/2−α α’ ’

π/2−α

Figure 8: The angles π/2− α, π/2− α′ and Φ total up to π.

Neglecting the higher order terms, it can also be seen that (according to the sine
theorem)

∂l′

∂l
=

sin(π
2
− α)

sin(π
2

+ α− Φ)
=

cos(α)

cos(α− Φ)
, (2.2)

and
∂α′ = (Φ + α + ∂α)− (Φ + α) = ∂α . (2.3)

a1

a2
α

l’δ

δl
l

φ

Figure 9: The change of ∂l

’ ’α + δα

α’

φ

l

αδα

Figure 10: The change of ∂α

Since ∂α′ doesn't depend on ∂l up to �rst order, ∂α′
∂l

= 0, which is enough infor-
mation for us to derive the following Jacobian:

∣∣∣∣∣
∂l′
∂l

∂l′
∂α

∂α′
∂l

∂α′
∂α

∣∣∣∣∣ =

∣∣∣∣∣
cos(α)

cos(α−Φ)
∂l′
∂α

0 1

∣∣∣∣∣ =
cos(α)

cos(α− Φ)
=

cos(α)

cos(α′)
, (2.4)

which �nally proves that

∂l′∂α′ cos(α′) = ∂l∂α cos(α) . (2.5)
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3 Decay of correlations

3.1 The correlation functions

The everyday meaning of the correlation is how much two variables depend on each
other. Given two L2 random variables X and Y , their correlation Corr(X,Y ) is de�ned
as

Corr(X,Y ) =
E(XY )− E(X)E(Y )

D(X)D(Y )
, (3.1)

where E stands for the expectation value and D is the deviation.
Let f, g ∈ L2

µ(M) be functions. The time correlation function [7] of f and g is
de�ned in analogy with equation (3.1), as follows:

Cf,g(n) =
E(f · (g ◦ T n))− E(f)E(g)

D(f)D(g)
, (3.2)

where
E(f) =

∫

M

fdµ, and D(f) =
√
E(f 2)− E(f)2 . (3.3)

This function measures the dependence between the values of f at time 0 and of g

at time n.
It is also common to study the asymptotics of correlation functions more speci�c

than (3.2), namely

Cf (n) =
E(f · (f ◦ T n))− E2(f))

D2(f)
, (3.4)

This function measures the dependence of two observations with a time gap n. The
function Cf (n) in (3.4) is called an autocorrelation function.

Let us now relate the expressions de�ned above to some of the standard notions in
ergodic theory. Recall that a dynamical system (M,T n, µ) is said to be mixing if for
any two measurable sets A,B ⊂ M , we have µ(A ∩ T−nB) → µ(A)µ(B) as n → ∞.
The following fact is standard in ergodic theory:

Lemma 3.1

Cf,g(n) → 0 as n →∞ for all f, g ∈ L2(M) if and only if (M, T n, µ) is mixing. (3.5)

This means that the two quantities asymptotically become independent. In the case
where f = g, the faster Cf (n) tends to zero, the closer fn and f are to an i.i.d setting.
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The rate of the correlation decay (or the speed with which Cf (n) tends to 0 as n →
∞) is the property we will study for various f functions. Of course when examining
the decay rate, dividing by the variance will have no e�ect on the order of magnitude
of the outcome, since it is only a constant.

The order of the decay can of course di�er when using di�erent functions. For
example when f(x) ≡ c µ-almost surely, where c is an arbitrary constant, Cf (n) ≡ 0.
Fast-decaying functions can always be found, so my aim will be to �nd an upper bound
by using functions that are not exceptional at �rst sight.

According to [8], the functions for which the upper bound can be given relatively
easily are the piecewise Hölder-continuous functions. In the case of typical piecewise
Hölder-continuous functions, this bound turns out to be sharp, however there exists a
degenerate family of functions that corresponds to the coincidence of certain averages,
for which the decay rate is faster [2].

3.1.1 Why study correlation functions?

The rate of correlation decay for various functions can tell much about the dynamics
of the system studied. Let me mention one particular example.

For n ≥ 0, let Sn : M → R be the ergodic sum of fn [7]. That is,

Sn =
n−1∑

k=0

f ◦ T k . (3.6)

The function Sn/n is the time average of the process fn. The Birkho� Ergodic
Theorem asserts that if (M,T n, µ) is ergodic and f is integrable, then Sn/n converges
almost surely to E(f) as n →∞. (In probability theory, this is also called the strong
law of large numbers.)

Next, we say that fn satis�es the central limit theorem (CLT) if

lim
n→∞

ν

(
Sn − nE(f)√

n
< z

)
=

1√
2πσ

∫ z

−∞
e−

s2

2σ2 ds (3.7)

for all −∞ < z < ∞, where ν is the invariant probability measure of the system. Here
σ = σf ≥ 0 is a constant. (In the case σf = 0, the right side of the equation is to be
read as 0 for z < 0 and 1 for z > 0.) Equation (3.7) is equivalent to the convergence
of (Sn − nE(f))/

√
n in distribution to the normal random variable N(0, σ2

f ). I remark
that the central limit theorem is considerably much �ner statement than the Birkho�
Ergodic Theorem; it tells us that the distribution of the �uctuations of the time average
Sn around its mean value nE(f), when divided by√n, is asymptotically Gaussian (even
when Sn is not a sum of i.i.d. variables).
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Lemma 3.2 The variance σ2
f in the CLT is related to the correlation function (3.4) by

σ2
f = Cf (0) + 2

∞∑
n=1

Cf (n) . (3.8)

Proof For simplicity, let E(f) = 0 and D(f) = 1. This way, the variance of Sn−nE(f)√
n

can be calculated in the following way:

E

(
S2

n√
n

2

)
= E

(
(f + f ◦ T + . . . f ◦ T n−1)2

n

)
=

1

n
E

(
n−1∑
i=0

(f ◦ T i)2 +
∑

i6=j

(f ◦ T i)(f ◦ T j)

)
=

=
1

n

(
n−1∑
i=0

E((f ◦ T i)2) + 2
∑
i<j

E((f ◦ T i)(f ◦ T j))

)
.

Because of the invariance of the measure, this is equal to

=
1

n
nE(f 2) +

2

n

n−1∑

l=1

E(f(f ◦ T l))(n− l)

=
1

n
nE(f 2) +

2

n

n−1∑

l=1

E(f(f ◦ T l))n− 2

n

n−1∑

l=1

E(f(f ◦ T l))l .

If
∑∞

l=1 Cf (l) < ∞, then
∑n−1

l=1 Cf (l)l = o(n), so 2
n

∑n−1
l=1 E(f(f ◦ T l))l → 0, from

which we can �nally obtain that as n →∞, the amount above tends to

Cf (0)2 + 2
∞∑

l=1

Cf (l) .

It follows that a prerequisite for the central limit theorem is the summability of
the correlation function Cf (n). Most existing proofs of the CLT for dynamical systems
follow essentially (though not immediately) from slightly stronger estimates on the
speed of correlation decay.

Further information on issues related to the central limit theorem or other limit
theorems for dynamical systems can be found in [12] and in [2].

3.2 The rate of the decay

Today there are many rigorous results available in the subject of correlation decay
in billiards. Among the �rst, I can speci�cally mention the work of Bunimovich and
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Sinai, who proved that the velocity autocorrelation function Cv(n) of a particle in a
dispersing billiard with periodic con�guration of scatterers and uniformly bounded
free path exhibits a stretched exponential decay rate [6]:

Cv(n) ≤ e−αnβ

, (3.9)

where α > 0 and 0 < β ≤ 1. This was corrected by Young, who proved that β was
indeed 1, so the rate was exponential [23].

All hyperbolic systems are characterized by exponential instability of motion (due
to the non-zero Lyapunov exponents, see Section 4.3), which in turn implies that the
memory of the initial state is lost exponentially fast. For this reason, it has been
conjectured that the correlation should also always decay in an exponential fashion in
all of these systems.

This widespread belief was shaken by the work of Alder and Wainwright in 1970 [1],
who numerically detected the existence of decays with tails heavier than exponential
in the hard-sphere gas. The di�erence between dispersing billiards with uniformly
bounded free paths and the hard-sphere gas is that the �rst one is uniformly hyperbolic,
while the second one is not. This is because the latter may contain certain trajectories
that do not collide with dispersing surfaces (that is, a particle avoids the others) and
which can be of any length, causing segments of (in a sense) simple motion in the
trajectories.

Later on, Vivaldi, Casati and Guarneri have presented a heuristical explanation
for such a phenomenon in the stadium, in 1983 [21]. (The stadium is similar to the
hard-sphere gas, for it also contains regular segments of trajectories, see Section 3.3.)
They were the �rst to state that the source of long-time tails is to be sought in the
presence of the arbitrarily long segments of regular motion in the time evolution of a
stochastic orbit. These motions are locally integrable (for the particular case of the 2D

billiards studied here, the angle of re�ection remains unchanged), and will be referred
to as integrable segments of trajectories.

The case of the squash billiard (in this point of view) is qualitatively di�erent
from that of the stadium, for the geometric properties that cause the appearance of
integrable segments are not the same (see Figures 11 and 12).

Here I will present a di�erent heuristical approach which I will use to determine
the speed of the decay for the indicator function of the straight lines in the stadium,
and of a subset of the large arc in the squash.
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3.3 Measure of the capture regions

In the stadium's case, the regular segments of trajectories can be seen in �gure 11 [21].
I shall refer to the alternate collisions between the two opposite line segments as case
1, and to the consecutive collisions within the same arc as case 2.

Let us de�ne Mn
i ⊂ M for i = 1, 2 corresponding to these two cases as the sets of

initial conditions starting out of which the trajectories follow these integrable patterns
exactly up to the �rst n iterations. The sets Mn

i will be referred to as capture regions
of order n.

Figure 11: Long regular motion in the stadium billiard

In the case of the squash, as one of the two circular arcs is larger than a semi-circle,
a new type of capture region can be identi�ed: it corresponds to motion close to the
diameter of this arc, which will be referred to as case 3. The capture that corresponds
to the alternating bounces between the two line segments disappears as they are no
longer parallel, however the e�ect that is responsible for Mn

2 in the stadium is present
here also: case 4 will mean rolling along the arcs.

Analogously, the long regular trajectories that de�ne the capture regions in the
squash can be found along the arcs (Mn

4 ) and across the larger arc (Mn
3 ) as shown in

Figure 12.

Figure 12: Types of long regular motion in the squash billiard

13



3.3.1 The stadium: bouncing between the line segments

This case is more important, for as we will see, the measure of the region Mn
1 is of

higher order in n. It is enough to consider the points of the lower line only, as this set
appears symmetrically on the two parallel lines. We will simply need to multiply the
resulting measures by the number of occurences in the phase space.

First of all, to belong to Mn
1 , i.e. to be the starting point of an integrable segment of

length n, we should ensure that the preimage of the point is on one of the semicircles,
otherwise it would only be an intermediate point of a longer segment.

If a ball has just arrived to the lower line, its angle of incidence has to be in the
range shown on Figure 13. Note that the velocity coordinate is the angle of re�ection,
so the points that represent these trajectories are positioned in the phase space of the
stadium as seen on Figure 14. I shall refer to this area as the �rst arrival subset.

0 Lx

Figure 13: The range of directions from which the particle can arrive from.

0

−π/2

π/2

0 x L

−arctg(x/(2r))

Figure 14: The �rst arrival subset of the straight lines on the phase space.

14



This means that α has to satisfy one of the following inequalities:

α ≤ − arctg x
2r

α ≥ arctg L−x
2r

.
(3.10)

Now we may proceed and determine the subset containing the points that are on
the lower line now and will be bouncing between the two lines for exactly the next n

steps:

221 1

(L−x)/3
(L−x)/2

x/3
x/2

x0 L

Figure 15: The directions in which the particle will collide once or twice.

0

1

2

1

2

−π/2

π/2

L0 x

�
�
�
�

��

�
�
�
�

−arctg((L−x)/(2r))

−arctg((L−x)/(6r))

−arctg((L−x)/(4r))

Figure 16: The same directions given on the phase space.
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The points that will only collide once with the lines and then leave them should
have an outgoing velocity within the red region shown on Figure 15. Similarly one
can determine the places starting out of which the ball will bounce 2, 3, 4, etc... times,
which leads us to the inequalities (3.11) and to the regions in the phase space as on
Figure 16: {

αn ≤ arctg x
2rn

αn ≥ arctg x
2r(n+1)

, or
{

αn ≤ − arctg L−x
2r(n+1)

αn ≥ − arctg L−x
2rn

. (3.11)

where x is the arc length distance of our point from the intersection point of the lower
line and the left arc, and αn is a possible angle of re�ection that results in n collisions
exactly (not counting the starting point).

The line separating the regions that correspond to (neglecting the �rst collision)
n− 1 and n times bouncing trajectories shall be called singularity line of order n.

The points in the phase space that represent the beginning of trajectories that
bounce at least n + 1 times (with the �rst collision counted) are contained in the
intersections of the areas described in Figures 14 and 16 (see Figure 17).

0

−π/2

π/2

L0 x0

−arctg(x/(2r))

−arctg((L−x)/(2nr))

Figure 17: The intersection of the arctg curves.

The measure of the capture regions can be calculated as

µ(Mn
1 ) =

∫

Mn
1

dµ =

∫

Mn
1

cosαdαdx . (3.12)

As n is large, α is close to 0, so the function cos α is approximately 1. Because
of this, one can estimate the measure of the capture region Mn

1 by calculating the
Lebesgue measure. The arctg y functions can also be replaced by y when y is small, so
the area that is bounded by the arctg curves (Figure 17) containing the starting point
of trajectories that bounce at least n + 1 times all together is close to a triangle.

The location of the intersection point x0 can be estimated by solving the equation
x0−L
2nr

= −x0

2r
. From this, we get x0 = L

n+1
.
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This way we can calculate the measure of the capture regions up to �rst order (the
factor 4 is needed as the same picture appears four times in the phase space, twice on
both of the two lines).

1

4
µ

( ⋃

k≥n+1

Mk
1

)
≈ 1

2

(
L

2nr

)
x0 =

1

2

(
L

2nr

)
L

n + 1
=

L2

4rn(n + 1)
(3.13)

The asymptotic measure of Mn
1 is readily obtained from 3.13 as

µ(Mn
1 ) ≈ µ

(⋃

k≥n

Mk
1

)
− µ

( ⋃

k≥n+1

Mk
1

)
= 4

(
L2

4rn(n− 1)
− L2

4rn(n + 1)

)
=

=
2L2

r(n− 1)n(n + 1)
≈ 2L2

rn3
. (3.14)

3.3.2 The stadium: rolling along one of the arcs

Let us now show that the measure of the subset that is responsible for the e�ect of
rolling along an arc for over n steps is of lower order than the previously discussed
one.

If the particle is hitting the arc for the �rst time, its angle of re�ection has to be
inside the illustrated range of width π/2 (Figure 18).

2πR

0

−π/2

π/2

0

Figure 18: The �rst arrival subset of the case 2 trap.

The points on the phase space that are on one of the arcs and will collide with
the same arc for exactly n more times belong to the triangle-shaped areas shown on
Figure 19. Note that the subsets where the particles will roll for at least n steps are
right angle triangles with the singularity line of order n as the hypotenuse.
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2πR

2πR

x

0

−π/2
00 x

2

1

2

1

1

1

2

2

π/2

Figure 19: The range of the angles which will result in exactly 1 or 2 collisions along the
arc (not counting the arriving point).

Similarly to the case of Section 3.3.1, we will calculate the measure of these triangles
intersected with the �rst arrival subset (Figure 20). It is adequate to regard one (the
lower left) triangle only, since the system has its symmetries.
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Figure 20: The intersection of the subsets described in Figures 18 and 19.

The equation of the line forming the upper right sides of the triangle is α =

−π
2

+ π
2n
− x

2nr
, while the lower right edge's is α = −π

2
+ x

2r
. The intersection point x0

can be determined easily:

−π
2

+ π
2n
− x0

2nr
= −π

2
+ x0

2r

x0 = rπ
n+1

. (3.15)

Thus, the exact measure of one of the four triangles will be as follows:

1

4
µ

( ⋃

k≥n+1

Mk
2

)
=

∫ rπ
n+1

0

∫ −π
2
+ π

2n
− x

2nr

−π
2
+ x

2r

cos αdαdx =

∫ rπ
n+1

0

cos
x

2r
−cos

( π

2n
− x

2nr

)
dx =

= 2r sin
π

2(n + 1)
+ 2nr sin

(
π

2n
− π

2n(n + 1)

)
− 2nr sin

π

2n
. (3.16)
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When n is large, sin const
n

can be approximated to the third order using its Taylor
polynomial in 1

n
:

≈ 2r

(
π

2(n + 1)
− 1

3!

(
π

2(n + 1)

)3
)

+

2nr

(
π

2n
− π

2n(n + 1)
− 1

3!

(
π

2n
− π

2n(n + 1)

)3
)
− 2nr

(
π

2n
− 1

3!

( π

2n

)3
)

=

rπ3

24

(
2n + 1

n2(n + 1)2

)
≈ rπ3

12

(
1

n(n + 1)2

)
, (3.17)

from which we obtain

µ(Mn
2 ) = µ

(⋃

k≥n

Mk
2

)
− µ

( ⋃

k≥n+1

Mk
2

)
≈ rπ3

3

(
1

(n− 1)n2

)
− rπ3

3

(
1

n(n + 1)2

)
=

=
rπ3

3

(
3n + 1

(n− 1)n2(n + 1)2

)
≈

(
rπ3

n4

)
. (3.18)

3.3.3 The squash: across the larger arc

I will use the convention that regards only the indicated parts of the larger arc as the
trap (see Figure 21).

0

2Φ

2Φ

RR(π+2Φ)

R

π

R

Figure 21: The case 3 trap.

The following �gure shows the �rst arrival subsets: The red domain contains the
arriving points to the whole large arc, while the blue regions represent the points
coming from the inner part of the arc into the trap.
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Figure 22: The incoming directions of the �rst arriving trajectories and their hitting
points in the phase space.

Again, we need to approximate the order of the measure of points beginning from
which the trajectories complete series of bounces between the two opposite sides of
the larger arc of length n exactly.

In order to do this, we need to estimate the measure of the triangles which can
be obtained by intersecting the �rst arrival subset with the triangles that include the
starting point of trajectories that will bounce n times.

The blue triangles in Figure 23, for example, include the points corresponding to
trajectories that perform at least 3 consecutive bounces in the trap.
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>20

Figure 23: The directions in which a trajectory starting from x will collide once or twice,
and the regions that contain these points on the phase space. The intersections with the
�rst arrival set are indicated as well.

I will only consider the lower left triangle (so we will get 1
4
µ

(⋃
k≥n+1 Mk

3

)
), where

the upper left edge's equation is α = −Φ + x
2R
, and the lower left one is α = − x

2nR
.

Their intersection point x0 is obtained from −Φ + x
2R

= − x
2nR

, so

x0 =
2RnΦ

n + 1
. (3.19)
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1

4
µ

( ⋃

k≥n+1

Mk
3

)
=

∫ 2ΦR

2RnΦ
n+1

∫ −Φ+ x
2R

− x
2nR

cos αdαdx =

= 2R

(
−1− n cos

(
Φ

n

)
+ cos

( −Φ

n + 1

)
+ n cos

(
Φ

n + 1

))
. (3.20)

When n is large, we can continue by approximation:

≈ 2R

(
−1− n

(
1− 1

2

(
Φ

n

)2
)

+

(
1− 1

2

(
Φ

n + 1

)2
))

+ n

(
1− 1

2

(
Φ

n + 1

)2
)

=

=
RΦ2

n(n + 1)
. (3.21)

This gives us the measure of Mn
3 :

µ(Mn
3 ) = µ

(⋃

k≥n

Mk
3

)
− µ

( ⋃

k≥n+1

Mk
2

)
≈ 4RΦ2

(n− 1)n
− 4RΦ2

n(n + 1)
=

=
8RΦ2

(n− 1)n(n + 1)
≈ 8RΦ2

n3
. (3.22)

3.3.4 The squash: rolling along the arcs

The measure of the subset Mn
4 can be obtained in a way very similar to the procedure

I have used in the second case (see Secion 3.3.2). Again, the outcome has the same
order of

O

(
1

n4

)
(3.23)

thus the corresponding e�ects can be neglected compared to Mn
3 , when n is large.

3.4 Estimating the correlation decay

3.4.1 The stadium and the indicator function of the trap

As I have already mentioned, the main contribution to the slowly decaying correlation
is due to the e�ect corresponding to case 1, since Mn

1 has a measure of higher order
than the capture region Mn

2 of case 2.
The argument below will rely on the following observation: Consider a trajectory

that has just completed a series of n consecutive collisions with the parallel lines (where
n is large). After experiencing one or two bounces on one of the circular arcs, another
long series of bouncing will start. In other words, the particle will reenter the case 1
trap again.
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More precisely, if we have a series of length n, that means that the tangent of the
angle of re�ection on the lines has to be about L

2nr
. When y is small, the function

tan(y) ≈ y, so we have
α ≈ L

2nr
. (3.24)

Since α can at most grow up to 3α, but will be at least α
3
, the length of this next series

will be between n
3

+ O(1) and 3n + O(1) (see Figure 24).

α

3α

2α

Figure 24: The largest possible change of α.

Let R(n) be the random variable that tells the length of the next series, given the
condition that the present bouncing segment is of length n with distribution deter-
mined by the measure µ′, where µ′ is the probability measure that can be obtained by
normalizing µ:

µ′(A) =
µ(A)

2(2rπ + 2L)
. (3.25)

If n
3

< i < 3n, then the probability of the event R(n) = i is approximately 3n
8i2

+o( 1
i3

)

[2].
The expected value can be obtained as follows:

E(R(n)) ≈
3n∑

i=n/3

i
3n

8i2
≈ n

3

4
ln 3 ≈ 0.824 n , (3.26)

which means that if a point has exited the trap after n steps, it will return for about
q0n bounces where q0 = 3

4
ln 3.

If a particle is in trap 1 for n steps (with n large) and reenters it after one or two
bounces outside and keeps on doing this over and over, we shall say that the particle is
in a corridor. The particle exits the corridor, once the number of consecutive collisions
it makes inside the trap falls under some integer nc.

Let X0 be the part of the phase space that contains all points on the straight lines.
Let Yn be the subset of the phase space that contains points which are now in X0

and in a corridor, and which after n steps will still be inside the same corridor.
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How can one measure something that is so vaguely de�ned? To approximate this
latter quantity: If a point is inside Yn, that means that n has to be less than the
number of bounces it will make in the corridor all together. Note that not only the
points of the �rst arrival subset are to be considered. For example if a point belongs to
T k−mMk

1 with m < k, then it has m steps left of the k bounces in the trap. It is then
likely to return to the trap and start a series of q0k bounces. Thus n has to satisfy

n < m +
∞∑
i=1

qi
0k = m +

q0

1− q0

k , (3.27)

where we have not counted the time spent outside of the trap, for that is an e�ect of
lower order.

Knowing this, let us now estimate the measure of Yn. According to equation (3.27),
we add µ(Mk

1 ) as many times as the number of di�erent values of m for a �xed k are
allowed (See also Figure 25). We add the same amount for those parts of the phase
space that correspond to phases somewhere in the middle of a bouncing sequence of
length k, no matter how many collisions are still left ahead (the measure does not
depend on m), because the mapping keeps the measure µ invariant.

k02k01

m=k

m=n−kq/(1−q)

m

k

Figure 25: The domain of the sum.

µ(Yn) =
∞∑

k=k01

k∑

m=max[0,dn− q0
1−q0

ke]
µ(Mk

1 ) =

k02∑

k=k01

k∑

m=dn− q0
1−q0

ke
µ(Mk

1 ) +
∞∑

k=k02

k∑
m=0

µ(Mk
1 ) ,

(3.28)
where k01 = n(1 − q0) and k02 = 1−q0

q0
n are the intersection points of the appropriate

bounding lines. This yields
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µ(Yn) ≈
1−q0

q0
n∑

k=(1−q0)n

(
k

1− q0

− n

)
µ(Mk

1 ) +
∞∑

k=
1−q0

q0
n

kµ(Mk
1 ) ≈

1−q0
q0

n∑

k=(1−q0)n

(
k

1− q0

− n

)
2L2

rk3
+

∞∑

k=
1−q0

q0
n

2L2

rk2
≈ L2(1 + q0)

r(1− q0)

1

n
. (3.29)

The �rst observable for which the correlation function was considered is the indi-
cator function of the straight lines, that is

f0(x) =

{
1 if x ∈ X0;
0 if not.

(3.30)

By the de�nitions in (3.4), (3.25) and (3.30), the correlation function of f(x) can
be expressed as

Cf0(n) =
µ′(X0 ∩ T−nX0)− µ′(X0)

2

µ′(X0)(1− µ′(X0))
. (3.31)

When intersecting X0 ∩ T−nX0 with Yn, we get

Cf0(n) =
µ′(Yn ∩ T−nX0) + µ′((X0/Yn) ∩ T−nX0)− µ′(X0)

2

µ′(X0)(1− µ′(X0))
, (3.32)

since Yn ⊂ X0.
By de�nition, the points in Yn have to be in the corridor after n steps, which means

that with a big probability (if nc is large enough) they will also be on X0, which allows
us to write µ′(Yn) instead of µ′(Yn ∩ T−nX0).

Another observation can be made: if n is appropriately big, then µ′((X0/Yn) ∩
T−nX0) is about µ′(X0/Yn)µ′(T−nX0). To see this, note that the points in X0 that will
exit the corridor in a time shorter than n will begin to lose their memory of the past
exponentially fast (for the correlation in other parts of the phase space diminishes
exponentially fast), thus being on X0 after n collisions can be assured to be nearly
independent of the location of the starting point.

Using these estimates, we have

Cf0(n) ≈ µ′(Yn) + µ′((X0/Yn)µ′(T−nX0)− µ′(X0)
2

µ′(X0)(1− µ′(X0))
=

µ′(Yn) + µ′((X0/Yn)µ′(X0)− µ′(X0)
2

µ′(X0)(1− µ′(X0))
=

µ′(Yn)− µ′(Yn)µ′(X0)

µ′(X0)(1− µ′(X0))
=

=
µ′(Yn)

µ′(X0)
=

µ(Yn)

µ(X0)
. (3.33)
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Since µ(X0) = 4L, the result will be

≈ L(1 + q0)

4(1− q0)r

1

n
≈ 2, 59

L

rn
. (3.34)

3.4.2 The squash and the indicator function of the trap

I will only consider the regular motion across the larger arc, for that de�nes the larger
measure subset of the phase space.

2ΦR πR

2ΦR

(π+2Φ)R

πR
4α

α3α7α

4α

7α

0

2Φ

Figure 26: The largest possible change of α when returning to the trap.

Figure 26 shows the dynamics of a point starting from an extremal position: it
is from here, that the point can land on the adjacent copy of the large arc with the
greatest possible angle of incidence, given α. As one can see, the maximum of this
angle is 7 times the original one (neglecting the e�ects of lower order). Because any
trajectory can be realized in both the forward and the backward directions, this also
leads to the fact that the minimum of the angle at the return will be α/7+O(1). Since
the absolute value of α is about Φ

n
+ O( 1

n2 ), it is only possible to return for a series of
minimum n/7 + O(1) and maximum 7n + O(1) bounces.

Let us now de�ne the �rst return map τ of the map T : if a point x is anywhere in
the phase space now, and the �rst time that it will hit the large arc right after colliding
with some other parts of the boundary will be n collisions later, then τ(x) = T n(x).
We know, that the return dynamics are uniformly hyperbolic [8].

I will now examine the τ -images of the singularity lines and the domains bounded
by them.

Let us rede�ne the singularity lines seen in Figure 23 in the following way:
The region of the phase space that will leave the large arc in the next moment of
collision can be obtained by re�ecting the �rst arrival subset to the line α = 0 (the
area bounded by the green dashed lines in Figure 27) and shall be referred to as the
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exit domain. If I continue the singularity lines to their intersection with the boundary
of this exit domain but only within the �rst arrival subset, I get regions containing all
points that will be inside the trap for the next n steps and have just arrived to the
large arc.

This way we cover the same measured regions as Mn
3 , for the parts of the strips

extending beyond the �rst arrival set correspond to T -preimages of pieces in Mn
3 that

were originally located on the upper left and on the lower right side of the phase space.
I will consider the bottom part of the trap only, for this trap is also symmetrical.
The τ -image of the domain introduced above consists of two parts. the lower side

of the domain near the singularity line of order n will return after only one bounce on
one of the straight lines, which means that if x is within this subset, τ(x) will again
be inside a series. However if x is in the upper side, it will need an extra collision with
the straight lines, that means that it is the second iterate, τ 2(x), that will begin the
new series in the trap. According to [8], these images of the domain will be located
in the phase space as in Figure 27. Thus we can see that the bounding lines of the
images intersect the located singularity lines transversally.

The number of collisions a particle will experience when it is returning after com-
pleting a series of length n will depend on the τ -image of the point, that is, which
domain among the M i

3 will it fall into.

(π+2Φ)R

0

0
−π/2

Φ

−Φ

τ

τ 2

π/2

Figure 27: The image of the domain containing the points of the arc that will complete
a series of length n.

Fix n large, and consider the image of a domain as in Figure 27. The singularity lines
crossing such an image can be considered to be parallel. This allows us to determine
the distribution of the length of the next series as follows: The probabilities P(n → i)
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are proportional only to the height of the cell crossed by the image of the domain.
Since µ(M i

3) = O( 1
i3

) and their width is O(1
i
), we know that

P(n → i) =
c

i2
. (3.35)

Now we may determine the number c:

7n∑

i=n/7

c

i2
= 1 (3.36)

thus we have
c =

7n

48
. (3.37)

The expectation value of the length of the return series will be

7n∑

i=n/7

i
7n

48i2
=

7 ln(7)

24
n , (3.38)

so I shall de�ne q1 as 7 ln(7)
24

≈ 0, 5676.

Let X1 be the subset corresponding to the trap (the thickened arcs in Figure 21),
and

f1(x) =

{
1 if x ∈ X1;

0 if not.
(3.39)

Analogously to Equation (3.34), the correlation of the indicator function of the
trap can be approximated by

Cf1(n) ≈ µ(Yn)

µ(X1)
, (3.40)

where Yn is a corridor of the trap of case 3 (see Section 3.4.1).
I will now determine µ(Yn) in the exact same way as in Section 3.4.1:

µ(Yn) =
∞∑

k=k11

k∑

m=max[0,dn− q1
1−q1

ke]
µ(Mk

3 ) =

k12∑

k=k11

k∑

m=dn− q1
1−q1

ke
µ(Mk

3 ) +
∞∑

k=k12

k∑
m=0

µ(Mk
3 ) ,

(3.41)
where k11 = n(1 − q1) and k12 = 1−q1

q1
n are the intersection points of the appropriate

bounding lines (similarly to Figure 25). This yields
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µ(Yn) ≈
1−q1

q1
n∑

k=(1−q1)n

(
k

1− q1

− n

)
µ(Mk

3 ) +
∞∑

k=
1−q1

q1
n

kµ(Mk
3 ) ≈

1−q1
q1

n∑

k=(1−q1)n

(
k

1− q1

− n

)
8RΦ2

k3
+

∞∑

k=
1−q1

q1
n

k
8RΦ2

k3
=

4RΦ2(1 + q1)

1− q1

1

n
. (3.42)

Since µ(X1) = 8ΦR, the correlation function will be

Cf1(n) ≈ 4RΦ2(1 + q1)

8ΦR(1− q1)

1

n
=

Φ(1 + q1)

2(1− q1)

1

n
≈ 1, 813

Φ

n
. (3.43)
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4 Numerical simulations

4.1 The programs

I have written two programs for measuring the decay rate of the correlations cor-
responding to various easily determinable functions, and the Lyapunov exponent in
certain billiards.

The parameters of the billiard can be given in an input �le in each program:

• n: the number of steps within one trajectory

• N : the number of trajectories calculated (or components in the sample)

• r, R, d: the geometrical parameters of the squash: the radii of the arcs and the
distance between their centers.

Figure 28: A simulated trajectory in a squash with n = 100, r = 2, R = 5, d = 10.

The main parts of the programs:

1. The input parameters are read, global constants de�ned.

2. For every trajectory (of N), an initial state is picked out randomly according to
the invariant measure (see Section 2.2). This is done by the function "randstart",
(See the program appended). The random number generator we have used is the
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so-called Mersenne-twister.
(See [18] or the site http://www.math.sci.hiroshima-u.ac.jp/�m-mat/eindex.html
for further details.)

3. Using the given input parameters and the randomly selected initial conditions,
the trajectories are calculated up to n collisions.

4. The observed functions are calculated and printed in the output �le.

4.2 Some obstacles of numerical experiments

4.2.1 Finite size e�ects

When we determine any property numerically, we have to avoid trajectories that are
periodic, not general or "bad" in any other way. In a mixing system, the total measure
of these orbits adds up to zero, but in a numeric simulation, one has to be aware of
the bounds set up by the �niteness of computations.

0
0

1

1

Figure 29: The map f(x) = {2x}

As an example of such phenomenon, consider the following mapping: Let S be the
unit interval, and f : S → S be the function f(x) = {2x} (see Figure 29).

Since the computer works on a 32-bit base, any random initial x will eventually (at
most in 32 steps) be mapped into the number 0. Because of this, there is no point in
trying to run simulations for over 32 steps, for it will not give any useful information.

In my simulations, I did not seem to run into such problems in any apparent way.
As far as the number of iterations I have made in any of the programs, I have not
noticed any periodicity. And even if a few of the trajectories calculated in one run
misbehave, it does not e�ect the results in any signi�cant way, for our results are
gained by averaging.
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4.2.2 Long computational time

The largest di�culties I had to face were due to the length of the computational time
needed in order to produce near-accurate results. Running one program up to only
n = 500 steps with a sample size of N = 108 takes over three hours on the computer
used. This means that since the program takes O(n ·N) units of time, I was not able
to raise the number of steps with whole orders of magnitude without decreasing N ,
which was impossible because of statistical reasons described in Section 4.2.3.

It would have been important to be able to perform many steps in cases where the
lower order e�ects still showed up and distorted the observed decay. Also greater sam-
ples would have been needed at examining fast decaying functions to avoid �uctuations
described in Section 4.2.3.

4.2.3 Fluctuations caused by the deviation

In many cases another problem appeared because of the deviation caused by the �nite
size of the sample. When the size of the sample is N , the order of the standard
deviation from the actual correlation is O(1/

√
N). Once the correlation has fallen

below this limit, the data becomes unusable, as it is demonstrated in Figure 30. To
decrease the deviation by one order of magnitude, N has to be increased by two, which
results in 100 times longer computational time.

Figure 30: The decay of the correlation function on a one-log scale in the squash r = 2,
R = 5, d = 10, with the sample size of 106 and the indicator function of the straight
lines. The one-log scale is used to show that the error is large compared to the correlation,
once the latter has decayed enough. It can be very clearly seen that the error is about

c
103 .
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As mentioned in Section 4.2.2, I did not have the possibility to execute programs
with long runtime (since I de�nitely had to keep N big, this forced an upper bound on
n), so I had to restrict the simulations to certain squashes and stadiums, in which the
decay was slow enough to stay above the range of the deviation in the �rst n steps.
Of course, I had to try to simulate many billiards before knowing which would give
useful information.

4.2.4 Too small observables, extreme cases

In some cases (for example, when using the indicator function of the trap of case 3
in a squash with either too small or too large Φ or in a stadium with small or large
L/r), where some expected values become too small, convergence of the average of
simulated numbers to this expected value becomes unmeasurable. A good example of
such phenomenon is the following case:

Consider a squash with the parameters r = 1, R = 101, d = 100, 01. This gives
us a squash with Φ = 1, 55665, which is almost π/2, so it is very much like a circle.
The simulated correlation "decay" of the indicator function of the arcs can be seen in
Figure 31.

Figure 31: The "decay" of the correlation functions corresponding to the indicator func-
tions of the given domains for r = 1, R = 101, d = 100, 01.

Let us take a closer look at the raw output of the calculation: Since the probability
measure of the small arc is 0, 000045, the probability that a trajectory starts from
the little arc and returns there in the k-th step is about (4, 5 · 10−5)2 when k is large.
Because of this, the expected value of the number of such trajectories among the 108

is about (4, 5 ·10−5)2 ·108 = 0, 2025 which is almost zero. What we see is that for every
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k ≤ n, the number of trajectories out of the 108 for which this happens in the k-th
step is actually zero. This results in the constant negative (it is a little below 0 which
can't be seen on the Figure 31) correlation function of the small arc and also e�ects
the other observables as well (see Section 4.4).

What we see in Figure 31 corresponding to the large arc is of course not a decay.
However the following things could produce such phenomenon:

One possible explanation could be that according to [19], the correlation decay
corresponding to the speed coordinates of the particle in dispersing billiards measured
in continuous time follows a semi-periodic structure with a period that stays about
constant in time. If I had done simulations in continuous time, I would probably have
seen something similar in our non-dispersing billiards also. Of course not for the same
indicator functions I used, but some extensions of them that have appropriate nonzero
integrals.

When measuring the correlation function in the moments of the collisions only, we
rescale the time of the decay. By doing this, it is possible, that (as in our almost-circle)
we only take a look at the continuous time decay with a time shift that is about the
time of the free �ight across the billiard. If the length of the shift is close to some
multiples of the original period, one can experience such non-decay at �rst sight (see
Figure 32). However if this is right, and I would have the resources to simulate much
longer trajectories, after a while one would de�nitely have to see that the function
begins to decay.

��
��

��
��

Figure 32: Even if a function is decaying in continuous time, we may �nd discrete
moments where sampling gives a non-decaying function for some time. Of course, when
continuing the observation, even the discrete sample would begin to decay.

This however not the only possible explanation. It could be that the e�ects of the
almost-integrability of trajectories simply do not allow the correlation to decay in such
a short time, since the system resembles an integrable one and also behaves like it at
�rst sight.
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4.3 The Lyapunov-exponent

One way to study the chaotic behavior of a system is by looking at its Lyapunov
exponent [14]. This value characterizes the separation of originally close phase space
orbits, or in other words it expresses the unpredictability of the system caused by the
high sensitivity to the initial setup.

���� ��
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Figure 33: The change in dx

If the original separation from the state x was |dx0| (see Figure 33), where dx0 is a
typical perturbation, and this separation becomes |dxn| at time n, then if the formula

|dxn(x)| = |dx0|eλ(x)n (4.1)

holds in the limit n → ∞, the number λ is called the Lyapunov exponent in state x.
In order to get an exponent that characterizes (µ-almost every point of) the whole
system, ergodicity is needed, which in our case is given.

The ratio dxn

dx0
is known as the Jacobian matrix Jn of the orbit. If the largest

eigenvalue of Jn is Λn, then the Lyapunov exponent can be calculated as follows:

λ = lim
n→∞

ln |Λn|
n

. (4.2)

This exponent can tell us much of the reliability of computer simulations. Because
of the �niteness of computational possibilities, the accuracy of the computer is only
true up to a number of digits. After many steps, the error caused by this rounding will
grow high in a system with a large λ. This means that the trajectory corresponding
to some given initial conditions will be very di�erent from the trajectory simulated.

This fact will hopefully not e�ect our observed amounts (i.e. the correlation decay
rate), because there exists another trajectory that is relatively close to ours:
Let us de�ne the following: A sequence of points (xi)i∈Z is an ε-pseudo orbit of T if
∀i ∈ Z, d(T (xi), xi+1) < ε.
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Lemma 4.1 Shadowing lemma: Let Λ be a compact, invariant, hyperbolic set for a
C2-smooth map T . For all δ > 0 su�ciently small there exists ε > 0 and a neighborhood
U of Λ such that each ε-pseudo orbit (xi) in U is δ- shadowed by a unique real orbit. In
other words there exists a unique y ∈ Λ such that d(T i(y), xi) < δ ∀i ∈ Z.

real image
of point

other real
trajectory

ε δ

��

�
�
�
�

��

��

Figure 34: Shadowing lemma: the (red) pseudo orbit, and a real trajectory.

The shadowing theory has only been dealt with so far in uniformly hyperbolic cases,
but it can be conjectured to hold in our case also, since the return map is uniformly
hyperbolic. If it holds, it can make sure that the simulated results are close to the real
amounts, for I take the averages of certain functions calculated, so being a little "o�"
probably has no e�ect.

I must also mention that even if shadowing does hold, simulating could in some
cases result in destroying the invariant measure, if the pseudo map does not leave it
invariant. (For example, the map f(x) = {2x} mentioned in Section 4.2.1 leaves the
Lebesgue measure invariant, but the pseudo map does not: its invariant measure has
to be concentrated on the number 0. All pseudo-orbits are shadowed by trajectories
running into 0.) This will of course result in false data. However, there are ways to
evade such di�culties, for example by adding a small random error to the image in
each step.

See also [9, 15] on the topic of shadowing.

4.3.1 The lyap.c program

The program I have written in order to get a hint of the Lyapunov exponent in the
squash billiard works the following way:

In order to calculate the derivative of the k-th iterate of T for some k < n, we
follow a trajectory and calculate the derivative matrix at the consecutive points. These
matrices are then multiplied according to the chain rule:

DT k(x) = DT (T k−1(x)) . . . DT (T (x))DT (x) (4.3)

These manipulations are performed in the four dimensional coordinate system,
thus at the end we project it to the two dimensional subspace that is relevant for us
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at x. That is, we calculate the perturbation in position parallel to the tangent of the
boundary, and in velocity, perpendicular to the speed vector at x. What results is a
2×2 matrix, for which the eigenvalue of larger absolute value (Λk) is to be calculated.
This is repeated N times, then the outcomes are averaged (as in Section 4.4, Equation
(4.4)).

Once this was done, the exponent can be estimated when (k,Λk) is plotted on a
one-log scale as the slope of the almost-linear curve (Figure 35).

Figure 35: The estimated Lyapunov exponent on a one-log scale in the stadium with the
parameters r = 1, d = 2. The estimated gradient: λ ≈ 1, 44

The λ achieved here is of course a function of the size of the stadium and of the
fact that I have only simulated in discrete time. If I simulate for a squash twice as big,
the exponent will change, for the small di�erences caused by perturbations will have
twice as much free �ight to grow and the local curvature will also change.

For more information on the Lyapunov exponents of billiards, see [10, 11, 14].

4.4 The correlation decay through simulations

Let us �x n, and take N i.i.d. random variables: f(xi)f(T n(xi)) for xi calculated
according to µ′, i = 1 . . . N . Then by the law of large numbers,

1

N

∑
i

f(xi)f(T n(xi)) →
∫

f(x)f(T n(x))dµ′(x) . (4.4)

I will thus calculate N times the functions of which we need the expectation value,
then take the averages of the outcome for each step of the n.
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4.4.1 The stadium and the indicator function of the trap

Now I will try to verify the heuristical deduction made in Section 3.4.1 numerically,
so I will restrict to the indicator function of the trap of case 1.

Some results of the execution of the program that measures the decay of the corre-
lation function in some stadiums can be seen in Figure 36. The gradient is about −1

at the end of the curves on the log-log scale, so the decay of O( 1
n
) can be measured

here nicely. What can't be observed here is the constant that the 1
n
is multiplied by.

However, this constant can change a lot when the gradient only changes a little, so
this is not surprising.

Figure 36: The simulated decay of correlations in di�erent stadiums: r = 1, d varying.
The slope of the curves at the end is a little greater than −1.

My conjecture was Cf0(n) = a
n
+o( 1

n
). To �nd the best possible value for a, a log-log

scale was not appropriate. Instead, I have tried plotting the data nCf0(n), so when n

is large enough, it will tend to the constant a. The results can be seen in Figure 37,
where it became clear, that the number of steps I am able to simulate are not even
nearly enough, for the curves seen are far from being constant even when n is close to
600.

The curve corresponding to d = 2 was the closest to being constant, but as one
can see, it is only around 3 at most instead of the 2 · 2, 59 I have calculated in Section
3.4.1.
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Figure 37: nCf0(n) in di�erent stadiums: r = 1, d varying.

In order to see how far the simulated curve is from the one it has to tend to as
n → ∞ (according to my calculations), I have plotted both in Figure 38. It does
not seem to be impossible that the simulated curve will eventually lean into the line,
though that is not what one would think of right away.

Figure 38: The di�erence between the simulated decay and the �rst order calculations of
the rate.

Because of reasons described in Section 4.2.4, it is also not too surprising that the
correlation functions do not show monotone dependence to the parameter L (which
equals to d) in the �rst "few" steps. When d is large compared to r, what we have is
an almost-tunnel with very little "dispersing" surfaces. Also, as I have said in Section
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4.2.2, I did not have the opportunity to simulate long trajectories, and it seems here
that the lower order e�ects are inevitably visible.

4.4.2 The squash and the indicator function of the trap

The outcome of some of the simulations can be seen in Figure 39. The picture shows
decays with the initial �uctuations growing as Φ is increased. One can also immediately
see that the slope of the curves near the end (but before the �uctuations caused by
the variance begin) is about −1.

Figure 39: Correlation decay in squashes
with r = 1, R = 2, d varying.

Figure 40: The product of n and Cf1(n) in
various squashes with r = 1, R = 2, d vary-
ing.

Figure 41: The di�erence between the estimated and the heuristically calculated coe�-
cients of 1

n
.
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Figure 41 above shows the calculated and the estimated coe�cients in squashes
with the parameters r = 1, R = 2, d varying. As one can see, the coe�cients of 1/n

again di�er from the simulated value in most cases. The �gure shows that lower order
e�ects are present in a stronger way when Φ is large (see Section 4.2.4), for I only
got coe�cients close to the expected ones when Φ was around 10 degrees. The lower
order terms seem to decay much faster when Φ is not large, which means that their
coe�cients are probably smaller.

The di�erence between the estimated and the calculated lines in one of the above
examples can be seen on Figure 42:

Figure 42: The distance between the estimated and the calculated coe�cients. The pa-
rameters are r = 1, R = 2, d = 4, and Φ = 14, 5◦.

As one can see, the calculated curve is not very far from the line �tted on the
simulated data, even though it is not the closest to our calculations.
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5 Summary

In my thesis, I have selected a speci�c family of billiards in which I studied the rate
of the decay of correlations for various functions. Since the Bunimovich stadium has
already been partially studied in this respect, I have chosen to widen the subject of
the study to the squash-shaped billiards.

These billiards consist of two arcs with the radii r and R whose centers are placed
at a distance of d and connected with their common outer tangent. The lines that
connect the arcs are L long and disclose the angle Φ with the segment connecting the
centers of the circles.

As it is known, the rate of the decay is slower than exponential in both cases. This
is a result of the presence of long segments of integrable motion. I have given a �rst
order estimate for the measure of the subsets (the traps) that are responsible for such
regular trajectories: In the stadium, the measure of the subset starting from which the
trajectories bounce n times between the two parallel lines is 2d2

rn3 , and in the squash,
the measure of the starting points of trajectories that complete n consecutive collisions
across the larger arc near its diameter is 8RΦ2

n3 .
Based upon this, I gave a �rst order approximation for the rate of the decay of

correlations corresponding to the indicator functions of the traps: In the stadium, this
value is about 2, 59 d

rn
and in the squash, 1, 813Φ

n
.

I have also tried to verify the calculated decay rates through simulations. This
attempt was not always successful, however I have built up conjectures that might ex-
plain the reasons why. These studies have provided further evidence that the dynamical
behavior of chaotic billiards is a very subtle issue, simulating which requires special
care. Among others, it is worth mentioning a good choice of the sample size versus
the number of simulated collisions (the parameters N and n); a suitable selection of
the geometric parameters (extremely long stadia and almost-circle squashes typically
produce strange simulation results) and the careful evaluation of data (simultaneous
use of linear and log-log scaled plots).

Many questions remained open, mostly in the topic of the simulations. Based on
my above sketched experiences, I would like to continue these numerical studies in the
future. For example, it would be interesting to try to approximate the second order of
the decays, or to proceed on to semi-dispersing or even higher dimensional billiards.
Also it would be nice to simulate the exact size-dependence of the Lyapunov exponent.
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Appendix

Software
• The �gures inserted were made using X�g (http://www.x�g.org)

• The results of the executed programs were processed by

� QtiPlot (http://soft.proindependent.com/qtiplot.html)

� Origin (http://www.originlab.com)

� Excel (http://www.microsoft.com)

• Typesetting by LATEX (http://www.tug.org, http://www.miktex.org)

The program squash.c
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <math.h>
4 #include "mt.h" /* The Mersenne Twister random number generator */
5
6 /* names of the curves */
7 const char LEFTARC=1;
8 const char TOPLINE=2;
9 const char RIGHTARC=3;
10 const char BOTTOMLINE=4;
11
12 /* global constants - only defined once */
13 int n,Nf;
14 double r,R,d,l,a,b,A,B,nx,ny,c,circumference,smallarc,largearc,fi; /* geometric data */
15 double Rmr,r2,r2inv,R2,R2inv,nx2,ny2,rinv, Rinv;
16 /* auxiliary constants for the computations */
17
18
19
20 /* the 5 coordinates of the phase space */
21 char piece;
22 double x,y,vx,vy;
23
24 /* auxiliary variables for the simulation */
25 double t,coll,VxX,vxb,vya,vxB,vyA,VN,XV,Vabs;
26
27 /* else */
28 int k1,k2;
29
30
31 /* Random start */
32 double sinangle, cosangle; /* initial angle of incidence */
33 void randstart(double *px,double *py,double *pvx,double *pvy,char *ppiece){
34 double arclength=0; /* this will be uniformly distributed */
35
36 double delta,sindelta,cosdelta;
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37
38 arclength=genrand_real1();
39 arclength=arclength*circumference;
40 sinangle=genrand_real1();
41 sinangle=2*sinangle-1;
42 cosangle=sqrt(1-sinangle*sinangle);
43
44 if(arclength<=l){
45 (*px)=a+ny*arclength;
46 (*py)=-b+nx*arclength;
47 (*pvx)=-nx*cosangle+ny*sinangle; /* =cos(PI/2-angle-Fi) */
48 (*pvy)=ny*cosangle+sinangle*nx; /*=sin(PI/2-angle-Fi)*/
49 (*ppiece)=BOTTOMLINE;
50 }
51 else if(arclength>l && arclength<=l+largearc){
52 arclength=arclength-l;
53 delta=arclength/R-fi;
54 sindelta=sin(delta);
55 cosdelta=cos(delta);
56 (*px)=d+R*sindelta;
57 (*py)=-R*cosdelta;
58 (*pvx)=-cosangle*sindelta-sinangle*cosdelta;/*=cos(angle+delta+M_PI_2)*/
59 (*pvy)=-sinangle*sindelta+cosangle*cosdelta;/*=sin(angle+delta+M_PI_2)*/
60 (*ppiece)=RIGHTARC;
61 }
62 else if(arclength>l+largearc && arclength<=2*l+largearc){
63 arclength=arclength-l-largearc;
64 (*px)=A-arclength*ny;
65 (*py)=B+arclength*nx;
66 (*pvx)=-cosangle*nx+sinangle*ny;/*=cos(Fi-M_PI_2+angle)*/
67 (*pvy)=-sinangle*nx-cosangle*ny;/*=sin(Fi-M_PI_2+angle)*/
68 (*ppiece)=TOPLINE;
69 }
70 else if(arclength>2*l+largearc && arclength<= circumference){
71 arclength=arclength-2*l-largearc;
72 delta=arclength/r+fi;
73 sindelta=sin(delta);
74 cosdelta=cos(delta);
75 (*px)=-r*sindelta;
76 (*py)=r*cosdelta;
77 (*pvx)=cosangle*sindelta+sinangle*cosdelta;/*=cos(angle-M_PI_2+delta)*/
78 (*pvy)=sinangle*sindelta-cosangle*cosdelta;/*=sin(angle-M_PI_2+delta)*/
79 (*ppiece)=LEFTARC;
80 }
81 else {
82 printf(" Trouble with the random start!!! \n");
83 }
84 }
85
86 double Sinrefl(double lx,double ly,double lvx,double lvy,char lpiece){
87 double sinrefl;
88 switch(lpiece) {
89 case 1:/*LEFTARC*/
90 sinrefl=rinv*(lx*lvy-ly*lvx);
91 case 2:/*TOPLINE*/
92 sinrefl=-ny*lvx+nx*lvy;
93 case 3:/*RIGHTARC*/
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94 sinrefl=Rinv*((lx-d)*lvy-ly*lvx);
95 case 4:/*BOTTOMARC*/
96 sinrefl=ny*lvx+nx*lvy;
97 }
98 return sinrefl;
99 }
100 int F(double Piece){
101 if(Piece==TOPLINE||Piece==BOTTOMLINE)return 1;
102 else return 0;
103 }
104
105 double S1[1000];int S2[1000];
106
107 main(int argc, char *argv[]){
108
109 /* Reading input data */
110
111 FILE *input,*output; /* input and output files */
112
113 if (argc!=3) {
114 printf("use of program:\n a.out <parameter file>"
115 " <output file>\n");
116 return -1;
117 }
118
119 input=fopen(argv[1],"rt"); /* input file opens */
120
121 if (input==NULL) {
122 printf ("Bad input file! \n");
123 return -1;
124 }
125 /* reading constants from input */
126 double dd;
127 fscanf(input,"n %d\nNf %d\nr %le\nR %le\nd %le", &n,&Nf,&r,&R,&dd);
128 fclose(input);
129 d=dd;
130
131 output=fopen(argv[2],"wt"); /* output file opens */
132
133 /* defining global constants */
134 Rmr=R-r; l=sqrt(d*d-Rmr*Rmr);
135 a=-r*Rmr/d; b=r*l/d;
136 A=d-R*Rmr/d; B=R*l/d;
137 nx=(b-B)/l; ny=(A-a)/l; c=r;
138 fprintf(output,"n=%d Nf=%d\n",n,Nf);
139 fprintf(output,"r=%f R=%f d=%f l=%f\n",r,R,d,l);
140 fprintf(output,"a=%f b=%f A=%f B=%f\n",a,b,A,B);
141 fprintf(output,"N\tSspeed(n)\tCorr\tSegy(n)\tCorr(n)\n",a,b,A,B);
142 //printf("nx=%f ny=%f c=%f\n",nx,ny,c);
143
144 fi=asin(-nx); /*the angle of the straight lines with the horizontal line*/
145 smallarc=r*(M_PI-2*fi);
146 largearc=R*(M_PI+2*fi);
147 circumference=2*l+smallarc+largearc;
148
149 double p;
150 p=2*l/circumference;
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151
152 r2=r*r; rinv=1/r; Rinv=1/R; r2inv=rinv*rinv; R2=R*R; R2inv=Rinv*Rinv;
153 nx2=2*nx; ny2=2*ny;
154
155
156
157 /* generating the initial conditions: */
158
159 unsigned long init[4]={0x123, 0x234, 0x345, 0x456}, length=4;
160 init_by_array(init, length); /* needed for mt.h */
161
162
163 /* the cycle begins */
164 for(k1=0; k1<=n; k1++){
165 S1[k1]=0;
166 }
167
168 /* one trajectory */
169 for(k2=1;k2<=Nf;k2++){
170
171 if(Nf/2<k2 && k2<=Nf/2+1){
172 printf("Half way though! r=%f R=%f d=%f\n",r,R,d);
173 }
174
175 randstart(&x,&y,&vx,&vy,&piece);
176 S1[0]=S1[0]+Sinrefl(x,y,vx,vy,piece)*sinangle;
177 S2[0]=S2[0]+F(piece);
178
179
180 /* before the first step: */
181 if(piece==LEFTARC) {t=-2*(x*vx+y*vy); coll=t*r2inv;}
182 if(piece==RIGHTARC) {x-=d; t=-2*(x*vx+y*vy); coll=t*R2inv; x+=d;}
183
184 for(k1=1;k1<=n;k1++){
185
186 /* one step of a trajectory: */
187 VxX=vx*y-vy*x; vxb=vx*b; vya=vy*a; vxB=vx*B; vyA=vy*A;
188 switch(piece) {
189 case 1: /* LEFTARC */
190 if(VxX<-vxb-vya){
191 /* piece=LEFTARC; */
192 /* XV=x*vx+y*vy; t=sqrt(XV*XV+r2-x*x-y*y)-XV; */
193 x+=t*vx;
194 y+=t*vy;
195 /* t=2*(x*vx+y*vy); coll=t*r2inv; */
196 vx-=coll*x;
197 vy-=coll*y;
198 }
199 else if(VxX<=-vxB-vyA){
200 piece=BOTTOMLINE;
201 VN=vx*nx-vy*ny;
202 t=(c-x*nx+y*ny)/VN;
203 x+=t*vx;
204 y+=t*vy;
205 vx-=VN*nx2;
206 vy+=VN*ny2;
207 }

iv



208 else if(VxX<vxB-vyA){
209 piece=RIGHTARC;
210 x-=d;
211 XV=x*vx+y*vy; t=sqrt(XV*XV+R2-x*x-y*y)-XV;
212 x+=t*vx;
213 y+=t*vy;
214 t=2*(x*vx+y*vy); coll=t*R2inv;
215 vx-=coll*x;
216 vy-=coll*y;
217 x+=d;
218 }
219 else if(VxX<=vxb-vya){
220 piece=TOPLINE;
221 VN=vx*nx+vy*ny;
222 t=(c-x*nx-y*ny)/VN;
223 x+=t*vx;
224 y+=t*vy;
225 vx-=VN*nx2;
226 vy-=VN*ny2;
227 }
228 else {
229 /* piece=LEFTARC; */
230 /* XV=x*vx+y*vy; t=sqrt(XV*XV+r2-x*x-y*y)-XV; */
231 x+=t*vx;
232 y+=t*vy;
233 /* t=2*(x*vx+y*vy); coll=t*r2inv; */
234 vx-=coll*x;
235 vy-=coll*y;
236 }
237 break;
238 case 3: /* RIGHTARC */
239 if(VxX<vxB-vyA){
240 /* piece=RIGHTARC; */
241 x-=d;
242 /* XV=x*vx+y*vy; t=sqrt(XV*XV+R2-x*x-y*y)-XV; */
243 x+=t*vx;
244 y+=t*vy;
245 /* t=2*(x*vx+y*vy); coll=t*R2inv; */
246 vx-=coll*x;
247 vy-=coll*y;
248 x+=d;
249 }
250 else if(VxX<=vxb-vya){
251 piece=TOPLINE;
252 VN=vx*nx+vy*ny;
253 t=(c-x*nx-y*ny)/VN;
254 x+=t*vx;
255 y+=t*vy;
256 vx-=VN*nx2;
257 vy-=VN*ny2;
258 }
259 else if(VxX<-vxb-vya){
260 piece=LEFTARC;
261 XV=x*vx+y*vy; t=sqrt(XV*XV+r2-x*x-y*y)-XV;
262 x+=t*vx;
263 y+=t*vy;
264 t=2*(x*vx+y*vy); coll=t*r2inv;
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265 vx-=coll*x;
266 vy-=coll*y;
267 }
268 else if(VxX<=-vxB-vyA){
269 piece=BOTTOMLINE;
270 VN=vx*nx-vy*ny;
271 t=(c-x*nx+y*ny)/VN;
272 x+=t*vx;
273 y+=t*vy;
274 vx-=VN*nx2;
275 vy+=VN*ny2;
276 }
277 else {
278 /* piece=RIGHTARC; */
279 x-=d;
280 /* XV=x*vx+y*vy; t=sqrt(XV*XV+R2-x*x-y*y)-XV; */
281 x+=t*vx;
282 y+=t*vy;
283 /* t=2*(x*vx+y*vy); coll=t*R2inv; */
284 vx-=coll*x;
285 vy-=coll*y;
286 x+=d;
287 }
288 break;
289 case 2: /* TOPLINE */
290 if(VxX<-vxb-vya){
291 piece=LEFTARC;
292 XV=x*vx+y*vy; t=sqrt(XV*XV+r2-x*x-y*y)-XV;
293 x+=t*vx;
294 y+=t*vy;
295 t=2*(x*vx+y*vy); coll=t*r2inv;
296 vx-=coll*x;
297 vy-=coll*y;
298 }
299 else if(VxX<=-vxB-vyA){
300 piece=BOTTOMLINE;
301 VN=vx*nx-vy*ny;
302 t=(c-x*nx+y*ny)/VN;
303 x+=t*vx;
304 y+=t*vy;
305 vx-=VN*nx2;
306 vy+=VN*ny2;
307 }
308 else {
309 piece=RIGHTARC;
310 x-=d;
311 XV=x*vx+y*vy; t=sqrt(XV*XV+R2-x*x-y*y)-XV;
312 x+=t*vx;
313 y+=t*vy;
314 t=2*(x*vx+y*vy); coll=t*R2inv;
315 vx-=coll*x;
316 vy-=coll*y;
317 x+=d;
318 }
319 break;
320 case 4: /*BOTTOMLINE*/
321 if(VxX<vxB-vyA){
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322 piece=RIGHTARC;
323 x-=d;
324 XV=x*vx+y*vy; t=sqrt(XV*XV+R2-x*x-y*y)-XV;
325 x+=t*vx;
326 y+=t*vy;
327 t=2*(x*vx+y*vy); coll=t*R2inv;
328 vx-=coll*x;
329 vy-=coll*y;
330 x+=d;
331 }
332 else if(VxX<=vxb-vya){
333 piece=TOPLINE;
334 VN=vx*nx+vy*ny;
335 t=(c-x*nx-y*ny)/VN;
336 x+=t*vx;
337 y+=t*vy;
338 vx-=VN*nx2;
339 vy-=VN*ny2;
340 }
341 else {
342 piece=LEFTARC;
343 XV=x*vx+y*vy; t=sqrt(XV*XV+r2-x*x-y*y)-XV;
344 x+=t*vx;
345 y+=t*vy;
346 t=2*(x*vx+y*vy); coll=t*r2inv;
347 vx-=coll*x;
348 vy-=coll*y;
349 }
350 break;
351 }
352 Vabs=sqrt(vx*vx+vy*vy); vx/=Vabs; vy/=Vabs;
353 /* end of step */
354
355
356 S1[k1]+=Sinrefl(x,y,vx,vy,piece)*sinangle;
357 S2[k1]=S2[k1]+F(piece);
358
359 } /* end of trajectory */
360 } /* end of cycle */
361
362 for(k1=0; k1<=n; k1++){
363 fprintf(output,"%d\t%f\t%f\t", k1, S1[k1], S1[k1]/Nf);
364 fprintf(output,"%d\t%f\n", S2[k1], ((double)S2[k1]/(double)Nf-p)/(1-p));
365 }
366
367 fflush(output);
368 fclose(output);
369 return 0;
370 } /* end of main() */
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