Problems

1 Linear algebra

1. Solve by Gauss-elimination:

$$
\begin{aligned}
5 x+4 z+2 t & =3 \\
x-y+2 z+t & =1 \\
4 x+y+2 z & =1 \\
x+y+z+t & =0
\end{aligned}
$$

2.

$$
\begin{aligned}
x_{1}+i x_{2}-x_{3} & =-i \\
x_{1}+(1+i) x_{2}+2 i x_{3} & =-2+2 i \\
x_{1}+(1-i) x_{2}-2 i x_{3} & =-2-2 i
\end{aligned}
$$

3.

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5} & =0 \\
-x_{1}+x_{2}-6 x_{4}+x_{5} & =0 \\
3 x_{2}+x_{3}+5 x_{4}-x_{5} & =0 \\
2 x_{3}-7 x_{4}+7 x_{5} & =0
\end{aligned}
$$

4. Determine the value of a in such a way that there is a nontrivial solution:

$$
\begin{aligned}
x_{1}+i x_{2}-x_{3} & =0 \\
x_{1}+(1+i) x_{2}+2 i x_{3} & =0 \\
x_{1}+(1-i) x_{2}+a x_{3} & =0
\end{aligned}
$$

5. Compute the determinants:
(a) $\left|\begin{array}{ccc}i & i & i \\ i & 2+2 i & i \\ i & i & 1+3 i\end{array}\right|$
(b) $\left|\begin{array}{cccc}3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3\end{array}\right|$
(c) $\left|\begin{array}{cccc}a & 1 & 0 & 0 \\ -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & 0 & -1 & d\end{array}\right|$
6. Apply Cramer's rule to solve:

$$
\begin{array}{r}
x+2 y+5 z=9 \\
8 x-7 y+3 z=6 \\
2 x+5 y+z=5
\end{array}
$$

7. Find a maximal linearly independent subsystem (a base), and express the remaining vectors as a linear combination in this base:

$$
\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{c}
2 \\
-2 \\
-4
\end{array}\right], \quad \mathbf{a}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
9 \\
3
\end{array}\right], \quad \mathbf{a}_{\mathbf{3}}=\left[\begin{array}{c}
-2 \\
-4 \\
1
\end{array}\right], \quad \mathbf{a}_{\mathbf{4}}=\left[\begin{array}{c}
3 \\
7 \\
-1
\end{array}\right] .
$$

8. Are the following triples of vectors linearly independent?
(a)

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
-i
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
1+i \\
0 \\
0 \\
i
\end{array}\right], \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
0 \\
0 \\
2-i \\
1
\end{array}\right] .
$$

(b)

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
-i
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
1+i \\
0 \\
0 \\
i
\end{array}\right], \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
3+2 i \\
1 \\
0 \\
i
\end{array}\right]
$$

9. Is it possible to express \mathbf{b} as a linear combination of $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}$? If yes, determine the coefficients.

$$
\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{c}
i \\
-1 \\
-i
\end{array}\right], \quad \mathbf{a}_{\mathbf{2}}=\left[\begin{array}{c}
1+i \\
2 i \\
-2+2 i
\end{array}\right], \quad \mathbf{a}_{\mathbf{3}}=\left[\begin{array}{c}
1-i \\
-2 i \\
-2-2 i
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
i \\
1+i
\end{array}\right] .
$$

10. Consider the base $B=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ in \mathbb{R}^{2}, where

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

(a) Determine the coordinates of the vector $\mathbf{w}=\left[\begin{array}{l}9 \\ 8\end{array}\right]$ in the base B.
(b) The vector \mathbf{u} in base B has coordinates: $[\mathbf{u}]_{B}=\left[\begin{array}{c}4 \\ -7\end{array}\right]$. Determine the coordinates of \mathbf{u} in the natural base.
11. Consider the two bases $B=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}, B^{\prime}=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ in \mathbb{R}^{2}, where

$$
\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}
15 \\
-2
\end{array}\right], \quad \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}
8 \\
-1
\end{array}\right], \quad \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
2 \\
5
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

$[\mathbf{a}]_{B}=\left[\begin{array}{c}7 \\ 11\end{array}\right]$. Determine $[\mathbf{a}]_{B^{\prime}}$.
12. Consider in \mathbb{R}^{3} the linearis transformation A that projects any vector orthogonally onto the plane $x y$. Determine the matrix of A in the natural base.
13. Determine the matrix of the three dimensional linear transformation that maps the vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ of the natural base to

$$
\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right], \quad \mathbf{a}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right], \quad \mathbf{a}_{\mathbf{3}}=\left[\begin{array}{l}
0 \\
1 \\
4
\end{array}\right]
$$

respectively.
14. Determine the matrix of the following linear transformation (in the natural base): $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{2}-x_{3}\right)$.
15. Let A be the linear transformation that maps the vectors $\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \mathbf{x}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{x}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ to the vectors $\mathbf{y}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right], \mathbf{y}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{y}_{\mathbf{3}}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$, respectively. Determine the matrix of A in the base $\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}\right\}$.
16. Let the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ in the base $B=\left\{\left[\begin{array}{l}1 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 9\end{array}\right]\right\}$ have matrix $\left[\begin{array}{cc}3 & 1 \\ -2 & 8\end{array}\right]$. Determine the matrix of T in the
(a) natural base,
(b) in the base $B^{\prime}=\left\{\left[\begin{array}{l}3 \\ 5\end{array}\right],\left[\begin{array}{c}8 \\ 13\end{array}\right]\right\}$.
17. Determine the matrices of the orthogonal projections in \mathbb{R}^{3}
(a) onto the plane S with equation $5 x-6 y+z=0$,
(b) onto the plane T with equation $x+5 y-2 z=0$.

Compute the coordinates of the orthogonal projection of the point $P=(8,1,3)$ onto S and onto T.
18. Determine the eigenvalues and the eigenvectors of the following matrices:
(a) $\left[\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right]$
(b) $\left[\begin{array}{ccc}2 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & 2 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}-1 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
19. Diagonalize the matrix $A=\left[\begin{array}{cc}7 & -2 \\ -2 & 3\end{array}\right]$.
20. Determine the spectral decomposition of $A=\left[\begin{array}{cc}-3 & 5 \sqrt{3} \\ 5 \sqrt{3} & 7\end{array}\right]$.
21. Determine an orthonormal base for the subspace in \mathbb{R}^{4} spanned by the vectors $\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 1 \\ 3 \\ 1\end{array}\right], \mathbf{a}_{\mathbf{2}}=$ $\left[\begin{array}{l}4 \\ 6 \\ 5 \\ 1\end{array}\right], \mathbf{a}_{\mathbf{3}}=\left[\begin{array}{c}5 \\ 4 \\ -2 \\ 0\end{array}\right]$.
22. Determine the (at most) three degree polynomial that fits best to the points $(-3,2),(-1,4),(1,3),(2,0)$.
23. Apply the method of least squares to determine the line that fits best
(a) the points $(-2,6),(-1,5),(0,1),(3,-4)$,
(b) the points $(-2,0),(1,7),(2,10),(3,10),(4,17)$.
24. Determine the approximate solution of the linear system $A x=b$ in the sense of least square error, and calculate the square error, if
(a) $A=\left[\begin{array}{cc}3 & 4 \\ -2 & -5 \\ 1 & -2\end{array}\right], b=\left[\begin{array}{c}10 \\ -6 \\ 3\end{array}\right]$,
(b) $A=\left[\begin{array}{cc}1 & 2 \\ 2 & 3 \\ -3 & 4 \\ -1 & 1\end{array}\right], b=\left[\begin{array}{c}4 \\ -3 \\ 2 \\ 1\end{array}\right]$.
25. Determine the singular value decomposition of the matrices
(a) $A=\left[\begin{array}{cc}\sqrt{3} & 2 \\ 0 & \sqrt{3}\end{array}\right]$
(b) $B=\left[\begin{array}{cc}1 & 2 \\ 2 & -2\end{array}\right]$
(c) $C=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
26. Determine the polar decomposition of the matrices A and B from the preceding problem.
27. Let $A=\left[\begin{array}{cc}-\frac{13}{5} & \frac{14}{5} \\ \frac{14}{5} & \frac{8}{5}\end{array}\right], B=\left[\begin{array}{cc}-13 & 20 \\ -\frac{15}{2} & 12\end{array}\right]$. Determine the matrices $e^{2 A}$ and $e^{-3 B}$.

2 Partial differential equations

28. Determine the Fourier series for the following 2π-periodic functions:
(a) $f(x)= \begin{cases}1 & , \text { ha } 0<x<\pi \\ 0 & , \text { ha } x \in\{-\pi, 0, \pi\} \\ -1 & , \text { ha } \pi<x<0\end{cases}$
(b) $g(x)=|\sin x|,-\pi \leq x \leq \pi$
(c) $h(x)=\pi-\frac{x^{2}}{\pi}$
29. Detemine the Fourier series for the 8-periodic $f(x)= \begin{cases}2 & , \text { if }-4 \leq x<-2 \\ 0 & , \text { if }-2 \leq x<2 \\ 2 & , \text { if } 2 \leq x<4 .\end{cases}$
30. Determine the Fourier sine series for $f(x)=\frac{\pi-x}{2}$ on $[0, \pi]$.
31. Determine the Fourier sine series for $f(x)=x^{2}$ on $[0,2]$.
32. For the problems below apply Bernoulli's method and refer to the Fourier series computed in class.
(a) $\begin{cases}u_{t t}=u_{x x}, & 0<x<\pi, 0<t \\ u(x, 0)=\frac{\pi-x}{2}, & 0 \leq x \leq \pi \\ u_{t}(x, 0)=0, & 0<x<\pi \\ u(0, t)=u(\pi, t)=0, & 0 \leq t\end{cases}$
(b) $\begin{cases}u_{t t}=2 u_{x x}, & 0<x<5,0<t \\ u(x, 0)=3 x, & 0 \leq x \leq 5 \\ u_{t}(x, 0)=\cos \left(\frac{3 \pi}{5} x\right) \sin (\pi x), & 0<x<5 \\ u(0, t)=u(5, t)=0, & 0 \leq t\end{cases}$
(c) $\begin{cases}u_{t t}=4 u_{x x}, & 0<x<2,0<t \\ u(x, 0)=\sin \left(\frac{3 \pi}{2} x\right), & 0 \leq x \leq 2 \\ u_{t}(x, 0)=x^{2}, & 0<x<2 \\ u(0, t)=u(2, t)=0, & 0 \leq t\end{cases}$

For the following problems apply d'Alembert method.
33. A string extends along the interval $[0,6]$ with its to endpoints fixed, its vibration is described by the PDE $u_{t t}=4 u_{x x}$. The string is fixed at the points $(2,3)$ and $(3,3)$ and released at the time moment $t=0$. Determine the shape of the string at $t=1,5$.
34. A string extends along the interval $[0,2]$ with its to endpoints fixed, its vibration is described by the PDE $u_{t t}=16 u_{x x}$. Initially the string is at rest, while its velocity at $t=0$ is according to $g(x)=3 x-2(0 \leq x \leq 2)$. Determine the shape of the string at $t=\frac{1}{4}$.
35. An infinite string is fixed at the points $(-5,0),(-3,2),(1,2),(2,0)$ and released at $t=0$. It evolves according to the PDE $u_{t t}=u_{x x}$. Determine its shape at $t=5$.
36. The motion of an infinite string is given by:

$$
\left\{\begin{array}{l}
u_{t t}=4 u_{x x} \\
u(x, 0)=\cos (3 x) \\
u_{t}(x, 0)=\frac{6 x}{x^{2}+1}
\end{array}\right.
$$

Determine its shape at t.
37. Solve the following heat transport problems:
(a)

$$
\left\{\begin{array}{l}
u_{t}=4 u_{x x}, \quad 0 \leq x \leq 2 \\
u(x, 0)=\sin (4 \pi x) \cos \left(\frac{5 \pi}{2} x\right) \\
u(0, t)=u(2, t)=0
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{l}
u_{t}=3 u_{x x}, \quad 0 \leq x \leq 3 \\
u(x, 0)=x(3-x) \\
u(0, t)=u(3, t)=0
\end{array}\right.
$$

3 Vector calculus

38. Compute the line integrals of the vector fields.
(a) $\mathbf{F}(x, y, z)=\left(y^{2}-x^{2}, 2 y z,-x^{2}\right) ; \mathbf{r}(t)=\left(t, t^{2}, t^{3}\right), 0 \leq t \leq 1$.
(b) $\mathbf{F}(x, y, z)=(y, z, x) ; \mathbf{r}(t)=(2 \cos t, 2 \sin t, 3 t), 0 \leq t \leq 2 \pi$.
(c) $\mathbf{F}(x, y, z)=(z-y, x-z, y-x)$; integrate along: $A(0,0,0) \rightarrow B(1,1,1)$.
(d) $\mathbf{F}(x, y, z)=\left(x^{2}+y^{2}, x^{2}-y^{2}, 0\right)$; along the line $y=2-3 x, z=0,0 \leq x \leq 1$.
(e) $\mathbf{F}(x, y, z)=(x y, y z, x z)$; integrate along: $A(1,0,0) \rightarrow B(0,0,1) \rightarrow C(0,1,0)$.
(f) $\mathbf{F}(x, y, z)=\left(x z+y, y z-x,-x^{2}-y^{2}\right)$; integrate along: $x^{2}+y^{2}=1, z=3$ oriented counterclockwise.
39. Determine the following surface integrals. (For closed surfaces, use outward, otherwise upward orientation.)
(a) $\mathbf{F}(x, y, z)=(x, y, 0) ; \mathbf{r}(u, v)=(4 \cos u \cos v, 4 \cos u \sin v, 4 \sin u), 0 \leq u \leq \frac{\pi}{2}, 0 \leq v \leq \frac{\pi}{2}$.
(b) $\mathbf{F}(x, y, z)=(x y, 2 x+y, z) ; \mathbf{r}(u, v)=\left(u+2 v,-v, u^{2}+3 v\right), 0 \leq u \leq 3,0 \leq v \leq 1$.
(c) $\mathbf{F}(x, y, z)=(x, y, z)$; the surface is the torus obtained by rotating the unit circle inside the $x z$ plane with center $(3,0)$ about the z axis; and constrain to its part lying above the plane $z=0$.
40. Compute the divergence and the curl:
(a) $\mathbf{F}(x, y, z)=(x y, x z, y z)$
(b) $\mathbf{F}(x, y, z)=\left(\frac{x}{y}, \frac{y}{z}, x z\right)$
(c) $\mathbf{F}(x, y, z)=\left(\sin \left(x^{2} y z\right), \sin \left(x y^{2} z\right), \sin \left(x y z^{2}\right)\right)$
(d) $\mathbf{F}(\mathbf{r})=|\mathbf{r}| \mathbf{a}$ (a is some constant vector)
41. Apply curl-test to decide (if possible) whether the following vector fields are conservative. If the answer is yes, determine the potential.
(a) $\mathbf{F}(x, y, z)=\left(\frac{1}{x+y+z}, \frac{1}{x+y+z}, \frac{1}{x+y+z}\right)$
(b) $\mathbf{F}(x, y, z)=(\cos (x+y)-\sin (x-y), \cos (x+y)+\sin (x-y), 0)$
(c) $\mathbf{F}(x, y, z)=\left(2 x y-z^{2}-y z, x^{2}+z^{2}-x z, 2 y z-2 x z-x y\right)$
42. Compute the line integral of $\mathbf{F}(x, y, z)=(y+z, z+x, x+y)$ along $\mathbf{r}(t)=\left(a \sin ^{2} t, 2 a \sin t \cos t, a \cos ^{2} t\right)$, $0 \leq e \leq \frac{\pi}{4}$. (Consider the potential.)
43. Apply Gauss theorem to compute the following surface integrals.
(a) $\mathbf{F}(x, y, z)=\left(x^{3}, y^{3}, z^{3}\right)$, the surface: $x^{2}+y^{2}+z^{2}=a^{2}$.
(b) $\mathbf{F}(x, y, z)=(x y, y z, z x)$, on the surface of the brick $-2 \leq x \leq 7,3 \leq y \leq 4,-8 \leq z \leq-1$ with its face lying inside the plane $x=-2$ removed.
44. Apply Stokes theorem to compute the line integral of the vector field $\mathbf{F}(x, y, z)=\left(x^{2} y+e^{x} \sin z, \frac{x^{3}}{3}\right.$ $\left.e^{y z}, \sin (x y z)\right)$ along the circle of radius 6 with center $(3,2)$ lying inside the $x y$ plane.
45. Apply Green's theorem to compute the line integral of the vector field $\mathbf{F}(x, y)=\left(y^{2}, 3 x y\right)$ along the semicircle of unit radius about the origin inside the upper half plane, oriented counterclockwise.
46. Apply Green's theorem to compute the area of the domain delimited by the x axis and the curve $\mathbf{r}(t)=(R(t-\sin t), R(1-\cos t)) ; 0 \leq t \leq 2 \pi($ cycloid $)$.
