Markov Chains and Dynamical Systems, Fall 2023

Log: a brief summary of the classes

September 5

Introduction:

- Dynamical systems: phase space M, map $T: M \to M$. Orbit, periodicity, asymptotic behavior. Simple examples on $M = \mathbb{R}$ or M = [0, 1) with regular vs. chaotic patterns.
- *Markov chains*: state space, transition probabilities. A simple example: the weather chain. Stationary distribution, detailed balance.

Relation of these two topics: evolution at different time scales.

Further concepts related to *dynamical systems*. Invertibility. Various possibilities for preserved structures. Topological dynamics. A brief overview of probability measures. Invariant measures for a map $T: M \to M$ – ergodic theory.

Rotations of the circle. S^1 as phase space. Invertibility, isometry, rigidity. Lebesgue measure is invariant. Rational α : every point is periodic with the same period. Further invariant measures concentrated on periodic orbits in the rational case. Irrational α : there are no periodic points.

September 7

More on rotations of the circle. Irrational α : every point has a dense orbit. Lebesgue measure is the only invariant (Borel probability) measure (unique ergodicity) for irrational α (without proof).

Doubling map or $2x \pmod{1}$. Non-invertibility, expansion, dyadic rationals are eventually fixed. Examples of periodic points, every rational $x \in \mathbb{S}^1$ is either periodic or eventually periodic.

One sided full shift with two symbols. $\Sigma^+ = \{0, 1\}^{\mathbb{N}}$ as a metric space – the symbolic metric, $\sigma : \Sigma^+ \to \Sigma^+$, the left shift.

Equivalence of dynamical systems. conjugacy, semi-conjugacy.

The doubling map and the one sided full shift are (almost) conjugate, discussion of the conjugacy. Applications: characterization of periodic points and points with dense orbits.

Application: how to obtain the binary expansion for a rational number $x \in (0, 1)$.

Lebesgue measure is invariant for the doubling map.

September 12

Invariant measures for the doubling map and the shift. Cylinder sets, description of the 1/2 - 1/2 Bernoulli measure, when pushed forward, gives Lebesgue. Outlook: many further invariant measures for the shift.

Time and space averages. The ergodic theorem. Case of the doubling map: behavior of time averages for various points.

The case of the irrational rotation: as Lebesgue is the only invariant (Borel probability) measure, orbits equidistribute for every starting point.

Arnold's problem on the frequency of the first decimal digits in the sequence 2^n . Benford's law.

Linear self-maps of the real line. Continuously differentiable maps of the real line: graphical analysis (cobweb plot), attracting and repelling fixed points.

Recursively defined sequences.

September 14

Calculus reminder: intermediate value theorem, mean value theorem.

Revisiting attracting and repelling fixed points: detailed arguments based on the mean value theorem, convergence of monotone and bounded sequences etc.

The logistic family $T_a x = ax(1-x)$, motivation from population dynamics. Fixed points: the case a < 1.

The implicit function theorem. A non-bifurcation result: a fixed point x_0 persists when perturbing the parameter a_0 unless $f'_{a_0}(x_0) = 1$.

The logistic family $T_a x = ax(1-x)$ for $a \ge 1$: orbits of $x \notin [0,1]$. Collision of fixed points for a = 1. Description of the attracting fixed point for $1 < a \le 2$. Attracting fixed point for 2 < a < 3: convergence with oscillation, the second iterate.

September 19

Recap of the logistic family $T_a x = ax(1-x)$ for a < 3. What happens at a = 3: discussion of the second iterate, inflection point, period-doubling bifurcation.

Outlook – complexity of the dynamics for 3 < a < 4: period doubling cascades, parameters with attracting periodic orbit vs. parameters with an absolutely continuous invariant measure.

Discussion of logistic maps with a > 4 (for simplicity restrict to $a > 2 + \sqrt{5}$). Intervals I_0 and I_1 , inverse branches, construction of the invariant Cantor set. Topological conjugacy with the one sided full shift. Repeller.

September 25

Discussion of HW1.

Periodic points for continuous maps $T : \mathbb{R} \to \mathbb{R}$. Existence of a period 3 orbit implies existence of periodic orbits with (least) period n for every $n \in \mathbb{N}$. Statement of Sharkovsky's theorem (without proof).

September 26

Saddle-node bifurcation in one dimension. Examples.

Absolutely continuous measures, densities. Push-forward of a measure by a map Φ . Formula for the push-forward density for $\Phi: I \to J$ where I and J are intervals, and Φ is continuously differentiable and piecewise monotone.

Absolutely continuous in invariant measures (ie. invariant densities).

The transformation $\beta x \pmod{1}$ with $\beta = \frac{2}{\sqrt{5}-1}$; piecewise constant invariant density.

The Gauss map and its invariant density.

September 28

Linear maps of the plane. Reminder: Jordan canonical form for real matrices. How the phase portrait is determined by the spectrum: source, sink, saddle, focus... Verifying stability by Lyapunov functions. Stable and unstable subspaces.

Two dimensional nonlinear maps: behavior in the vicinity of a fixed point. Hyperbolic fixed points and structural stability of their phase portraits.

Examples of non-hyperbolic fixed points with attracting/repelling behavior.

October 3

Hopf bifurcation.

The torus \mathbb{T}^2 . $SL(2,\mathbb{Z})$ matrices. Toral automorphisms, definitions, invertibility, preservation of area (Lebesgue measure).

Discussion of an elliptic $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and a parabolic $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ example.

October 5

Hyperbolic toral automorphisms, discussed via the particular example of the CAT map: $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Sketch of domains. Stable and unstable leafs and foliations. Backward and forward asymptotic points, consequences of the irrational slope. Existence of a dense set of points homoclinic to the origin. Analogous phenomena for other periodic points, eg. (1/2, 1/2).

Two equivalent characterizations of topological transitivity. Hyperbolic toral automorphisms are topologically transitive; proof based on the density of homoclinic points.

October 10

Recap of hyperbolic toral automorphisms.

Smale's horseshoe map. The sets $H_0, H_1, V_0, V_1, H_{00}, H_{10}, H_{11}, H_{01}$ etc. $\Lambda = \Lambda^+ \cap \Lambda^- = \Lambda_1 \times \Lambda_2$, as the product of two Cantor sets.

Double sided full shift: product topology, separation metric, invertibility. Topological conjugacy with Smale's horseshoe.

October 12

Recap of Smale's horseshoe and its conjugacy with the double sided full shift. Periodic points, stable and unstable sets of a point, homoclinic points – geometric and symbolic characterization.

 δ -chains and ε -shadowing. The shadowing property and its significance. Rotations do not have the shadowing property. The doubling map has the shadowing property.

October 17

Discussion of HW2.

Probability recap: sample spaces, events, probability. Conditional probability. Independence. Discrete random variables: mass function, expected value $\mathbb{E}X$. The binomial and the geometric distributions. Two methods for computing $\mathbb{E}X$ – sums of indicators and $\sum_{k>1} \mathbb{P}(X \ge k)$.

Independent random variables. (Homogeneous) Markov chains.

October 19

State space S, Markov chain, transition probabilities. Stochastic matrices $(\sum_{i} p(i, j) = 1 \forall i)$.

Examples: Gambler's ruin, Ehrenfest chain, Weather chain, Social mobility chain. Description of the transition graphs and the matrices p(i, j) for these examples.

Absorbing sates. First return time T_i for $i \in S$, the return probabilities $\rho_{ii} = \mathbb{P}(T_i < \infty | X_0 = i)$. Transient $(\rho_{ii} < 1)$ and recurrent $(\rho_{ii} = 1)$ states. Discussion of the above examples from this perspective.

Multistep transition probabilities. Chapman-Kolmogorov equations. $p_n(i, j) = (p^n)_{ij}$. Inspection of p^n for the above examples.

October 24

Consultation session for the Midterm Exam.

October 26

Midterm Exam.

Recap of Markov chains: transition matrix p(i, j), multistep transition probabilities. Evolution of distributions.

Stationary distribution $\pi(i)$ as a (row) eigenvector corresponding to the eigenvalue 1 for multiplication by p(i, j) from the right. Computing π for chains with two states.

October 31

Computing π for chains with more than two states. Question of uniqueness.

Recap of notations: $P_x(\cdot) = \mathbb{P}(\cdot|X_0 = x), T_x^1 = T_x = \min\{n \ge 1 | X_n = x\}$ (first hitting/return time), $T_x^k = T_x = \min\{n \ge T_x^{k-1} | X_n = x\}$ (kth hitting/return time), $\rho_{xy} = P_x(T_y < \infty), N_x = \#\{n \ge 1 | X_n = x\}$. Transience $(\rho_{xx} < 1)$ – recurrence $(\rho_{xx} = 1)$ dichotomy.

Equivalence relation $x \leftrightarrow y$. Closed and irreducible classes. Theorem: if C is a finite, closed and irreducible class, then all states $x \in C$ are recurrent. Proof: computing $E_x(N_y)$ in two different ways. Recurrence equivalent to $E_x(N_y) = \infty$. Two Lemmas: (i) if $x \in C$ recurrent, all $y \in C$ recurrent. (ii) if C is finite, there is at least one recurrent state in C.

Classification of states: $S = T \cup C_1 \cup \ldots C_K$, where T is the collection of transient states, while C_i are closed irreducible classes. Examples.

November 7

Nonnegative and positive matrices. Irreducibility: for any i, j there exists n_0 such that $(p^{n_0})_{ij} > 0$. Question: when is it possible to choose the same n_0 for all i, j (that is, a power of p is positive)?

Theorem: there exists unique $\pi_j > 0$ for finite and irreducible *S*. Proof for *positive p*: consider the eigenspace $L = \{v_i | \sum_i v_i p_{ij} = v_j\}$: (i) $v_i \ge 0 \forall i$; (ii) $v_i > 0 \forall i$; (iii) *L* is simple. Extend to the *irreducible* case: (i) $r_{ij} = \frac{1}{2}(p_{ij} + \delta_{ij})$ (lazy chain) (ii) $\exists n_0$ such that r^{n_0} is positive (waste your time).

November 9

Some cases when the stationary distribution is easy to determine: *doubly stochastic chains* (uniform π_i), example: symmetric random walk with periodic boundary conditions. A glimpse at infinite S: symmetric random walk on Z has (uniform) stationary measure, but this cannot be scaled to a stationary probability distribution.

Detailed balance condition: $\pi_i p_{ij} = \pi_j p_{ji}$ for every $i \neq j$. Example: (biased) random walk on $\{1, \ldots, K\}$ with reflecting boundary conditions; determination of π_i . Blowup of π_i when drift to the right and $K \to \infty$.

Example of an irreducible chain with three states that does not have detailed balance. Further examples for detailed balance: random walks on (undirected) graphs. Randomly hoping figures on the chessboard.

Birth and death chains. Example: stationary distribution for the Ehrenfest chain.

November 13

Period of state $i \in S$ defined as $d_i = gcd(I_i)$, with $I_i = \{n \ge 1 | p_{ii}^n > 0\}$. Examples. Main properties: period is constant on irreducible classes, if $d_i = 1$, then $\exists n_0(i)$ such that $p_{ii}^n > 0$ whenever $n \ge n_0$. Irreducible aperiodic chains: $\exists M \ge 1$ such that p^M is positive.

Recall T_i is the time of the first return/hit. Letting $N_n(i) = \#\{k = 1, ..., n | X_k = i\}$, we have: irreducibility and recurrence implies $\frac{N_n(i)}{n} \to (\mathbb{E}_i T_i)^{-1}$ almost surely. Proof based on (i) $\frac{R(k)}{k} \to \mathbb{E}_i T_i$ by law of large numbers where R(k) is the time of the kth return/hit; (ii) $R(N_n(y)) \le n < R(N_n(y) + 1)$.

Corollary: if irreducible and there exists stationary distribution π_i , we have $\pi_i = (\mathbb{E}_i T_i)^{-1}$.

Extension (without proof): if irreducible, there exists stationary distribution π_i and

 $f \in L^1(S)$ (ie. $\sum_{i \in S} |f(i)| \pi_i < \infty$) then $\frac{1}{n} \sum_{k=1}^n f(X_k) \to \mathbb{E}_{\pi} f = \sum_{i \in S} f(i) \pi_i$ almost surely. Cf. ergodic theorem.

November 14

Two proofs of the convergence theorem: if irreducible, aperiodic, finite S, then $p_{ij}^n \to \pi_j$ for every $i, j \in S \times S$.

Linear algebraic – dynamical proof: letting $L = \{ \underline{v} \in \mathbb{R}^{|S|} | \sum_{i \in S} v_i = 0 \}$, and $F : L \to L$ multiplication by p_{ij} from right, then all eigenvalues of $F|_L$ are included in the interior of the unit disc. Key idea: letting $\Delta_0 = \Delta - \underline{\pi}$, we have that $\Delta_0 \subset L$ is compact with the origin included in $int \Delta_0$ such that $F(\Delta_0) \subset int \Delta_0$.

Probabilistic proof: extends to (countable) infinite S supposed there exists stationary distribution. Core idea: coupling. Suffices to show that if $\rho_i^{(1)}$ and $\rho_i^{(2)}$ are arbitrary probability distributions on S, with X_n and Y_n the corresponding realizations of the Markov chain, then $|\mathbb{P}(X_n = j) - \mathbb{P}(Y_n = j)| \to 0$ for every j as $n \to \infty$. Letting $T = \min\{n \ge 1 | X_n = Y_n\}$, it is enough to show $\mathbb{P}(T > n) \to 0$ as $n \to \infty$.

November 16

Still on the coupling proof of the convergence theorem, with (countable) infinite S in mind: if the chain is irreducible and has stationary distribution with $\pi_i > 0$, then *i* is recurrent. Also, if the chain on S is irreducible and aperiodic, then the chain on $S \times S$ is recurrent. Thus it is recurrent, hence $\mathbb{P}(T = \infty) = 0$.

Chains with absorbing states. Examples: two years college, tennis at deuce. Computing the exit probabilities.

Gambler's ruin problem revisited on $\{0, 1, ..., N-1, N\}$. Obtaining recursion for the exit probabilities $h(i) = \mathbb{P}(T_N < T_0 | X_0 = i)$. Fair case: linear profile for h(i), connection to boundary value problems (differential equations in the continuum limit).

Gambler's ruin, biased case: letting $\Theta = q/p$, obtain $h(i) = \frac{\Theta^i - 1}{\Theta^N - 1}$. For N even, $h(N/2) = (\Theta^{N/2} + 1)^{-1}$. Refer back to tennis at deuce.

November 21

Revisit gambler's ruin, biased case, exit probabilities.

Linear algebraic formulation for exit probabilities: letting $S = C \cup \{a, b\}$ where a and b are absorbing states, introduce $T_a = \min\{n \ge 1 | X_n = a\}$ and T_b analogously, and finally $h(i) = \mathbb{P}(T_b < T_a | X_0 = i)$ for $i \in C$, we have $h = (I - r)^{-1}w$. Here h and w are vectors with components labelled by $i \in C$, in particular h(i) is as above, w(i) = p(i, b) and r is the matrix obtained as the restriction of p to $C \times C$, while I is the unit matrix.

Exit times. Consider $S = C \cup A$ where the states in A are absorbing, let T_A denote the first hit of A and $g(i) = \mathbb{E}(T_A | X_0 = i)$. Obtaining g(i) by recursion in the two year college and the tennis cases.

Linear algebraic formulation for exit times: with notations as above, $g = (I - r)^{-1}\mathbf{1}$, where **1** is the vector with all entries equal 1. Example: tennis (along with a simpler derivation).

November 28

Discussion of HW5.

Further examples for exit times: waiting time for TT and HT in sequences of fair coin tosses. Discussion of why $\mathbb{E}(T_{TT}) = 6$ while $\mathbb{E}(T_{HT}) = 4$.

Exit time for gambler's ruin, fair case, on $\{0, 1, ..., N\}$. Derivation of $g_N(i) = i(N - i)$. Connection to the boundary value problem $f : [0, 1] \to \mathbb{R}$, f''(x) = -2, f(0) = f(1) = 0. Discussion of the asymptotic of gambler's ruin, fair case: $h_N(1) = 1/N \to 0$ as $N \to \infty$, yet $g_N(1) = N - 1 \to \infty$ as $N \to \infty$.

Markov chains with (countable) infinite state spaces – instructive example: reflecting random walk on $S = \{0, 1, 2, ...\}$. The trichotomy of (i) transience – drift to the right; (ii) nullrecurrence (infinite expected return time) – symmetric case; (iii) positive recurrence (stationary distribution exists) – drift to the left.

November 30

Branching processes as Markov chains on $\{0, 1, ...\}$, offspring distribution, 0 as absorbing state. Relevant questions: μ_n expected size of the *n*th generation, probability of extinction $r_n \nearrow r_{\infty}$.

Tools: Markov inequality, for ξ nonnegative integer valued: $\mathbb{P}(\xi \neq 0) \leq \mathbb{E}\xi$. Conditional expectation and tower rule: $1 - r_n \leq \mu_n = \mu^n$ where $\mu = \mathbb{E}Y$ is the expected value of the offspring distribution. Subcritical $(\mu < 1)$, critical $(\mu = 1)$ and supercritical $(\mu > 1)$ branching.

Further tool: generating function for a nonnegative integer valued random variable. Examples, basic properties. Generating functions for sums with a random number of terms.

Branching processes: letting $g(z) = g_Y(z)$, we have $g_{X_n}(z) = g_n(z) = (g \circ \cdots \circ g)(z)$ for the generating function of the *n*th generation. $r_n = g_n(0)$; connection to dynamical systems: orbit of 0. Conclusion: r_{∞} is the smallest nonnegative root of z = g(z).

Example: binary branching.