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Abstract

In this paper we prove that a piecewise C2, uniformly hyperbolic map
of a d-dimensional manifold M (d > 2) enjoys exponential decay of corre-
lations. This result is not new (first proved by Chernov; Discrete Contin.
Dyn. Syst., 5 (1999), 425–448.), the novelty lies in the method we use. It
is the high dimensional generalization of the coupling of standard pairs.
Its advantage compared to previous techniques is that instead of using a
symbolic coding of the dynamics it is a direct construction on the phase
space, hence it is ideally suited to studying perturbations. This is the first
time that this technique has been developed for systems with singularities
in dimension greater than 2.

1 Introduction

An important aim in the theory of dynamical systems is to study strong sta-
tistical properties of hyperbolic maps, in particular the decay of correlations.
Results from the recent decades provided exponential bounds on correlations
for smooth hyperbolic maps in high dimensions (???) and also for hyperbolic
maps with discontinuities (???). These properties are of particular interest not
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just for themselves, but also when considering more complex models of chaotic
individual systems being coupled. Such models naturally occur when studying
physically relevant examples, for instance models of heat conduction (see [12]
via [11]) or models of molecules submerged into a gas [9]. To study these it is
useful to develop methods that can be used to prove statistical properties of the
individual systems and also flexible under perturbations. One such approach is
the coupling of measures, a technique borrowed from probability theory. Its was
first used by Young [16] to prove exponential decay of correlations for hyperbolic
maps that can be modelled by a Young-tower. The later is a certain symbolic
coding of the dynamics and hence, even though being very powerful, it is quite
sensitive under perturbations. Later Bressaud and Liverani used this method in
[3] to recover Bowen’s results on Anosov maps of arbitrary dimensional man-
ifolds. Dolgopyat further developed the method in (???) for the smooth case
and introduced the so called standard pairs, which are smooth manifolds that
are expanded by the dynamics, equipped with sufficiently regular probability
measures. The coupling of standard pairs was then used to establish statistical
properties for two dimensional hyperbolic systems with singularities. In partic-
ular Chernov used this technique to reprove many results on two dimensional
dispersing billiards [8]. The power and also the flexibility of this method was
demonstrated in [9]. The present paper generalizes the technique to high dimen-
sional, piecewise smooth systems with an aim that later this will be a useful tool
in the study of physically relevant, complex models.

2 Basic assumptions and consequences

As a first step of the generalization of the coupling method we consider the
simplest possible case of smooth, uniformly hyperbolic maps with singularities.
We use the assumptions of Chernov from [6], and for the readers convenience
we include them here.
LetM be an open connected domain in a d-dimensional C∞ Riemannian man-
ifold, such that M̄ is compact. Further let ξs1 = {M1, . . . ,MN} be a finite
collection of disjoint open subsets ofM such that M̄ = ∪Ni=1M̄i. For any point
x ∈ ∪ξs1 we denote by ξs1(x) the unique element of ξs1 containing x. We consider
a map F : ∪ξs1 →M such that

(A1) for every x ∈ ∪ξs1, F is a C2 diffeomorphism of ξs1(x) onto its image.
We also assume that F and F−1 are twice differentiable (or just C1+α) up to
the boundaries of their domains (only one-sided derivatives are required at the
boundary).

We will refer to the elements of ξs1 as the smoothness components of F . For
n ≥ 1 denote by ξsn the measurable partition that consists of the smoothness
components of Fn, i.e. for a fixed n the points x and y are in the same element
of ξsn iff ∀i = 0, . . . , n − 1 the points F ix and F iy are in the same element of
ξs1. Let ξu1 := {F (M1), . . . , F (MN )} and for n > 1 define ξun to be the partition
that consists of the smoothness components of F−n, in an analogous way as
before.

We assume that S := ∂∪ξs1 is a finite union of smooth compact submanifolds
of codimension one, possibly with boundary. We denote by S1,S2, . . . ,Sr the
smooth components of S. The set S will be referred to as the singularity set for
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F and in general for n ≥ 1 denote by S(n) := ∂ ∪ ξsn the singularity set for Fn.
We denote by d(., .) the Riemannian metric inM and by m(.) the Lebesgue

measure (volume) in M. Our additional assumptions on F are as follows.

(A2) F is uniformly hyperbolic, i.e. there exist two families of cones Cux
and Csx in the tangent spaces TxM, x ∈ M̄, such that DF (Cux ) ⊂ CuFx and
DF (Csx) ⊃ CsFx whenever DF exists, and

|DF (v)| ≥ Λ|v| ∀v ∈ Cux

|DF−1(v)| ≥ Λ|v| ∀v ∈ Csx
with some constant Λ > 1. These families of cones are continuous on M̄ and
the angle between Cux and Csx has a uniform positive lower bound.

Technically, the families of cones Cu,sx are specified by two continuous families
of linear subspaces Pu,sx ⊂ TxM such that Pux ⊕P sx = TxM, and two continuous
functions αu,s(x) > 0. The cones Cu,sx are defined by

∠(v, Pu,sx ) := min
w∈Pu,sx

∠(v, w) ≤ αu,s(x) ∀v ∈ Cu,sx

We denote du,s = dimPu,sx (these are independent of x, since Pu,sx are continuous
and M is connected, and du + ds = d = dimM). The angle between the cones
Cux and Csx is set to min{∠(v, w) : v ∈ Cux , w ∈ Csx} and we introduce a global
constant Ct > 0 defined by

Ct := sin(min
x∈M̄

min
v,w
{∠(v, w) : v ∈ Cux , w ∈ Csx}) (2.1)

For any submanifold W ⊂ M we denote by dW the metric on W induced by
the Riemannian metric inM, and by mW the normalized Lebesgue measure on
W generated by dW . For x ∈W we will denote by BW (x, r) the subset of W (if
it exists) which is the ball centered at x with radius r in the inner metric dW .
We call U a u-manifold if it is a smooth du-dimensional submanifold in M of
finite diameter (in the inner metric dU ) and at every x ∈ U the tangent space
TxU lies in Cux .

(A3) The angle between S and Cu has a positive lower bound.

Technically, the angle between S and Cux at x ∈ S is defined to be
max{0,∠(Pux , TxS)− αu(x)}. Here ∠(Pux , TxS) = max

v∈Pux
min
w∈TxS

∠(v, w).

As a consequence of (A3), any u-manifold intersects S transversally, and the
angle between them has a positive lower bound.
It is convenient to assume that for every Si ⊂ Γ we have ∂Si ⊂ ∪j 6=i intSj∪∂M,
i.e. every interior singularity manifold with boundary terminates on some other
singularity manifolds or on ∂M. This is not a restrictive assumption, since if
this is not the case for some Si ⊂ Γ, we can extend Si until it terminates on
other hypersurfaces of S or on the boundary of M.

A point x of the singularity set S(m) = M̄\∪ξsm of Fm is said to be multiple
if it belongs to the boundary of l ≥ 2 elements of ξsm, and then l is called the
multiplicity of x in S(m).

(A4) There are K0 ≥ 1 and m ≥ 1 such that the multiplicity of any point
x ∈ M̄ \ ∪ξsm does not exceed K0, and K0 < Λm − 1.
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This is a standard assumption which ensures that the singularity manifolds
of Fm do not pile up too fast anywhere as m grows. The expansion of any
u-manifold U under Fm is hereby guaranteed to be stronger than the cutting
(shredding) of U inflicted by the singularities of Fm. It is also standard to
assume that m = 1 here, which we do, since we can simply consider Fm instead
of F . (The assumptions (A1)-(A3) obviously hold for all Fm, m ≥ 1.)
It is proved in [6, Theorem 1.1] that under the assumptions (A1) - (A4) the
map F admits a Sinai-Ruelle-Bowen (SRB) measure µ, and any SRB measure µ
has a finite number of ergodic components, on each of which it is, up to a finite
cycle, mixing and Bernoulli. In view of this, our last additional assumption is
quite mild.

(A5) The map F admits a mixing, invariant, SRB-measure µ.

For any x ∈ ∪ξs∞ and y ∈ ∪ξu∞ we set

Esx = ∩n≥0DF
−n(CsFnx), Euy = ∩n≥0DF

n(CuF−ny)

respectively. It is standard in the literature that

1. Esx, Eux are linear subspaces in TxM, dimEu,sx = du,s, and Esx⊕Eux = TxM
for x ∈ (∪ξu∞) ∩ (∪ξs∞),

2. DF (Eu,sx ) = Eu,sFx , and DF expands vectors in Eux and contracts vectors
in Esx,

3. the subspaces Eux and Esx are continuous in x (on ∪ξu∞ and ∪ξs∞, respec-
tively), and the angle between them on (∪ξu∞)∩(∪ξs∞) has a positive lower
bound.

As a consequence, there can be no zero Lyapunov exponents on (∪ξu∞)
⋂

(∪ξs∞).
The space Eux is spanned by all vectors with positive Lyapunov exponents, and
Esx by those with negative Lyapunov exponents. We call a submanifold Wu ⊂M
a local unstable manifold (LUM), if F−n is defined and smooth on Wu for all
n ≥ 0, and ∀x, y ∈ Wu we have d(F−nx, F−ny) → 0 as n → ∞ exponen-
tially fast. Similarly, local stable manifolds (LSM), W s, are defined. Obviously,
dimWu,s = du,s, and at any point x ∈Wu,s the tangent space TxW

u,s coincides
with Eu,sx . We denote by Wu(x), W s(x) local unstable and stable manifolds con-
taining x, respectively.
We introduce some more notation and recall basic consequences of our assump-
tions. Let U be a u-manifold. We denote by diamU the diameter of U in the
dU metric. For any point x ∈ U \ S denote by (JUF )(x) = |det(DF |TxU)| the
jacobian of the map F restricted to U at x, i.e. the factor of volume expansion
on U at the point x (similar notations will be used later for functions also and
not just for the map F ). For n ≥ 1 the connected components of Fn(U ∩ ξsn)
are called components of FnU . Under our assumptions the following results are
well known in the literature.

• Curvature. We say that the curvature of a u-manifold W is bounded by
B if for all x, y ∈W we have

dG(TxW,TyW ) ≤ Bd(x, y), (2.2)

where dG denotes the distance in the Grassmannian bundle GR(du, TM)
generated by the Riemannian metric. Then ∃B > B′ > 0 such that if
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the curvature of a u-manifold W is at most B′, then all the components
of FnW , n ≥ 1, have curvature at most B. As a result the curvature of
any LUM Wu is bounded above by B. We will always assume that the
curvature of our u-manifolds is bounded above by B. As a consequence on
the microscopic scale each of our u-manifolds looks like a subset of a du-
dimensional flat hyperplane and the closer we zoom in the more accurate
this approach is independently of the u-manifold itself.

• Distortion bound. Let x, y ∈ U ∩ ξsn−1 and Fnx, Fny belong in one com-
ponent of FnU , denote it by V . Then

log

n−1∏
i=0

(JF iUF )(F ix)

(JF iUF )(F iy)
≤ C ′dV (Fnx, Fny) (2.3)

with some C ′ = C ′(F ) > 0.

• Absolute continuity. Let U1, U2 be two sufficiently small u-manifolds, so
that any local stable manifold W s intersects each of U1 and U2 in at most
one point. Let U ′1 = {x ∈ U1 : W s(x) ∩ U2 6= ∅}. Then we define a map
h : U ′1 → U2 by sliding along stable manifolds. This map is often called
the holonomy map. It is absolutely continuous with respect to the (non
normalized) Lebesgue measures νU1 and νU2 , and its jacobian (at any point
of density of U ′1) is bounded, i.e.

1

C ′′
≤ νU2

(h(U ′1))

νU1
(U ′1)

≤ C ′′

with some C ′′ = C ′′(F ) > 0.

To verify statistical properties, for example establish bounds on the decay of
correlations one has to restrict the class of observables to functions with certain
regularity. Usually the class of Hölder continuous functions is an appropriate
choice, though a more general class of observables is much more natural in the
case of piecewise smooth hyperbolic systems with singularities. This class (which
we will define below) was first proposed by Young [15].

Definition 2.1. For any pair of points x, y ∈ M we define their future and
past separation time as

s+(x, y) := min{n ≥ 0 : y /∈ ξsn(x)} s−(x, y) := min{n ≥ 0 : y /∈ ξun(x)}

These are the first times, when the images Fn(x) and Fn(y) or F−n(x) and
F−n(y) respectively lie in different connected components ofM\S orM\S(−1).

Remark 2.2. As a consequence of uniform hyperbolicity, the compactness of
M̄ and the uniform transversality of unstable manifolds and singularities, if x
and y lie on one u-manifold Wu ⊂M, then

dWu(x, y) ≤ CΛ−s+(x,y) (2.4)

and similarly if x and y lie on one s-manifold W s ⊂M, then

dW s(x, y) ≤ CΛ−s−(x,y)

where C is a constant depending only on the dynamics.

5



Now we are ready to define our class of observables.

Definition 2.3. Denote by H+ the set of all functions f :M→ R satisfying,
that for any x and y lying on one u-manifold

|f(x)− f(y)| ≤ Kfθ
s+(x,y)
f

for some constants Kf > 0 and θf ∈ (0, 1).
Similarly H− denotes the set of all functions f : M→ R, such that for any x
and y lying on one s-manifold

|f(x)− f(y)| ≤ Kfθ
s−(x,y)
f

for some constants Kf > 0 and θf ∈ (0, 1).
We call a function f dynamically Hölder continuous if f ∈ H := H+ ∩
H−. We will refer to the constant Kf as the dynamical Hölder continuity
constant of f and to θf as the dynamical Hölder continuity rate of f .

Observe that according to Remark 2.2 the class of ordinary Hölder contin-
uous functions is contained in the class H. Moreover if f is merely piecewise
Hölder continuous with sigularities which coincide with some of the singulari-
ties of the dynamics, then again f ∈ H.
One particular motivation of using this class of observables is that it matches
with the regularity of a key object of the dynamics, namely the holonomy map.
We will discuss this in section 4 in all details.
In the rest of the present section we define the high dimensional generalization of
the key object of the coupling procedure. Following the basic idea of Dolgopyat
these are u-manifolds with sufficiently regular measures on them.

Definition 2.4. Let W be an admissible u-manifold equipped with a probability
measure ν, which is absolutely continuous with respect to the Lebesgue measure
on W . We call (W, ν) a standard pair if the density of ν, denoted by ρ is
regular, meaning that

| ln ρ(x)− ln ρ(y)| ≤ Crθs+(x,y)
h ,

where Cr > 0 is a sufficiently large (but fixed) constant and θh ∈ (0, 1) is the
dynamical Hölder continuity rate of the holonomy map (to be exactly calculated
in Proposition 4.7).

Observe that the regularity of ρ remains the same if we multiply it by a
constant. Hence for a standard pair (W, ν) any subcurve W ′ ⊂ W with the
conditional measure induced by ν on it will itself be a standard pair. In section
3 we will show that a standard pair is mapped by the map F into a collection
of standard pairs. As a consequence a class of standard pairs is invariant under
the action of F in this sense, which motivates the introduction of a more general
object.

Definition 2.5. A collection of standard pairs G = {(Wi, νi)}, i ∈ I (where |I|
may be even uncountable) with a probability factor measure λG on the index set
I is called a standard family. Such a family induces a probability measure µG
on the union ∪iWi (and thus on M) defined by

µG(A) =

∫
νi(A ∩Wi) dλG(i) ∀A ⊂M
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At this point we are able to state the main results of the paper. We again
emphasize that it is not the results that are new, but the method we use to prove
them. The notion that a standard family is proper will be defined in section 3,
but at the moment it is enough for the reader to imagine a collection of standard
pairs with large base u-manifolds.

Theorem 2.6 (Equidistribution). Let G be a proper standard family. For any
dynamically Hölder continuous function f ∈ H and n ≥ 0∣∣∣∣∣∣

∫
M

f ◦ Fn dµG −
∫
M

f dµ

∣∣∣∣∣∣ ≤ BfΘn
f ,

where Bf = 2CΓ(Kf + ‖f‖∞) and Θf = (max{θΓ, θf})1/2 < 1.

Theorem 2.7 (Exponential decay of correlations). Let f and g be dynamically
Hölder continuous observables. Then for any n ≥ 0∣∣∣∣∣∣

∫
M

f · (g ◦ Fn) dµ−
∫
M

f dµ ·
∫
M

g dµ

∣∣∣∣∣∣ ≤ Bf,gΘn
f,g,

where
Θf,g = (max{

√
θΓ, θf ,

√
θg})1/2 < 1,

with θΓ ∈ (0, 1) to be defined later in the paper and

Bf,g = 4CΓCp(Kf ‖g‖∞ +Kg ‖f‖∞ + ‖f‖∞ ‖g‖∞),

with global constants CΓ > 0 and Cp > 0 also defined later.

The proof of these theorems will be given in section 5.

3 Regularity properties

In this section we collect some of the frequently used constructions and well
known results from the literature, which we will need later in our arguments.
We follow the work of Chernov [6] (sometimes even word by word) and for proofs
and more details we suggest the reader to have a look at the original paper.
Our assumption (A4) implies that ∃δ′ > 0 such that any δ′-ball inM intersects
at most K0 smooth components of S. We choose a parameter δ0 to be much
smaller than δ′ and the minimum radius of curvature of singularity manifolds
Si ⊂ S.

Definition 3.1. A connected u-manifold U is admissible if

• its curvature is at most B everywhere,

• diamU ≤ δ0,

• its boundary ∂U is piecewise smooth, i.e. it is a finite union of smooth
compact submanifolds of dimension du − 1, possibly with boundary.
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Using that admissible u-manifolds always have bounded curvature we assume
that our δ0 is so small that the tangent spaces at different points of these mani-
folds are almost parallel. Let U be an admissable u-manifold and V ⊂ U an open
subset with piecewise smooth boundary. ∀x ∈ V denote by V (x) the connected
component of V that contains x. We say that V is n-admissible for some
n ≥ 0, if Fn is smooth on V and ∀x ∈ V the u-manifold FnV (x) is admissible.
Finally we define a function rV,n(x) on V by

rV,n(x) = dFnV (x)(F
nx, ∂FnV (x))

It will be important to control the size of u-manifolds (at least on the average)
when iterating them forward by F . This was done previously in the literature.
Here we just recall the necessary definitions and results. For the proofs the
reader should take a look at [6] and/or [7].
For any δ > 0 denote by Uδ the δ-neighborhood of the closed set S.

Definition 3.2. Let δ > 0 and W be an admissable u-manifold. Two sequences
of open subsets W = W 1

0 ⊃W 1
1 ⊃W 1

2 ⊃ . . . and W 0
n ⊂W 1

n \W 1
n+1, n ≥ 0, are

said to make a δ-filtration of W if ∀n ≥ 0

• the sets W 1
n and W 0

n are n-admissable subsets of W ,

• mW (W 1
n \ (W 1

n+1 ∪W 0
n)) = 0,

• FnW 1
n+1 ∩ UδΛ−n = ∅ and FnW 0

n ⊂ UδΛ−n .

We put w1
n = mW (W 1

n), w0
n = mW (W 0

n) and W 1
∞ = ∩n≥0W

1
n .

Remark 3.3. In [6] this was called a refined u-filtration and the δ → 0 limit
case gives back the so called admissible u-filtration of W . We will refer to this
later one as the 0-filtration of W . The reader should imagine a δ-filtration of
W as follows. Take the n-th image Fn(W ) and consider those points that lie
closer to a singularity than δΛ−n exactly at this iterate (i.e. not for any i < n).
Basically the preimage of these points form the set W 0

n . Then remove the union
of the closures of W 0

i ’s, i = 0, . . . , n, from W and dice the remaining set with a
specially (i.e. in some sense optimally) chosen δ0/

√
du-grid of du−1 dimensional

hyperplanes. In this way we ensure that the diameter of the connected compo-
nents in Fn(W 1

n) will not increase δ0, so they remain admissible u-manifolds.
Note also that for a δ-filtration, a stable disk W s

δ (x) of radius δ exists at every
point x ∈W 1

∞.

The following is proved in [6], see the proof of Theorem 2.1 and Theorem
4.1.

Theorem 3.4. Let W be an admissable u-manifold and δ > 0. There are con-
stants α ∈ (0, 1) and β,C ′ > 0 and there is a δ-filtration of W such that

1. ∀n ≥ 1 and ∀ε > 0 we have

mW (rW 1
n,n

< ε) ≤ (αΛ)n·mW (rW,0 < ε/Λn)+εβδ−1
0 (1+α+· · ·+αn−1)mW (W )

2. ∀n ≥ 0 and ε > 0

mW (rW 0
n,n

< ε) ≤ (3K0 + 1) ·mW (rW 1
n,n

< ε)
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3. and
mW (W 0

n) ≤ mW (rW 0
n,n

< C ′δΛ−n)

These results are often formulated in a somewhat weaker form (just as in
the given references) with the help of the following function.

Definition 3.5. Let W be an admissible u-manifold and V ⊂W an n-admissible
open subset. We set

Z[W,V, n] := sup
ε>0

mW (x ∈ V : rV,n(x) < ε)

ε ·mW (W )

A brief description of the geometrical meaning and a certain characterization
of the value of the Z-function can be found in [6, 7].
We also recall basic consequences of Theorem 3.4 that already appeared in
[6, Corollary 4.3]. For a δ2-filtration of an admissible u-manifold W (δ2 to be
specified later) we introduce the following notations:

Z1
n = Z[W,W 1

n , n] Z0
n = Z[W,W 0

n , n]

Corollary 3.6. Let β̄ = 2β/(1 − α), δ1 ≤ δ0/(2β̄), a = −(lnα)−1 and b =
max{0, a ln[δ0(1− α)/β]}. Further let Z̄0 = max{Z0, β̄/δ0}. Then

1. Z1
n ≤ Z̄0 and Z0

n ≤ (3K0 + 1)Z̄0 for all n ≥ 0,

2. Z1
n ≤ β̄/δ0 = (2δ1)−1 for all n ≥ a lnZ0 + b,

3. w0
n ≤ C ′′Z̄0δ2Λ−n for all n ≥ 0, where C ′′ = (3K0 + 1)C ′,

4. w1
n ≥ 1− C ′′Z̄0δ2/(1− Λ−1) for all n ≥ 1.

With the help of these results one can construct special sets (called rectangles
in the literature), which we will also need in our later arguments. These are
products of two Cantor-like sets. We include the steps of the construction here,
as it is done in [7, Section 4].
Choose our parameter δ0 and hence δ1 (along with the previous restrictions) to
be so small that ∃x0 ∈M such that the local unstable manifold Wu

δ1
(x0) (a du-

dimensional disk around x0 with radius δ1 is the inner metric of the manifold)
exists. Consider its “central part” Wu

δ1/3
(x0) (which is a perfect ball in its own

metric) and note that according to its bounded curvature (and the sufficiently
small value of δ1) we have

Z[Wu
δ1/3

(x0),Wu
δ1/3

(x0), 0] ≤ 4du/δ1 (3.1)

Now we set the value of δ2 by the relation

δ2
δ1

=
1− Λ−1

40C ′′du
(3.2)

From the previous observation on the Z-function and from part 4 of Corollary 3.6
it follows that there is a δ2-filtration of Wu

δ1/3
(x0) such that mWu

δ1/3
(x0)(W

1
∞) ≥

0.9 · mWu
δ1/3

(x0)(W
u
δ1/3

(x0)). This means that for, at least, 90% of the points

x ∈Wu
δ1/3

(x0) (with respect to the Lebesgue measure on Wu
δ1/3

(x0)) the stable
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disk W s
δ2

(x) exists. Now we basically consider all intersections of these stable
disks and unstable manifolds that are close to Wu

δ1/3
(x0) in a sense we describe

below (as in [7, Section 4]).
Let x ∈M and r ∈ (0, δ0). We denote by Sr(x) any s-manifold that is a ball of
radius r around x in its own metric (note that this is not a unique object) and
call it an s-disk. In order to define s-disks also around points close to ∂M we
extend the cone field Cs continuously beyond ∂M into the δ0-neighborhood of
M.
Let W be an admissible u-manifold and x ∈ M. Since δ0 is small enough any
s-disk Sδ0(x) can meet W in at most one point. We call

Hx(W ) = {y ∈W |y = Sδ0(x) ∩W for some Sδ0(x)}

the s-shadow of x on W . We say that a point x ∈ M is overshadowed by
the u-manifold W if ∀Sδ0(x) we have Sδ0(x) ∩W 6= ∅. In this case, of course,
d(x,W ) ≤ δ0. We call

ds(x,W ) = sup
Sδ0 (x)

dSδ0 (x)(x, Sδ0(x) ∩W )

the s-distance from x to W . Let W and W ′ be two admissible u-manifolds. We
call

HW (W ′) = ∪x∈WHx(W ′)

the s-shadow of W on W ′. We say that W ′ overshadows W if it overshadows
every point of W . In this case we define

ds(W,W ′) = sup
x∈W

ds(x,W ′)

the s-distance from W to W ′. It is not symmetric because no two u-manifolds
can simultaneously overshadow each other. Geometrically W ′ overshadows W
if W is close to W ′ and W ′ stretches all the way along W and a little beyond
it. We go into details in the next lemma.

Lemma 3.7. Let x and y be two closeby points in the phase space (d(x, y)� δ0)
and let W1 and W2 be two u-manifolds containing x and y respectively. We claim
two things:

1. for a fixed R > 0 the ball B1(x, ρ) ⊆ W1 overshadows the ball B2(y,R) ⊆
W2 as long as ρ ≥ 2

Ct
(R+ d(x, y)),

2. in addition if originally for some r < R the ball B1(x, r) ⊆ W1 was over-
shadowed by B2(y,R) ⊆ W2 with s-distance ds(B1(x, r), B2(y,R)) ≤ δ
(with some small δ > 0), then ds(B2(y,R), B1(x, ρ)) ≤ 2( 2R

Ctr
+ 1)δ,

where Ct is the constant defined by (2.1).

Proof. Proof of claim 1.
Since both families of cones are continuous on M̄ it is clear that if x and y
are close to each other, then the cones Cux and Csy are still transversal and the
sine of the minimum angle between them is just slightly different from Ct. The
uniform curvature bound (2.2) implies that it is actually enough to prove the
statement for u-manifolds that are subsets of du-dimensional hyperplanes in Rd.
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So let TyW2 and TxW1 be du-dimensional affine hyperplanes containing W2 and
W1 respectively. Choose a point y′ ∈ TyW2 such that d(y, y′) ≤ R and let Ty′S
be a ds-dimensional affine hyperplane through y′ contained in the stable cone
Csy′ . Consider the parallel translation of TxW1 at y′ and denote it by Ty′W1.
By transversality of the cones Cux and Csy′ we have that Ty′W1 ⊕ Ty′S = Ty′M
and hence Ty′S will have a unique intersection with TxW1 we denote it by z.
Now we have to estimate d(x, z). To this end we introduce the vectors b = y−x
and v = y′− y and denote their decompositions in Ty′W1⊕Ty′S by bu + bs and
vu + vs respectively. Observe that then d(x, z) ≤ ‖vu‖+ ‖bu‖. These norms can
be estimated in the same way, for example for ‖vu‖ choose a unit vector vs⊥ in
the plane spanned by vu and vs, which is orthogonal to vs. Then calculating
the scalar product of this and v leads to 〈v, vs⊥〉 = 〈vu, vs⊥〉 and hence

‖vu‖ =
‖v‖ · cos∠(v, vs⊥)

cos∠(vu, vs⊥)
.

Here ‖v‖ is of course at most R and the denominator can be estimated from
below by Ct, so ‖vu‖ ≤ R

Ct
. Similar estimate holds for the norm ‖bu‖ except

that in that case ‖b‖ = d(x, y), so ‖bu‖ ≤ d(x,y)
Ct

. Therefore the combination of
the two bounds gives that

d(x, z) ≤ ‖vu‖+ ‖bu‖ ≤ 1

Ct
(R+ d(x, y)).

Since s- and u-manifolds actually have some bounded curvature we have to
somewhat increase the value of our estimate, but 2

Ct
(r+ d(x, y)) will be enough

provided that our δ0 is sufficiently small.
Proof of claim 2.
We continue using the notations introduced above and the flatness assumption
on the u-manifolds. We want to give an upper bound on d(y′, z) using the
shadowing assumption we made. Denote by e the (1-dimensional) line connecting
x and z and let e∩∂B1(x, r) = {m1,m2}, where m1 is further away from z than
m2. Consider the parallel translation of Ty′S at m1. Due to our assumption
on shadowing we know that the intersection p1 := Tm1S ∩ B2(y,R) exists and
‖p1 −m1‖ ≤ δ. We introduce q1 := m2 + (p1 − m1) and also p2 := Tm2

S ∩
B2(y,R). It is evident that ‖q1 − p1‖ = 2r and by our knowledge on the s-
distance ‖q1 − p2‖ ≤ ‖q1 −m2‖+ ‖m2 − p2‖ ≤ 2δ. From these it follows that

sin∠(p2 − p1, q1 − p1)

sin∠(p1 − p2, q1 − p2)
=
‖p2 − q1‖
‖p1 − q1‖

≤ δ

r
(3.3)

and hence sin∠(p2 − p1, q1 − p1) ≤ δ
r .

The final (we promise!) point to introduce is q2 := z + p1 − m1. It is evident
that p1, q1 and q2 are on the same 1-dimensional line, namely on the line e
translated by the vector p1−m1. From this it also follows that p1, p2 and y′ are
collinear too and hence the angles ∠(y′ − p1, q2 − p1) and ∠(p2 − p1, q1 − p1)
are the same. The estimate goes on as ‖y′ − z‖ ≤ ‖y′ − q2‖ + ‖q2 − z‖, where
‖q2 − z‖ = ‖m1 − p1‖ ≤ δ as we saw earlier and for the first term we use our
observation on the angles to conclude that

‖y′ − q2‖
‖y′ − p1‖

=
sin∠(p2 − p1, q1 − p1)

sin∠(p1 − y′, q2 − y′)
.

11



Then using that ‖y′ − p1‖ ≤ 2R, the estimate (3.3) and the uniform transver-
sality of stable and unstable cones we get that

‖y′ − q2‖ ≤
2Rδ

Ctr
,

which then implies ‖y′ − z‖ ≤ ( 2R
Ctr

+ 1)δ. Since s- and u-manifolds actually
have some bounded curvature we have to somewhat increase the value of our
estimate, but 2( 2R

Ctr
+ 1)δ will be enough provided that our δ0 is sufficiently

small.

To have uniform control on the size of a rectangle in the stable direction we
choose a small parameter δ3 as

δ3 ≤ min{csδ2, δ2/3, δ1/120}, (3.4)

where cs is a constant depending on Λ and Ct (we will make this dependence
explicit in subsection 5.3).

!!!Inner Comment!!! 3.8. A téglák defińıciójának módośıtása esetén felül kell
vizsgálni cs értékét!

We remark that δ3 ≤ δ2/3 together with (3.2) actually implies that δ3 ≤
δ1/120 so we just included this here for convenience. After this we give the
definition of a rectangle and a corresponding set called a magnet together with
notions we will frequently use in the rest of the paper.

!!!Inner Comment!!! 3.9. Ha az átmetszési lemma bizonýıtását az új megközeĺıtés
szerint csináljuk (Lai-Sang) érvelését követve, akkor innen kihagyható egy-két
dolog. Nincs szükség például a bezoomolós szövegre, vagyis fölösleges bevezetni
az rw paramétereket és az ezzel kapcsolatos plusz követelményeket.

Definition 3.10. For an admissible u-manifold W the magnet σW and the
adapted rectangle RW are defined through the following steps. In our applications
it will always be assumed that W contains a ball BW (x,R) of radius R ≥ δ1 for
some x ∈ W . We will use the expression that σW and RW are built on the
u-manifold W . Take BW (x, δ1/3), the central part of the mentioned ball, and
consider a δ2-filtration of it. This results in a set W 1

∞, such that ∀y ∈ W 1
∞

the stable disk W s
δ2

(y) exists and the Lebesgue measure of W 1
∞ is at least 0.9

times the Lebesgue measure of BW (x, δ1/3) (as we described after (3.2)). We
use the Lebesgue density theorem to choose a density point y0 of the set W 1

∞
and a radius rW such that BW (y0, rW ) ∩W 1

∞ has positive Lebesgue measure.
We define the magnet σW as

σW = {W s
δ2(x)|x ∈W 1

∞ ∩BW (y0, rW )}

and we will call the ball BW (y0, rW ) the base of σW (and also the base of
the rectangle RW yet to be defined). Finally we define the rectangle RW as
follows: y ∈ RW iff y = W s

δ2
(x) ∩ Wu for some x ∈ W 1

∞ ∩ BW (y0, rW ) and
for some local unstable manifold Wu with the following property. The unstable
manifold Wu must contain a du-dimensional ball BWu(z, 4rW ) for some point
z ∈ Wu such that the center of it BWu(z, 2rW ) overshadows the base of the
magnet BW (y0, rW ) with s-distance ds(BW (y0, rW ), BWu(z, 2rW )) ≤ δ3, where
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δ3 satisfies (3.4). We will use the expression that such a Wu is a building block
of RW and we will refer to rW as the unstable- and to δ3 as the stable size
of the rectangle RW .

Remark 3.11. Note that we have a considerable flexibility in choosing the pa-
rameters in the previous definition, in particular we have very little restrictions
on the unstable size rW . To have a better understanding of the structure of
the rectangle RW we emphasize that local unstable manifolds are unique, so the
Wu’s do not intersect each other, but some may (and do) intersect W since it
is only assumed to be a u-manifold. This also shows that points of W are not
necessarily points of RW .

Now we turn on investigating the properties of standard pairs and their
iterates by the map F . The first important observation is that the class of
standard pairs is invariant under F in the following sense:

Proposition 3.12. Let (W, ν) be a standard pair. For each n ≥ 0, denote by
Wi,n the connected components of Fn(W ). Then Fn(ν) =

∑
i

ci,nνi,n, where∑
i

ci,n = 1 and each (Wi,n, νi,n) is a standard pair.

Proof. The proof is a slight modification of the proof of [8, Proposition 3.1].
By induction it is enough to prove the statement for n = 1. U-manifolds are
expanded under the action of F so it may happen that a connected component
of the image F (W ) is not admissible since its diameter exceeds δ0 (but this
can be the only reason for that). We can artificially chop such components into
admissible u-manifolds, this is actually done in the construction of a 0-filtration
of W (cf. Remark 3.3 and the lines after that). So what really needs to be proven
is that the regularity of the density is kept.
Consider a connected component Wi,1 of F (W ) and let x, y ∈ Wi,1. Denote by
ρi,1 the density of νi,1 and by x1 = F−1(x) and y1 = F−1(y) the preimages of
the points. Then obviously s+(x, y) = s+(x1, y1)− 1. Using the bound (2.3) on
distortions and (2.4) one can conclude that

| ln ρi,1(x)− ln ρi,1(y)| ≤ | ln ρ(x1)− ln ρ(y1)|+
+ | ln(JWF−1)(x)− ln(JWF−1)(y)| ≤

≤ Crθs+(x1,y1)
h + C ′d(x, y) ≤

≤ Crθhθs+(x,y)
h + Cθ

s+(x,y)
h

(3.5)

for some constant C > 0. Thus it is enough to assume that Cr is so large that
Crθh + C ≤ Cr.

Remark 3.13. Note that (3.5) describes the process how densities regularize.
Imagine that W is an admissible u-manifold and ν is a probability measure on

it with density ρ(x) such that | ln ρ(x) − ln ρ(y)| ≤ C0θ
s+(x,y)
h with C0 > Cr.

That is (W, ν) is almost a standard pair, the only issue is that the density is not
regular enough. Then an argument similar to (3.5) shows that

| ln ρn(x)− ln ρn(y)| ≤ (C0 · θnh + C)θ
s+(x,y)
h ,

where ρn is the n-th image of the density ρ and the points x, y are assumed to
be in a connected component of the image Fn(W ). Clearly if n is large enough
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then (C0 · θn + C) ≤ Cr holds and so at that time the image of (W, ν) becomes
a standard family.

With the more general definition of standard families (Definition 2.5) Propo-
sition 3.12 says that Fn transforms a standard pair into a finite standard family
whose factor measure is defined by the sequence of the coefficients {ci,n}. Sim-
ilarly, any standard family G is mapped by Fn into another standard family
Gn = Fn(G). It is easy to see that µGn = Fn(µG).

Definition 3.14. For any standard family G = {(Wi, νi)}, i ∈ I we define two
functions. For every i ∈ I and x ∈Wi we introduce

rG(x) := dWi
(x, ∂Wi)

(cf. our notation introduced in Definition 3.1) which is a function on ∪iWi.
Using this notation we define the key tool (which is an extension of the Z-
function from Definition 3.5) in the control of the sizes of u-manifolds.

ZG := sup
ε>0

µG(x : rG(x) < ε)

ε

The value of ZG measures the size of the standard family G in the following
sense. If ZG ≤ C0, then for every ε > 0 the µG measure of those points that lie
closer than ε to the boundary ∂ ∪iWi is at most C0 · ε. So if ε is small then the
measure of those points x ∈ ∪iWi such that the du-dimensional ball in Wi(x),
with radius ε centered at x is contained in Wi, is large (can be made arbitrarily
close to 1 by choosing ε small enough).
The growth of u-manifolds in standard families under the iteration of F is
formulated in the following sense, which is a consequence of the first part of
Theorem 3.4.

Lemma 3.15. [Growth lemma] Let G = {(Wi, νi)}, i ∈ I, be a standard family
and Gn = Fn(G). Then for all n ≥ 0 and ε > 0 we have ZGn ≤ c1αnZG + c2 for
some constants ci = ci(F ) > 0, i = 1, 2.

Proof. Using that the measures on standard pairs are uniformly equivalent to
Lebesgue, one can adapt the first statement of Theorem 3.4 with 0-filtrations
on Wi’s and for the measures νi. Then integrating with respect to the factor
measure and taking the supremum in ε gives the lemma with c1 = e2Crθh and
c2 = 1

δ0
(eCrθhβ 1

1−α ).

Corollary 3.16. For all n ≥ χ lnZG we have ZGn ≤ c3 for some constants
χ, c3 > 0.

Now we comment on how ZGn measures the size of the standard family Gn.

Definition 3.17. We call a standard pair (W, ν) δ1-proper if there is a point
x ∈W such that within W there exists a ball around x with radius δ1.

Corollary 3.16 tells that after a certain number of iterations, depending only
on ZG , i.e. the initial size of the family, the value of ZGn drops below a fixed
constant c3. This means that Gn will be large in the following sense. If we set
the value of our parameter δ1 as

δ1 ≤ min{δ0/(2β̄), 1/(2c3)} (3.6)
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(so it still satisfies our previous restriction on δ1 in Corollary 3.6) then for every
n ≥ χ lnZG the µGn -measure of those points around which exists a ball of
radius δ1 in the u-manifolds from Gn is at least 1/2. Alternatively the overall
µGn-measure of u-manifolds of δ1-proper standard pairs in Gn is at least 1/2. To
eliminate the dependence on the initial size we introduce the following notion.

Definition 3.18. A standard family G is said to be proper if ZG ≤ Cp, where
Cp is a sufficiently large (Cp > c3) fixed constant.

Remark 3.19. It follows from the lines of [6, Section 3] that the partition ξu∞
of M into maximal unstable manifolds with the conditional SRB-measures on
them and the factor measure induced by µ forms an F invariant, proper standard
family (provided that we choose Cp large enough).

!!!Inner Comment!!! 3.20. Az egész holonómı́ás fejezetben megfontolható a
tömöŕıtés, pl. Lemma 4.4 bizonýıtásában vagy később a Gram-Scmidt-es érvelésnél.
Ezek talán túl részletesek, kevesebb indoklás is elég lehet.

4 Regularity of the holonomy map

Let W1 and W2 be sufficiently small u-manifolds close to each other, so that
any local stable manifold W s intersects each of W1 and W2 in at most one point
and let W ′1 = {x ∈ W1 : W s(x) ∩W2 6= ∅}. Recall that the holonomy map
h : W ′1 → W2 is defined by sliding along stable manifolds. In this section we
prove some regularity properties of the holonomy map, which we need later for
the coupling. We start by recalling a well known result (see [1, 13] for example
or [10, Theorem 5.39]).

Proposition 4.1. The Jacobian of the holonomy map can be expressed as fol-
lows.

(JW1h)(x) = lim
n→∞

(JW1
Fn)(x)

(JW2
Fn)(h(x))

= lim
n→∞

n−1∏
i=0

(JW i
1
F )(xi)

(JW i
2
F )(h(xi))

Here we used the notations xi = F i(x) and W i
1,2 = F i(W1,2).

We first investigate the tail behaviour of this infinite product. The argument
goes through a number of lemmas. Then we will use the result together with
further estimates to derive two things: the dependence of the Jacobian of the
holonomy map on the initial geometry and that ln(JW1

h)(x) is dynamically
Hölder continuous on its domain.

Lemma 4.2. There are constants C > 0, N0 ≥ 0 and θ ∈ (0, 1), such that∣∣∣∣∣
∞∑
i=n

ln(JW i
1
F )(xi)− ln(JW i

2
F )(h(xi))

∣∣∣∣∣ ≤ C · θn
for all n ≥ N0.

Proof. Note that we need to compare the unstable Jacobian in two different
points of a stable manifold. We would like to use the regularity of the total
Jacobian and also the distortion bound on the inverse dynamics to establish the
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desired estimate. To this end we have to find the connection between the total
Jacobian and the Jacobian of the dynamics when restricted to u-manifolds or
stable manifolds. This is the purpose of the next lemma.

Lemma 4.3. Let W be a u-manifold and Ws be a stable manifold, both contain-
ing the point x. We claim that there is an explicitely computable constant C(x)
(that we will calculate), such that (JMF )(x) = C(x) · (JWF )(x) · (JWsF )(x).

Proof. Let {ei(x)}dui=1 and {f
j
(x)}dsj=1 be orthonormal bases in TxW and in

Esx(= TxW
s) respectively. By arranging these vectors into columns we get the

matrices Ou(x) and Os(x) with dimensions d× du and d× ds. We iterate these
column vectors forward by the tangent map and get ui = DxF (ei(x)) and
sj = DxF (f

j
(x)) forming the matrices U and S in a similar way as before.

Now choose again orthonormal bases, but this time in the forward iterates of
the previous manifolds, i.e. {ei(F (x))}dui=1 and {f

j
(F (x))}dsj=1 in TF (x)F (W )

and in EsF (x) respectively. Let these vectors be the columns of the matrices

Ou(F (x)) and Os(F (x)). Then there exist matrices A and B with dimensions
du × du and ds × ds such that UT = A · OTu (F (x)) and ST = B · OTs (F (x)).

Now on the one hand (JWF )(x) =
√

detUTU =
√

detAAT and (JWs
F )(x) =√

detSTS =
√

detBBT . On the other hand the total Jacobian of F is the
volume spanned by the vectors ui and sj divided by the volume spanned by the
vectors ei(x) and f

j
(x). Here the square of the numerator can be calculated as

det
(
(U ||S)T · (U ||S)

)
, where || denotes concatenation. This can be expanded as

det

(
UTU UTS
STU STS

)
= det

(
AAT AOTu (F (x))Os(F (x))BT

BOTs (F (x))Ou(F (x))AT BBT

)
= det(AAT ) · det(BBT −BOTs (F (x))Ou(F (x))AT (AAT )−1AOTu (F (x))Os(F (x))BT )

= det(AAT ) · det(BBT −BOTs (F (x))Ou(F (x))OTu (F (x))Os(F (x))BT )

= det(AAT ) · det(BBT ) · det(Idds − (OTs (F (x))Ou(F (x)))(OTs (F (x))Ou(F (x)))T )

(4.1)

Observe that the square of the denominator can be calculated in the same way
by replacing F (x) with x and also A and B with identity matrices of the corre-
sponding sizes. Let us use the notation Ψ(x) = (OTs (x)Ou(x))(OTs (x)Ou(x))T .
Then the connection between the Jacobians is the following.

((JMF )(x))2 =
((JWF )(x))2 · ((JWs

F )(x))2 · det(Idds −Ψ(F (x)))

det(Idds −Ψ(x))

hence

C(x) =

√
det(Idds −Ψ(F (x)))

det(Idds −Ψ(x))

Now consider the logarithm of one term in Proposition 4.1, which is a dif-
ference of the unstable Jacobians along a stable manifold. With the help of the
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previous lemma we can rewrite it as

ln(JWn
1
F )(xn)− ln(JWn

2
F )(h(xn)) = ln(JMF )(xn)− ln(JMF )(h(xn))+

+ln(JWn
s
F )(h(xn))−ln(JWn

s
F )(xn)+

1

2
(ln det(Idds−Ψ(F (h(xn))))−ln det(Idds−Ψ(F (xn))))+

+
1

2
(ln det(Idds −Ψ(xn))− ln det(Idds −Ψ(h(xn)))) (4.2)

The first difference here in absolute value is less than const · d(xn, h(xn)) =
const·Λ−n because the map F is assumed to be piecewise C2, so its total jacobian
is C1 and the points xn and h(xn) are in the same smoothness component for
any n ≥ 0. For the second difference remember that we will have to sum up these
in n. So first do the summation in n from N0 to∞ and then apply the distortion
bound on the inverse dynamics to conclude that the absolute value of the whole
sum of these differences is less than const·dWs(xN0 , h(xN0)) = const·Λ−N0 . The
remaining terms will require a bit more work, however note that when summing
them up again from N0 to ∞ telescopic cancellations occur turning the whole
sum into

1

2
(ln det(Idds −Ψ(xN0

))− ln det(Idds −Ψ(h(xN0
))))−

− lim
n→∞

1

2
(ln det(Idds −Ψ(h(xn)))− ln det(Idds −Ψ(xn))) (4.3)

In the following we show that there exists a θ ∈ (0, 1), such that for all large
enough n

| ln det(Idds −Ψ(xn))− ln det(Idds −Ψ(h(xn)))| ≤ C · θ−n

hence the limit above exists, is zero and the whole difference can be estimated
as C · θ−N0 .
First, to conclude that the regularity of this difference is the same as the regu-
larity of the elements of Ψ(x), we will show that the determinants are bounded
away from 0.

Lemma 4.4. There is a uniform constant C > 0, such that det(Idds −Ψ(x)) >
C for all x.

Proof. Recall that Ψ(x)i,j =
du∑
k=1

〈
f
i
(x), ek(x)

〉〈
f
j
(x), ek(x)

〉
, i.e. Ψ(x) is a

Gram matrix, therefore it has only nonnegative eigenvalues. Also note that
Ψ(x) is a symmetric matrix, hence its largest eigenvalue is max

v:‖v‖=1

∣∣vTΨ(x)v
∣∣.

By the definition of Ψ(x) this last expression is nothing but
∥∥OTu (x)Os(x)v

∥∥.

Let v be any vector of unit length in Esx with coordinates {vk}dsk=1 in the basis

{f
k
(x)}dsk=1. Then (OTu (x)Os(x)v)i =

ds∑
k=1

〈
f
k
(x), ei(x)

〉
vk. So the length of the

vectorOTu (x)Os(x)v is equal to the length of the vector
du∑
i=1

ds∑
k=1

vk

〈
f
k
(x), ei(x)

〉
ei(x).

But this last one is the orthogonal projection of the unit vector
ds∑
k=1

vkfk(x) onto

TxW , which – by uniform transversality of stable and unstable cones – has length
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at most C0 < 1. This means that all eigenvalues of Ψ(x) are uniformly less than
1, which proves our statement.

Note that the quantity C(x) in Lemma 4.3 involves all the geometric re-
lations between the considered tangent spaces and it does not depend on the
actual choice of any of the previous bases. Therefore we are free to choose these
bases according to our needs.
In view of how the elements of Ψ(x) look like, it is enough to discuss the reg-

ularity of the scalar products
〈
ei(x), f

j
(x)
〉

. Identify the tangent spaces in xn

and h(xn) by parallel translation and then consider the difference

|〈ei(xn), f
j
(xn)〉 − 〈ei(h(xn)), f

j
(h(xn))〉| ≤

≤ |〈ei(xn), f
j
(xn)− f

j
(h(xn))〉|+ |〈ei(xn)− ei(h(xn)), f

j
(h(xn))〉| (4.4)

Since the curvature of stable manifolds is bounded by a global constant ((2.2)
holds for the inverse dynamics too) the first term can be estimated as∥∥∥f

j
(xn)− f

j
(h(xn))

∥∥∥ ≤ C · d(xn, h(xn)) ≤ C ′ · Λ−n.

Now to estimate the second term in (4.4) use that it is less than or equal to
‖ei(xn)− ei(h(xn))‖. Choose an orthonormal basis {eni }

du
i=1 in TxnW

n
1 . Iterating

this k steps backwards (k is to be chosen later) by the tangent map DxnF
−k

gives the linearly independent vectors {en−ki }dui=1 in Txn−kW
n−k
1 . At the point

h(xn−k) identify the origins of Th(xn−k)M and Txn−kM to make sense of the

vectors {en−ki }dui=1 in the first tangent space. By uniform transversality of stable
and unstable cones we have that Th(xn−k)M = Th(xn−k)W

n−k
2 ⊕Esh(xn−k), hence

each en−ki can be uniquely decomposed as vi+si with vectors from the previous
subspaces. Note that if i 6= j then vi 6= vj either, because otherwise en−ki −en−kj

would lie in Esh(xn−k) and in Txn−kW
n−k
1 at the same time. This is of course

impossible since these subspaces are transversal.
Now consider the vectors Dh(xn−k)F

kvi. In the rest of the proof we will show
that these vectors are close to form an orthonormal basis in Th(xn)W

n
2 and also

that after the necessary corrections the resulting basis vectors are close to the
corresponding basis vectors in TxnW

n
1 . We consider the deviation∥∥Dh(xn−k)F

kvi − eni
∥∥ ≤

≤
∥∥Dh(xn−k)F

kvi −Dh(xn−k)F
ken−ki

∥∥+
∥∥Dh(xn−k)F

ken−ki − eni
∥∥ =

=
∥∥Dh(xn−k)F

ksi
∥∥+

∥∥Dh(xn−k)F
ken−ki −Dxn−kF

ken−ki

∥∥ (4.5)

First of all the length of eni is 1 by definition, so due to uniform hyperbolicity∥∥en−ki

∥∥ ≤ Λ−k. Then by the uniform transversality of stable and unstable cones
we know that there is a constant C0 such that ‖si‖ ≤ C0 · Λ−k. Since si is
a vector in Esh(xn−k) it gets contracted exponentially under the action of the

tangent map, so the first term in (4.5) is less than C0 · Λ−2k.
To estimate the second term we will use the C2 regularity of the dynamics. Due
to this there are positive constants C1 and C2 such that for all x and y, which
are in the same smoothness component of F

‖DxF‖ ≤ C1 and ‖DxFe−DyFe‖ ≤ C2 · d(x, y) (4.6)
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where e is an arbitrary unit vector. Using the additional information that in
our case en−ki is an unstable vector of length at most Λ−k and the points xn−k
and h(xn−k) are on the same stable manifold by definition of h with distance
at most C · Λ−(n−k), we have the estimate

∥∥Dh(xn−k)F
ken−ki −Dxn−kF

ken−ki

∥∥ ≤ Ck1 − 1

C1 − 1
C2 · C · Λ−n (4.7)

Hence we can estimate the deviation in (4.5) as

∥∥Dh(xn−k)F
kvi − eni

∥∥ ≤ C0 · Λ−2k +
Ck1 − 1

C1 − 1
C2 · C · Λ−n <

< C0 · Λ−2k +B · Λ−n · Ck1 (4.8)

where B = C2·C
C1−1 . Now we choose k for this bound to be optimal, which turns

out to be k =
ln(

C0 ln Λ2·Λn
B lnC1

)

ln(C1Λ2) . For this optimal choice of k we get the estimate

∥∥Dh(xn−k)F
kvi − eni

∥∥ ≤ Const(C,C1, C2,Λ)·Λ
− 2

2+
lnC1
ln Λ

n

= Const(C,C1, C2,Λ)·θn
(4.9)

where

θ := Λ
− 2

2+
lnC1
ln Λ ∈ (0, 1) (4.10)

In this sense our candidates vni := Dh(xn−k)F
kvi for forming an orthonormal

basis in Th(xn)W
n
2 are close to the corresponding vectors of the original basis

in TxnW
n
1 , yet they are not necessarily orthonormal. What remains is to show

that the corrections needed to make them orthonormal are small, i.e. less than
C̃ · θn for some constant C̃ > 0.
From (4.9) it follows that all vni ’s have almost unit length

| ‖vni ‖ − 1| ≤ ‖vni − eni ‖ ≤ C · θn (4.11)

A combination of (4.9) and (4.11) shows that for all i 6= j the vectors vni and
vnj (after normalization) are almost perpendicular

1

‖vni ‖
∥∥vnj ∥∥ | 〈vni , vnj 〉 | ≤ ‖v

n
i − eni ‖
‖vni ‖

+

∥∥vnj − enj ∥∥
‖vni ‖

∥∥vnj ∥∥ ≤
≤ C · θn

1− C · θn
+

C · θn

(1− C · θn)2
≤ C̃ · θn (4.12)

provided that n is large enough.
We proceed with Gram-Schmidt orthogonalization to construct an orthonormal
basis in Th(xn)W

n
2 from the vni ’s. To guarantee that the resulting vectors differ

from the corresponding basis vectors in TxnW
n
1 by vectors with length at most

const·θn it is enough to check that at each step of the orthogonalization the cor-
rection needed has length at most const · θn. First define w1

i ’s to be the normal-
ized versions of the vectors vni respectively (here the superscript of wi refers to
the first step of the orthogonalization process). The normalizing corrections have
lengths at most C ·θn due to (4.11). Fix w1

1 to be the first vector of the orthonor-
mal basis being constructed, then define w2

i = w1
i−
〈
w1
i , w

1
1

〉
w1

1 for i = 2, . . . , du.
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These are perpendicular to w1
1 and the corrections needed to ensure this have

lengths at most C̃ · θn due to (4.12). Then we normalize these vectors. Since∥∥w1
i −

〈
w1
i , w

1
1

〉
w1

1

∥∥2
=
∥∥w1

i

∥∥2−
∥∥〈w1

i , w
1
1

〉
w1

1

∥∥2
= 1−

〈
w1
i , w

1
1

〉2 ≥ 1− C̃2 · θ2n

again due to (4.12), the normalizing corrections have lengths at most C̃ · θn.
We may iterate this process with the remaining vectors to get the desired basis.
The only thing we have to check for this, is that the normalized vectors from
the last step are still pairwise almost perpendicular.

|
〈
w1
i −

〈
w1
i , w

1
1

〉
w1

1, w
1
j −

〈
w1
j , w

1
1

〉
w1

1

〉
| = |

〈
w1
i , w

1
j

〉
−
〈
w1
i , w

1
1

〉 〈
w1
j , w

1
1

〉
| ≤

≤ C̃ · θn + C̃2 · θ2n (4.13)

This holds for the vectors before the normalization. After normalizing them,
their scalar products can be estimated by using the lower bound on their lengths

established previously and the estimate will be C̃·θn+C̃2·θ2n

1−C̃2·θ2n
= C̃·θn

1−C̃·θn . Again if

n is sufficiently large then this is clearly at most const · θn so the iteration can
be done resulting in an orthonormal basis what we wanted.

Now we establish bounds on the Jacobian of the holonomy map in terms of
the initial geometry. More precisely we show that JW1h(x) is close to 1 if the
distance d(x, h(x)) is small and the tangent spaces of the u-manifolds W1 and
W2 are close enough in a certain sense.

Lemma 4.5. Given the u-manifolds W1 and W2 assume that their tangent
spaces are close to each other in the following sense. If e is a unit vector in
TxW1 and its parallel transport to h(x) has the decomposition e = v + s ∈
Th(x)W2 ⊕ Esh(x) then ‖s‖ ≤ δ for some δ > 0 small number. We claim that

there are constants C̃, Ĉ > 0 and a ∈ (0, 1) such that

| ln(JW1
h)(x)| ≤ C̃ · d(x, h(x))a + Ĉ · δ.

Proof. Recall that we had the infinite sum representation of the Jacobian

| ln(JW1h)(x)| =

∣∣∣∣∣
∞∑
i=0

ln(JW i
1
F )(xi)− ln(JW i

2
F )(h(xi))

∣∣∣∣∣ ,
and that each difference can be rewritten in terms of the total Jacobian, the
Jacobian along stable manifolds and another term (which we denoted by C(x))
containing the geometric relations (cf. Lemma 4.3).

!!!Inner Comment!!! 4.6. A következő mondat csúsztat egy kicsit. Az álĺıtás
ugyan igaz, de ahová hivatkozunk ott nincs igazán léırva.

We have already showed in the proof of Lemma 4.2 that the whole sum of
the differences of the total Jacobian and the Jacobian restricted to the stable
manifold is bounded by C · d(x, h(x)) for some constant C > 0. Hence it is
enough to give the bound on the differences lnC(x)− lnC(h(x)). Again by our
results from Lemma 4.2 it is enough to estimate the sum

∞∑
n=0

‖ei(xn)− ei(h(xn))‖ ,
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where {ei(xn)}dui=1 is a parallel translation of an orthonormal basis in TxnW
n
1 to

h(xn) and {ei(h(xn))}dui=1 is an orthonormal basis in Th(xn)W
n
2 . As previously,

we are free to choose these bases according to our needs. Take a unit vector
e ∈ TxW1 and for a fixed n > 0 consider its image DxF

ne. Its parallel translate
to h(xn) can be decomposed as vn + sn ∈ Th(xn)W

n
2 ⊕ Esh(xn). If we do this

the other way around, i.e. we first take the parallel translate of e to h(x) and
then consider the image Dh(x)F

ne, we get the decomposition Dh(x)F
ne = wn+

pn ∈ Th(xn)W
n
2 ⊕ Esh(xn) (here wn = Dh(x)F

nv actually). Now we estimate the
difference

‖DxF
ne− vn‖ ≤

≤
∥∥DxF

ne−Dh(x)F
ne
∥∥+

∥∥Dh(x)F
ne−Dh(x)F

nv
∥∥+

∥∥Dh(x)F
nv − vn

∥∥ ,
(4.14)

in the order of these three terms as follows.

1. For the first term use (4.6) (the C2 regularity of the dynamics) and the
uniform contraction in the stable direction to conclude that∥∥DxF

ne−Dh(x)F
ne
∥∥ ≤ Cn−1

1 · C2d(x, h(x))
1− 1/Λn

1− 1/Λ
.

2. For the second term use our assumption on the closeness of the tangent
spaces of our u-manifolds together with the uniform contraction in the
stable direction to deduce that∥∥Dh(x)F

ne−Dh(x)F
nv
∥∥ =

∥∥Dh(x)F
ns
∥∥ ≤ δ · Λ−n.

3. For the final term we introduce the operator P : Th(xn)M → Th(xn)W
n
2 ,

which is the projection along Esh(xn) onto Th(xn)W
n
2 . By uniform transver-

sality of stable and unstable cones it follows that ‖P‖ ≤ Ct for some
constant Ct > 0 determined by the minimal angle between the conefields.
The estimate then goes similarly as for the first term.

∥∥Dh(x)F
nv − vn

∥∥ =
∥∥PDh(x)F

ne− PDxF
ne
∥∥ ≤ CtCn−1

1 ·C2d(x, h(x))
1− 1/Λn

1− 1/Λ
.

The vector e has length 1 so due to the uniform expansion ‖DxF
ne‖ ≥ Λn and

therefore we get that∥∥∥∥ DxF
ne

‖DxFne‖
− vn

‖DxFne‖

∥∥∥∥ ≤ (Ct + 1)C2
1

Λ− 1

(
C1

Λ

)n−1

d(x, h(x)) + δ · Λ−2n.

(4.15)

Notice that e ∈ TxW1 was an arbitrary unit vector, so every unit vector from
TxnW

n
1 differs from its projection along Esh(xn) onto Th(xn)W

n
2 by at most the

amount in (4.15). Hence, similar to our Gram-Schmidt argument at the end
of the proof of Lemma 4.2, we can find two orthonormal bases in TxnW

n
1 and

Th(xn)W
n
2 respectively, such that the difference of the corresponding basis vec-

tors is at most C4[
(
C1

Λ

)n−1
d(x, h(x)) + δ · Λ−2n], where C4 > 0 is a global
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constant. Clearly this bound gets worse as we consider higher and higher it-
erates, but recall that we have another estimate on the tail from the proof of
Lemma 4.2. This later one can be extrapolated for any n ≥ 0 and so

‖ei(xn)− ei(h(xn))‖ ≤ min{C4[

(
C1

Λ

)n−1

d(x, h(x)) + δ · Λ−2n], C3 · θn}.

To estimate this we solve the equation C4d(x, h(x))
(
C1

Λ

)n−1
= C3 · θn in n. We

denote the solution by n0 and also introduce the quantity a0 = logC1/Λ(1/θ) > 0.
A simple calculation shows that with these notations(

C1

Λ

)n0

=

(
C1C3

C4Λd(x, h(x))

)1/(1+a0)

.

Hence for any index i we have

∞∑
n=0

‖ei(xn)− ei(h(xn))‖ ≤

≤ C4δ +

n0∑
n=1

C4[

(
C1

Λ

)n−1

d(x, h(x)) + δ · Λ−2n] +

∞∑
n0+1

C3θ
n =

= C4d(x, h(x))
(C1/Λ)n0 − 1

C1/Λ− 1
+ C4δ

1− 1/Λ2(n0+1)

1− 1/Λ2
+ C3θ

n0+1 1

1− θ
≤

≤ Λ

C1 − Λ

(
C1C3

Λ

)1/(1+a0)

(C4d(x, h(x)))a0/(1+a0) + C4δ
Λ2

Λ2 − 1
+

+
Λ

C1θ(1− θ)
(C4d(x, h(x)))a0/(1+a0) =

= C̃ ′ · d(x, h(x))a + Ĉ · δ,

(4.16)

where a = a0/(1 + a0) ∈ (0, 1). This completes the proof.

We also want to understand how the value of the Jacobian of the holonomy
map varies along its domain. We note that ln(JW1h)(x) is not Hölder continuous
in general. This is because two closeby points may be separated by a singularity
of the dynamics so their futures are very different and hence their local stable
manifolds can also be very different. Due to this phenomenon the regularity
should be characterized with respect to the symbolic distance of the points.

Proposition 4.7. The logarithm of the Jacobian of the holonomy map is dy-
namically Hölder continuous, i.e. for every x, y ∈W ′1,

| ln(JW1h)(x)− ln(JW1h)(y)| ≤ C0 · θs+(x,y)
h

for some constants C0 > 0 and θh ∈ (0, 1).

Proof. To understand the regularity of the difference | ln(JW1
h)(x)−ln(JW1

h)(y)|,
again by Proposition 4.1, one has to deal with the following infinite sum.∣∣∣∣∣

∞∑
i=0

ln(JW i
1
F )(xi)− ln(JW i

1
F )(yi) + ln(JW i

2
F )(h(yi))− ln(JW i

2
F )(h(xi))

∣∣∣∣∣
(4.17)
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We will use triangular inequality to estimate the terms but we gather them
differently for small and large indices. For small values of i we consider the dif-
ferences along u-manifolds and use the distorsion bound (2.3) to estimate them.
For large values of i we consider differences along stable manifolds and use the
tail bound from Lemma 4.2 to give bounds on them.
As we pointed out before if x and y are on the same u-manifold U , then

dU (x, y) ≤ C ·Λ−s+(x,y). Choose N0 = s+(x,y)
2 . Then there is a connected compo-

nent of FN0U that contains both xN0
and yN0

, which is itself a u-manifold. Since

s+(FN0x, FN0y) = s+(x,y)
2 , we have that dFN0U (FN0x, FN0y) ≤ C · Λ−

s+(x,y)

2 .
The points x and h(x) (and also y and h(y)) are on the same stable manifold
by definition of the holonomy map and so s+(x, y) = s+(h(x), h(y)). Therefore
the same idea applies to the points h(x) and h(y), hence using the distortion
bound (2.3) allows us to estimate the first N0 terms in (4.17) to be at most

2C ′ · Λ−
s+(x,y)

2 (observe that the number of terms depends on the points x and
y). The rest of the sum is at most 2CθN0 by Lemma 4.2, with θ ∈ (0, 1) defined
by (4.10). Therefore

| ln(JW1
h)(x)− ln(JW1

h)(y)| ≤ 2C ′Λ−
s+(x,y)

2 +2Cθ
s+(x,y)

2 ≤ C0θ
s+(x,y)
h , (4.18)

where θh =
√
θ ∈ (0, 1).

5 Coupling

The heuristic argument of proving exponential decay of correlations by coupling
is quite picturesque. Starting from two standard pairs (W1, ν1) and (W2, ν2) their
forward iterates will be expanded by the dynamics and cut by the singularities.
After some steps due to our assumption (A5) certain components of Fn(W1) and
Fn(W2) will be so close to each other, that several stable manifolds intersect
both of them. The points x1 ∈ Fn(W1) and x2 ∈ Fn(W2) that lie on the
same stable manifold will stay close to each other in the future, moreover their
distance will converge to zero exponentially fast. This motivates coupling the
measures (or at least a fraction of them) they carry. To make sure that the same
amount of measure is coupled on both sides we introduce one extra (artificial)
dimension, which will be responsible to record the amount of measure being
coupled.

Definition 5.1. For each u-manifold W in a standard family we define Ŵ :=
W × [0, 1] and equip it with the probability measure ν̂ defined by dν̂(x, t) =
dν(x)dt = ρ(x)dxdt. We call then (Ŵ , ν̂) the cylindrical extension of the
standard pair (W, ν). The extension of the map F and any observable f from
W to Ŵ is done in the obvious way: F (x, t) = (F (x), t) and f(x, t) = f(x).

The rest of the paper is dedicated to prove the following key lemma.

Lemma 5.2 (Coupling lemma). Let G = {(Wi, νi)}i∈I and E = {(Wj , νj)}j∈J
be two proper standard families with measures µG and µE induced by them. Then
there exists a bijection (a coupling map) Θ : ∪i∈IŴi → ∪j∈JŴj that preserves

measure, i.e. Θ(µ̂G) = µ̂E , and a coupling time function Γ : ∪i∈IŴi → N such
that
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• if (x, t) ∈ ∪i∈IŴi, Θ(x, t) = (y, s) ∈ Ŵj for some j and m = Γ(x, t), then
the points Fm(x) and Fm(y) lie on the same stable manifold,

• there is a uniform exponential tail bound on the function Γ, i.e. we have
µ̂G((x, t) : Γ(x, t) > n) ≤ CΓθ

n
Γ for some constants CΓ > 0 and θΓ ∈ (0, 1).

This is the key lemma that implies all fine statistical properties for the class
of systems satisfying (A1)-(A5). For a list of statements and their proofs we
suggest the reader to look at [8, Section 4]. Here we include the proof of the
equidistribution property and the exponential

Proof of Theorem 2.6. As we already stated in Remark 3.19 the measurable
partition ofM into local unstable manifolds, with probability measures on them
induced by the invariant measure µ, is a proper standard family. We denote this
special, F -invariant family by E and so µE = µ. We apply the coupling lemma
to the proper families G and E to get a coupling map Θ between the two and a
corresponding coupling time Γ. Then we take a dynamically Hölder continuous
function f and consider the difference∫

M

f ◦ Fn dµG −
∫
M

f ◦ Fn dµE =

=

∫
Ĝ

f(Fn(x, t)) dµ̂G −
∫
Ê

f(Fn(y, s)) dµ̂E =

=

∫
Ĝ

[f(Fn(x, t))− f(Fn(Θ(x, t)))] dµ̂G

(5.1)

If Θ(x, t) = (y, s) and m = Γ(x, t) ≤ n, then by the first part of the coupling
lemma we know that Fn(x) and Fn(y) are on the same stable manifold and
s−(Fn(x), Fn(y)) > n −m. So using the dynamical Hölder continuity of f we
have that

|f(Fn(x, t))− f(Fn(Θ(x, t)))| ≤ Kfθ
n−m
f .

Now decompose the final integral in (5.1) by the partition Ĝ = {(x, t)|Γ(x, t) ≤
n/2} ∪ {(x, t)|Γ(x, t) > n/2}. Then (5) implies∫

{(x,t)|Γ(x,t)≤n/2}

[f(Fn(x, t))− f(Fn(Θ(x, t)))] dµ̂G ≤ Kfθ
n/2
f ,

and for the other half we have the following bound by the second part of the
coupling lemma∫

{(x,t)|Γ(x,t)>n/2}

[f(Fn(x, t))− f(Fn(Θ(x, t)))] dµ̂G ≤ 2 ‖f‖∞ CΓθ
n/2
Γ .

Proof of Theorem 2.7. We can write the function f as f+−f−, (where f+ is the
positive and f− is the negative part of f) and then decompose the correlation
of f and g into two terms. It is important to note that the relation

|f+,−(x)− f+,−(y)| ≤ |f(x)− f(y)|
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is always true, hence both f+ and f− are dynamically Hölder continuous with
the same parameters as f . This way, by paying a price of a factor of 2 at the
end, we can assume that f is nonnegative. Using the invariance of the measure
µ we can write the n-time correlation of f and g as∫

M

(f ◦ F−n/2)(g ◦ Fn/2) dµ−
∫
M

f dµ ·
∫
M

g dµ. (5.2)

As in the proof of the equidistribution property we will again use the special
standard family E = {Wu} and µE = µ. Denote by Eµ(f ◦ F−n/2|E) the condi-
tional expectation of the function f ◦F−n/2 with respect to the partition E and
the measure µ. Then we can write (5.2) as∫
M

[
(f ◦ F−n/2)− Eµ(f ◦ F−n/2|E)

]
(g ◦ Fn/2) dµ+

+

∫
M

Eµ(f ◦ F−n/2|E)(g ◦ Fn/2) dµ−
∫
M

f dµ ·
∫
M

g dµ. (5.3)

To estimate the first integral observe that if x and y are two points of a local
unstable manifold, then so are F−n/2(x) and F−n/2(y), moreover

s+(F−n/2(x), F−n/2(y)) ≥ n/2.

Since f is dynamically Hölder continuous, this implies that the oscillation of

f ◦ F−n/2 along unstable manifolds is at most Kfθ
n/2
f . Hence∫

M

[
(f ◦ F−n/2)− Eµ(f ◦ F−n/2|E)

]
(g ◦ Fn/2) dµ ≤ Kf ‖g‖∞ θ

n/2
f . (5.4)

For the remaining terms we would like to apply Theorem 2.6. To this end we
set a new standard family G to be G = {Wu}, µG �Wu= µE �Wu for every local
unstable manifold Wu and

dλG(i) =
Eµ(f ◦ F−n/2|E)(Wu

i∫
M
f dµ

dλµ(i),

i.e. we only change the factor measure of the special standard family E but keep
everything else the same. Note that we also normalized the new measure, so it is
still a probability measure. Still we can not directly apply Theorem 2.6 because
G may not be proper. We estimate ZG in the following. By definition of the new
measure we have

µG(x|r(x) < ε) ≤
‖f‖∞∫
M
f dµ

µ(x|r(x) < ε) ≤
‖f‖∞∫
M
f dµ

Cpε,

using Remark 3.19. Hence

ZG ≤
‖f‖∞∫
M
f dµ

Cp,
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which is a uniform bound so we can use the growth lemma (Lemma 3.15) to
compute the number of iterations needed for the family G to become proper.
This number is

k = logα Cp
‖f‖∞∫
M
f dµ

,

where α ∈ (0, 1) is from the growth lemma. After this we can estimate the
difference of the second and first terms from (5.3) as∫
M

Eµ(f ◦ F−n/2|E)(g ◦ Fn/2) dµ−
∫
M

f dµ ·
∫
M

g dµ =

=

∫
M

f dµ

(∫
M

g ◦ Fn/2 dµG −
∫
M

g dµ

)
=

=

∫
M

f dµ

(∫
M

g ◦ Fn/2+k dµFk(G) −
∫
M

g dµ

)
≤

≤
∫
M

f dµ ·BgΘn/2+k
g , (5.5)

because F k(G) is a proper standard family and so Theorem 2.6 can be ap-
plied. Note that Θg = (max{θg, θΓ})1/2, in particular Θg > θΓ. The coupling of
measures is heavily based on the growth of unstable manifolds characterized by
Lemma 3.15. It will actually follow from the construction that θΓ ≥ α. Therefore

Θk
g = Θlogα Cp

g Θ
logα‖f‖∞−logα

∫
f dµ

g ≤ Cp
‖f‖∞∫
M
f dµ

,

hence (5.5) is at most BgCp ‖f‖∞Θ
n/2
g . This together with (5.4) implies that∫

M

f(g ◦ Fn) dµ−
∫
M

f dµ ·
∫
M

g dµ ≤ Kf ‖g‖∞ θ
n/2
f +BgCp ‖f‖∞Θn/2

g

leading to the proof of the theorem.

!!!Inner Comment!!! 5.3. A következő alfejezetben van a legnagyobb gond,
alapvetően ezt kell helyre tenni. Itt egy kicsit több kommentet ı́rok az álĺıtásokhoz.
Az új érvelés vázlatosan valami ilyesmi:

• Minden δ1-proper u-sokaságra éṕıthető tégla. Ez kevesebb, mint Lemma
5.5, mert nem törődünk a mértékkel.

• Egyetlen egy tégláról megmutatjuk, hogy pozit́ıv mértékű (Rσ), az ehhez
tartozó stabil sokaságok uniója lesz a mágnes, σ. Ez lehet akár a korábban,
a téglák konstrukciójánál használt érvelés adaptációja.

• Kompaktsági érveléssel megoldjuk, hogy véges sok tégla “lefedje” a δ1-
proper u-sokaságokat. Ha jól értem ez maradhat Lemma 5.6 annyi változtatással,
hogy most sem beszélünk mértékekről.
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• Lai-Sang azt mondja, hogy ha a véges sok tégla uniója FR invariáns és
irreducibilis, akkor igaz az átmetszési lemma. Az FR invariancia nem is
értem, hogy hogy nem állhatna fent, viszont az irreducibilitásról még nem
tudtam meggyőzni magam teljesen...

• Feltéve, hogy idáig minden oké azt csináljuk, hogy elmondjuk az érvelést a
szorzat rendszerre. Lai-Sang-ra való hivatkozással adódik, hogy

µ× µ �Rσ×Rσ (R > n) ≤ C · θn.

Ezért elég nagy, de fix n0-ra a {0, . . . , n0} időpontokban összesen csatol-
ható mérték legalább 1 − C · θn0 =: p > 0, ı́gy van egy olyan időpont is,
amikor a csatolható mérték legalább p/n0 > 0.

• Az időpont bizonytalansága miatt a csatolási idő uniform becslésénél az
eloszlást (néhai qn) az n0 hosszúságú blokkokra kell elmondani és nem az
egyesével történő iteráltakra.

Corollary 5.9-tól az alfejezet maradhat változatlan.

5.1 Transitivity

We will use a special magnet on which the whole coupling procedure will take
place. This special magnet is σW from Definition 3.10 with the following details.
We consider an unstable manifold W that is a ball in its inner metric with radius
max{ 2

Ct
( δ13 + 4δ3), δ1} (instead of radius δ1). We build the special magnet on

this W , and we set y0 in Definition 3.10 to be the center of W (which is not
necessarily a density point of the corresponding set W 1

∞ this time, but we do
not need that here) and choose rW = δ1/3 (the rest of the parameters in the
definition remain the same). For this special magnet we will omit the subscript
W . Then, just to recall it here

σ = {W s
δ2(x)|x ∈W 1

∞ ∩BW (y0, δ1/3)}.

This will be the set on which we will couple measures of standard pairs. Ob-
viously to do so we have to guarantee that standard pairs cross σ (i.e. they
intersect all the stable disks in σ), when they are iterated forward by the dy-
namics. In case the phase space is two dimensional, this was proven by Buni-
movich, Chernov and Sinai in [2, Theorem 3.13], but for higher dimensional
systems no proof was given so far. This extension is the purpose of the present
subsection. First we introduce some notation. For any standard pair (W, ν) and
n ≥ 0 we denote by Wn

k the connected components of Fn(W ) that cross σ and
Wn
∗ := ∪kF−n(Wn

k ∩ σ) the preimage of all the intersections.

Proposition 5.4 (Transitivity). There are constants n1 ≥ 1 and d1 > 0
such that for any δ1-proper standard pair (W, ν), and for any n ≥ n1 we have
ν(Wn

∗ ) ≥ d1.

The proof will consist of several steps, in particular a compactness argument,
and uses the mixing property of the dynamics and its hyperbolicity.

Lemma 5.5. Let (W, ν) be a δ1-proper standard pair. Then there is a magnet
σW and an adapted rectangle RW , such that RW has positive µ-measure, W
crosses σW (i.e. W intersects all stable manifolds in σW ) and ν(W ∩ σW ) > 0.
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Proof. Due to our assumption there exists a point x ∈W such that dW (x, ∂W ) >
δ1. Therefore we can use the construction given in Definition 3.10 to build a mag-
net σW and an adapted rectangle RW on W . Then clearly W crosses σW and,
because ν is uniformly equivalent to mW , it also follows that ν(W ∩ σW ) > 0.
We are only left to argue that RW has positive µ-measure. Since the jacobian
of the holonomy map is uniformly bounded and arbitrarily small unstable man-
ifolds form a full µ-measure set in M, we can do a Lebesgue density argument.
We use the advantage of the flexibility of the unstable size of RW in Definition
3.10 to choose a sufficiently small rW such that µ(RW ) > 0.

Note that we can also define a rectangle adapted to our special magnet σ.
Simply consider the unstable manifold W , on which σ is built and define Rσ
as in Definition 3.10 with base BW (x, δ1/3) except that here we do not require
the Wu’s to contain some ball. For Rσ it is enough for us that the Wu’s are
unstable manifolds overshadowing the base BW (x, δ1/3) with s-distance at most
δ3. Again by a Lebesgue density argument, using also that the jacobian of the
holonomy map is uniformly bounded, one can show that µ(Rσ) > 0 provided
that δ0 is small enough.
Now we turn to the compactness argument to gain advantage of the mixing
property of the dynamics.

Lemma 5.6. There exist a finite number of positive µ-measure rectangles {Ri}Ni=1

(we denote by σi the collection of all stable manifolds forming intersections
in Ri) such that, if (W, ν) is a δ1-proper standard pair, then W crosses at
least one of these σi’s and the intersection has uniformly positive measure, i.e.
∃j ∈ {1, . . . , N} and a global constant q0 > 0 such that ν(W ∩ σj) > q0.

Proof. Consider the set

A := {W |W is an admissible u-manifold, moreover a δ1-ball in its own metric}.

This can be equipped with the Hausdorff-metric dH and we take the closure
of A with respect to this metric. By the compactness of M it follows that Ā
is also compact. Since admissible u-manifolds have bounded curvature and sta-
ble and unstable cones are uniformly transversal it follows that there exists
a small (� δ3) parameter δ4 such that for any two u-manifolds W,U ∈ A if
dH(W,U) ≤ δ4 then U overshadows the central part Wδ1/3 of W (i.e. the ball in
W with the same center as W but with radius δ1/3), moreover ds(Wδ1/3, U) ≤ δ3
(this statement is similar to the results of Lemma 3.7). We choose then a finite
δ4-net {Wi}Ni=1 of Ā with all Wi’s from A and construct rectangles {Ri}Ni=1 on
them as in Lemma 5.5.
Now if (W, ν) is δ1-proper, i.e. ∃Wδ1 ⊂ W , then obviously Wδ1 ∈ A. Hence
W will overshadow at least one of the Wi’s with ds(Wi,δ1/3,W ) ≤ δ3 and so
intersects all the stable manifolds in σi. For all i we have mWi

(Wi ∩ σi) > 0
by Lemma 5.5, and since there are only finitely many indices ∃q > 0 such that
mWi(Wi ∩ σi) > q for every i. Using the uniform equivalence of the measures
mW and ν, the fact that W is admissible (in particular its diameter is uni-
formly bounded from above) and that the jacobian of the holonomy map is also
uniformly bounded, the statement of the lemma follows.

So if (W, ν) is a sufficiently large standard pair then W crosses at least one
of our rectangles, say Rj (more precisely it crosses σj , the collection of stable
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manifolds from Rj). We will use the expression that Rj carries W .
The image of a rectangle Fn(Rj) consists of a finite number of rectangles {Rnj,k},
k = 1, . . . ,K(n) and the preimage of each is an s-subrectangle in Rj (i.e. for all
k ∈ {1, . . . ,K(n)} and x ∈ F−nRnj,k we have W s(x) ∩Rj = W s(x) ∩ F−nRnj,k).
Now if Rj carries W then each of the forward iterates {Rnj,k}, k = 1, . . . ,K(n)
carry a connected component Wn

k of Fn(W ) and different images carry different
connected components. For our rectangles Ri, i = 1, . . . , N there is a q1 > 0 such
that µ(Ri) ≥ q1 for all i and let µ(Rσ) = q2 > 0. Because F is mixing it follows
that there is an n′0 > 0 such that for every n > n′0 we have µ(Fn(Ri)∩Rσ) ≥ q1q2

2
for every i = 1, . . . N . So for any j after a fixed number of iterations some of the
rectangles {Rnj,k}, k = 1, . . . ,K(n) will intersect our favourite rectangle Rσ and
so the image of the u-manifold W carried by Rj will (likely to) intersect some
of the stable manifolds of our special magnet σ. In the next lemma we show
that if the number of iterations is large enough and the rectangle Rnj,k carrying
Wn
k intersects Rσ then Wn

k not just intersects but actually crosses σ (i.e. Wn
k

intersects all stable manifolds in σ).

Lemma 5.7. Let (W, ν) be a δ1-proper standard pair and Rj a rectangle from
the finite collection that carries W . There exists an n′′0 > 0 such that for every
n ≥ n′′0 if a rectangle Rnj,k intersects Rσ, then Wn

k (the connected component of
Fn(W ) carried by Rnj,k) intersects all stable manifolds in σ.

Proof. Assume that x ∈ Rnj,k∩Rσ. Then by the structure of the rectangles there

is an unstable manifold Uj(F
−nx) through the point F−n(x) - a “building block”

of Rj - which was iterated forward by n steps. Recall that by the construction of
Rj (explained in the proof of Lemma 5.5) Uj(F

−nx) is a ball of radius 4rj such
that its central part with radius 2rj overshadows a ball Bj,rj with radius rj on
the u-manifold Wj on which Rj was built, and ds(Bj,rj , Uj(F

−nx)) ≤ δ3. Simi-
larly the u-manifold of the standard pair W overshadows a δ1/3-ball Bj,δ1/3 ⊂
Wj , which contains Bj,rj and ds(Bj,δ1/3,W ) ≤ δ3. By Lemma 3.7 it follows that
Bj,δ1/3 overshadows Uj(F

−nx) (provided that rj and δ3 are small enough com-

pared to δ1) and ds(Uj(F
−nx), Bj,δ1/3) ≤ 2( 8

Ct
+ 1)δ3. Then by the transitivity

of the shadowing property we know that W also overshadows Uj(F
−nx) with

ds(Uj(F
−nx),W ) ≤ ( 16

Ct
+ 3)δ3.

Now iterating Uj(F
−nx) forward by the dynamics it gets expanded and pos-

sibly cut by singularities. Note that there is a ball B2rj (F
−nx) (centered at

F−nx with radius 2rj) such that B2rj (F
−nx) ⊂ Uj(F

−nx). Choose n0 ≥
max
j
{ 1

ln Λ ln( δ1/3+δ3
rj

)}, so that if n ≥ n0 the image Fn(B2rj (F
−nx)) will contain

a ball around x with radius at least 2(δ1/3 + δ3) unless it is cut by a singular-
ity at some intermediate step. But x also belongs to Rσ which implies that
there is an unstable manifold Uσ(x) through it with similar properties to what
Uj(F

−nx) had on Rj . Namely Uσ(x) overshadows the central δ1/3-ball Bσ,δ1/3
of the unstable manifold, on which Rσ is built, and ds(Bσ,δ1/3, Uσ(x)) ≤ δ3.
Hence there is a δ1/3 + δ3-ball in Uσ(x) that contains the whole intersection
Uσ(x) ∩ σ (which includes the point x too). Since local unstable manifolds are
unique and they can not be cut by inverse singularities it follows that some part
of the image Fn(Uj(F

−nx)) coincides with that δ1/3 + δ3-ball in Uσ(x). Denote

the preimage of this in Uj(F
−nx) by Ũ . We use the following result from the

literature.
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Lemma 5.8 ([6, Proposition 5.3]). Let U be an admissible u-manifold, and W
another u-manifold that overshadows U and ds(U,W ) ≤ δ. Let {U1

n} be a δ2-
filtration of U . Then ∀n ≥ 1 and any connected component V of U1

n there is a
connected domain V ′ ⊂ W \ S(n) such that the u-manifold FnV ′ overshadows
the admissable u-manifold FnV , and ds(FnV, FnV ′) ≤ δΛ−n.

Apply this lemma with the choice U := Ũ and W the u-manifold of the stan-
dard pair. Due to our previous observations W overshadows Ũ with ds(Ũ ,W ) ≤
( 16
Ct

+ 3)δ3, this will be our δ in the lemma above. Observe that U is chosen in
such a way that it remains connected within n iterations and its diameter does
not increase over δ0. Hence in its filtration U1

n = U simply, which is one con-
nected set, so V = U1

n in the lemma and the connected component Wn
k will play

the role of FnV ′.
Therefore Wn

k overshadows FnŨ with ds(FnŨ ,Wn
k ) ≤ ( 16

Ct
+ 3)δ3 · Λ−n. But

recall that FnŨ is actually a δ1/3 + δ3-ball that overshadows the central δ1/3-
ball Bσ,δ1/3 of the unstable manifold on which Rσ is built with s-distance at
most δ3. Hence again by the transitivity of the shadowing property Wn

k also
overshadows Bσ,δ1/3 with s-distance at most ( 16

Ct
+ 3)δ3 · Λ−n + δ3. Clearly if n

is large enough this is at most 2δ3 which is less than δ2 (using that δ3 ≤ 1
3δ2 by

(3.4)), which implies that Wn
k indeed intersects all stable manifolds in σ.

Remark: Note that the u-manifold W in Lemma 5.7 could be any unsta-
ble manifold along Rj , hence this Lemma implies that if Rnj,k is a (maximal)
rectangle from the image Fn(Rj) for some n large enough and it intersects Rσ,
then all unstable manifolds in Rnj,k will actually cross the magnet σ.

Proof of Proposition 5.4. Recall that we have finitely many rectangles Rj (from
Lemma 5.6) such that µ(Rj) ≥ q1 for every j. Also we have our special rectangle
Rσ with µ(Rσ) = q2. We choose n to be larger than max(n′0, n

′′
0) and we consider

a rectangle Rj that carries the u-manifold W of our standard pair. We denote
by Rnj,k, k = 1, . . . ,K(n) those (maximal) rectangles in the image Fn(Rj) that
intersect Rσ and by Wn

k , k = 1, . . . ,K(n) the connected components of Fn(W )
carried by them. By our choice of n these rectangles and components are all
crossing σ and we have that

µ(Fn(Rj) ∩Rσ) =

K(n)∑
k=1

µ(Rnj,k ∩Rσ) ≥ q1q2

2

Since the measure µ is invariant, this holds also for the preimage, i.e.

K(n)∑
k=1

µ(F−n(Rnj,k ∩Rσ)) = µ(Rj ∩ F−n(Rσ)) ≥ q1q2

2
(5.6)

Note that for each k the set F−n(Rnj,k∩Rσ) carries a subset of W , the Fn-image
of which crosses the magnet σ. Denote by µU the conditional measure of µ when
restricted on the u-manifold U and by mU the normalized Lebesgue measure on
U as usual.
Collect all unstable manifolds that were used in the construction of Rj and index
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them by α ∈ A as Wα for some index set A. Then there is a factor measure λ
on A such that we have

µ(Rj) =

∫
A

µWα
(Wα∩Rj) dλ(α) µ(Rj∩F−n(Rσ)) =

∫
A

µWα
(Wα∩Rj∩F−n(Rσ)) dλ(α)

Together with (5.6) and the fact that µ is a probability measure this implies
that

q2

2
≤ µ(Rj ∩ F−n(Rσ))

µ(Rj)
=

∫
A

µWα
(Wα)

µWα (Wα∩Rj∩F−n(Rσ))
µWα (Wα) dλ(α)∫

A

µWα(Wα)
µWα (Wα∩Rj)
µWα (Wα) dλ(α)

Since we assumed that µ is an SRB-measure there exists a constant Ce > 1 such
that for each index α and for every measurable subset B ⊆Wα we have

C−1
e mWα(B) ≤ µWα

(B)

µWα(Wα)
≤ CemWα(B)

so the fractions appearing in the previous integrals are equivalent to the normal-

ized Lebesgue measures of the sets in the numerators. Therefore
µWα (Wα∩Rj)
µWα (Wα) ≥

C−1
e ·mWα

(Wα ∩ Rj) ≥ C−1
e q0 > 0, where q0 > 0 is another constant coming

from the facts that

• Rj was built in a way that there is a u-manifold Wj and an rj-ball Wj,rj

inside it such that mWj,rj
(W 1

j,∞) > q′0 > 0, where W 1
j,∞ is the intersection

of Wj with all the stable manifolds that were used in the construction of
Rj ,

• the diameter of Wj is at most δ0,

• admissible u-manifolds have bounded curvature,

• the holonomy map is absolutely continuous

Using this C−1
e q0 lower bound in the previous denominator we get that

q0q2

2Ce
≤

∫
A

µWα
(Wα)

µWα (Wα∩Rj∩F−n(Rσ))
µWα (Wα) dλ(α)∫

A

µWα(Wα) dλ(α)

Here the right hand side is actually an expectation of some quantity with respect

to the measure on A with density
µWα (Wα) dλ(α)∫
A

µWα (Wα) dλ(α)
, hence we can conclude that

there is an α0 ∈ A such that

q0q2

2Ce
≤
µWα0

(Wα0
∩Rj ∩ F−n(Rσ))

µWα0
(Wα0

)

from which (again by the equivalence with the normalized Lebesgue measure)
we get

mWα0
(Wα0

∩Rj ∩ F−n(Rσ)) ≥ q0q2

2C2
e

(5.7)
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Now by following the exact same steps of the previous itemization, with the
only modification of replacing the estimate in the first item by (5.7) it can be
verified that

ν(Wn
∗ ) = ν(∪K(n)

k=1 F
−n(Wn

k ∩ σ)) ≥ C · q0q2

2

Corollary 5.9. There are constants n0 ≥ 1 and d0 > 0 such that for any proper
standard family G = {(Wi, νi)}i∈I and any n ≥ n0 we have µG(∪iWn

i,∗) ≥ d0.

Proof. If G is proper then by definition ZG ≤ Cp. Corollary 3.16 implies that
for all n ≥ χ lnCp we have ZGn ≤ c3. For a fixed such n we denote the image of
the original standard family by Gn = {Wn

j , ν
n
j }j∈J for some index set J , where

Wn
j ’s are the connected u-manifolds in the image, and νnj ’s are the probability

measures induced by the image of the original measures. There is also an induced
probability factor measure on the index set J , which we denote by dλn(j). With
these notations ZGn ≤ c3 reads as

∀ε > 0

∫
J

νnj (rnj (x) < ε) dλn(j) ≤ c3ε.

We partition the set of indices as J = J1 ∪ J2 in a way that j ∈ J1 iff Wn
j

is δ1-proper. As µGn is a probability measure, considering the complementary
event in the previous inequality and splitting the integral into two parts by the
partition results in∫

J1

νnj (rnj (x) > ε) dλn(j) +

∫
J2

νnj (rnj (x) > ε) dλn(j) ≥ 1− c3ε. (5.8)

Substituting ε = δ1 into (5.8) the second integral vanishes according to the
definition of the partitions. Using that every νnj is a probability measure and
also the relation (3.6), we get the estimate∫

J1

dλn(j) ≥
∫
J1

νnj (rnj (x) > ε) dλn(j) ≥ 1− c3ε ≥ 1/2.

The left hand side is actually the relative measure of the u-manifolds in Gn that
are δ1-proper. For each such manifold we can apply Proposition 5.4 to conclude
that after another n1 iterations at least a fixed (d1 > 0) amount of its measure
will be on the magnet. Therefore the statement of the present corollary is true
with n0 = χ lnCp + n1 and d0 = d1/2.

Remark 5.10. Although the previous result is formulated only for proper stan-
dard families, if the standard family is not proper then Lemma 3.16 implies
that after some number of iterations (this number is actually at most χ lnZG
by Corollary 3.16) it becomes proper, so Corollary 5.9 will hold by adding this
number of iterations to n0.
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5.2 Coupling of measures

The proof of Lemma 5.2 consists of two main steps. The first step relies on
Corollary 5.9. We will describe how to couple the measures of two standard
families once they are crossing the magnet. Then we will construct the coupling
time function Γ and prove that it admits the desired exponential tail bound.
Consider two proper standard families G = {(Wi, νi)}i∈I and E = {(Wj , νj)}j∈J .
Slightly abusing the notation, for any n ≥ 0 we will sometimes refer to the
union ∪i∈IFn(Wi) just by Fn(G) simply. Imagine that after a certain number
of iterations some of the components of Fn(G) and Fn(E) (we will index them
by i and j respectively) are crossing the magnet σ, such that µG(∪iWn

i,∗) ≥ d0

and µE(∪jWn
j,∗) ≥ d0 (remember that this holds for every n ≥ n0 by Corollary

5.9).

!!!Inner Comment!!! 5.11. Ezt ugye most nem álĺıthatjuk, csak azt, hogy
minden n0 lépésből álló blokkban megtörténik egyszer.

In such a situation we couple a fixed amount of the measures in the following
way. We consider the cylindrical extensions (as defined in Definition 5.1) of the
components Wn

i,k and Wn
j,l that cross σ, to get the ’cylinders’ Ŵn

i,k = Wn
i,k×[0, 1]

and Ŵn
j,l = Wn

j,l × [0, 1]. We would like to couple two sets of total measure d0

2
in a way that the bijection between the points preserves measure. To this end
we cut our cylinders at certain heights, which we will denote by the functions
τ with the corresponding indices. Let x ∈ Wn

i,k ∩ σ and suppose that we have

already cut the cylinder Ŵn
i,k at some constant height τi,k ∈ [0, 1/2] and chosen

Ŵn
j,l to be its pair. Then the holonomy map between these components gives

the point h(x) ∈ Wn
j,l. Observe that in order to have a measure preserving

bijection, the height τj,l(h(x)) where we have to cut the second cylinder Ŵn
j,l is

then completely determined in all the points h(x) ∈ Wn
j,l ∩ σ (but not yet on

the whole component Wn
j,l) by the equation

τi,k · ρ(n)
i,k (x)dx = τj,l(h(x)) · ρ(n)

j,l (h(x)) · (JWn
i,k
h)(x)dx, (5.9)

where x ∈Wn
i,k ∩ σ and ρ

(n)
i,k is the density of the n-th iterate of the measure νi,

i.e.
ρ

(n)
i,k (Fn(y)) · (JWi

Fn)(y)dy = ρi(y)dy, where y ∈ F−nWn
i,k

(and similar notation holds for the indices {j, l}). Remember that we have to
guarantee that τj,l(h(x)) ∈ [0, 1]. Using (2.3) and the definition of standard pairs
(Definition 2.4) we know that for all x1, x2 ∈Wn

i,k

| ln ρ(n)
i,k (x1)− ln ρ

(n)
i,k (x2)|

= | ln[ρi(F
−nx1)(JWn

i,k
F−n)(x1)]− ln[ρi(F

−nx2)(JWn
i,k
F−n)(x2)]|

≤ | ln ρi(F−nx1)− ln ρi(F
−nx2)|+ | ln(JWn

i,k
F−n)(x1)− ln(JWn

i,k
F−n)(x2)|

≤ Crθs+(F−nx1,F
−nx2) + C ′dWi(x1, x2).

(5.10)

Hence by choosing n sufficiently large and the diameter of our magnet (deter-
mined by the value of δ1) small enough we can even ensure that the oscillation
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of the densities on the connected components crossing σ is very small, say for

every x, y ∈Wn
i,k ∩ σ we have that

ρ
(n)
i,k (x)

ρ
(n)
i,k (y)

∈ [1− ε, 1 + ε].

Similarly, by appropriately choosing the parameters of our magnet, we can en-
sure that the Jacobian of the holonomy map (from Wn

i,k to Wn
j,l) is very close to

1 at every point x of the intersection Wn
i,k ∩σ. Indeed, recall that in Lemma 4.5

we showed that for the holonomy map h : W1 → W2 between two u-manifolds
we have the estimate

| ln(JW1
h)(x)| ≤ C̃ · d(x, h(x))a + Ĉ · δ,

where δ > 0 is a quantity that measures how parallel the tangent spaces of the
u-manifolds are. We apply this result with the choice W1 = Wn

i,k and W2 = Wu,
where Wu is the unstable manifold on which the magnet σ is built on. The u-
manifold Wn

i,k crosses σ, actually there is a ball of radius δ1/3 + δ3 in it that
contains all the intersections with the magnet. We will denote the center of
this ball by c and the ball itself by Bi,k(c, δ1/3 + δ3) in the next lines. Due
to our constructions and (3.4) Bi,k(c, δ1/3 + δ3) is overshadowed by Wu with

s-distance less than 4
(

2.1
Ct

+ 1
)
· δ3 =: C0 · δ3. Hence, for the points x ∈Wn

i,k ∩σ
and h(x) ∈ Wu, the inequality d(x, h(x)) ≤ C0 · δ3 holds. Now we will argue
that δ can be made arbitrarily small by choosing the ratio δ3/δ1 small enough.
Recall that δ was defined in the following way. Take an arbitrary unit vector
e ∈ TxWn

i,k, consider its parallel translate to h(x) ∈Wu and decompose it as e =
v+s ∈ Th(x)W

u⊕Esh(x). Then δ := max
e
{‖s‖}. Assume that δ > 6C0δ3/δ1 holds,

we show that this leads to a contradiction. Let S be the s-manifold through c
with constant tangent space parallel to Esh(x). This intersects Wu in a point d.
Due to the uniform bound on the curvature of u-manifolds Wn

i,k is very close to
be a du-dimensional hyperplane. So we can find a unit vector e at TcW

n
i,k with

decomposition e = w + s ∈ TdWu ⊕ TdS and ‖s‖ ≥ δ/2. Then we move along
this direction δ1/3 distance towards the side of Bi,k(c, δ1/3 + δ3). This results
in a stable component of length at least δ1/3 · δ/2. According to our assumption
on δ this is more than C0 · δ3, which is a contradiction since Bi,k(c, δ1/3 + δ3) is
overshadowed by Wu with s-distance less than C0 · δ3. Therefore δ ≤ 6C0δ3/δ1
must hold.
We conclude that for the holonomy map h1 : Wn

i,k →Wu we have

| ln(JWn
i,k
h1)(x)| ≤ C̃ · (C0δ3)a + Ĉ · 6C0δ3/δ1.

The same argument holds for the holonomy h2 : Wn
j,l → Wu. Finally observe

that the Jacobian of the holonomy map between the initial u-manifolds, i.e. from
Wn
i,k to Wn

j,l is the product of the Jacobians of the maps h1 and h−1
2 . Hence for

the map h : Wn
i,k →Wn

j,l

| ln(JWn
i,k
h)(x)| ≤ 2C̃ · (C0δ3)a + 2Ĉ · 6C0δ3/δ1, (5.11)

which is clearly close to zero if both δ3 and the ratio δ3/δ1 is close to zero.
This implies that (JWn

i,k
h)(x) ∈ [1− ε, 1 + ε] for some very small ε > 0. Hence

it is enough to make a measure preserving bijection between our cylinders, with
τj,l ∈ [0, 1/2] “cutting heights” on Wn

j,l’s, assuming that the densities on these
cylinders are actually constant and the Jacobian of the holonomy map is equal
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to one. Because then according to our observations the multiplicative error we
make is between 1−ε0 and 1+ε0, so keeping the resulting heights τi,k constant,
the relation (5.9) gives us the desired height functions τj,l(h(x)) (just on Wn

j,l∩σ
at the moment), which will take values in say [0, 0.6].

!!!Inner Comment!!! 5.12. A következő lemma talán kihagyható, túl részletesen
magyaráz. Más tészta, hogy ennek kapcsán felmerül a jó öreg kérdés a mérhetőségről...

Lemma 5.13. Let A1, A2, . . . and B1, B2, . . . be two countable families of dis-
joint cylinders with the same height 1. Denote their volumes by m(Ai) and

m(Bj) respectively and assume that d0 ≤
∞∑
i=1

m(Ai) ≤ 1 and d0 ≤
∞∑
i=1

m(Bj) ≤ 1

for some positive constant d0. Then for every positive number d < d0 there exist
constants τi,k and τ̂j,l and a bijection b : N× N→ N× N such that

• τi,k, τ̂j,l ∈ [0, 1/2] for all (i, k) and (j, l) in N× N,

•
∞∑
i=1

∞∑
k=1

τi,k ·m(Ai) =
∞∑
j=1

∞∑
l=1

τ̂j,l ·m(Bj) = d
2 ,

• for all (i, k) ∈ N× N we have τi,k ·m(Ai) = τ̂b(i,k) ·m(Bb(i,k)1
),

where b(i, k)1 denotes the first coordinate of b(i, k).

Proof. Given d fixed we look for the first i0 and j0 such that the total volumes
of the corresponding family of cylinders up to these indices just exceed or reach
d. This way we reduce our families to consist only of finitely many rectangles.
Now we construct the constants τi,k and τ̂j,l in an algorithmic way. First pick A1

and B1. If m(A1) = m(B1) then let τ1,1 = τ̂1,1 = 1
2 , define b(1, 1) = (1, 1) and

throw away both cylinders. If the volumes are not equal, say m(A1) < m(B1)
(the other case is analogous) then cut down the half of A1 by defining τ1,1 = 1

2

and cut down a cylinder from B1 with the same volume, i.e. let τ̂1,1 = m(A1)
2m(B1) .

Finally define b(1, 1) = (1, 1) and throw away the cylinder A1 and the cylinder
that is the part of B1 which is just cut down. Now compare the volume of the
half of A2 to the volume of what remained from the half of B1 after removing
the previous cylinder.

• If they are equal, then we cut down both of them by setting τ2,1 = 1
2

and τ̂1,2 = 1
2 − τ̂1,1. Define b(2, 1) = (1, 2) and throw away both of the

remaining cylinders,

• if ( 1
2 − τ̂1,1)m(B1) > 1

2m(A2), then we cut down the half of A2 and a
cylinder of the same size from the remainder of B1, i.e. let τ2,1 = 1

2 ,

τ̂1,2 = m(A2)
2m(B1) . Define b(2, 1) = (1, 2) and this time we throw away only

A2,

• if ( 1
2 − τ̂1,1)m(B1) < 1

2m(A2), then we cut down a cylinder from B1 in
a way that what remains will have volume 1

2m(B1) and a cylinder of the

same size from A2, i.e. let τ2,1 =
( 1

2−τ̂1,1)m(B1)

m(A2) , τ̂1,2 = 1
2 − τ̂1,1. Define

b(2, 1) = (1, 2) and throw away B1.
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We proceed in an analogous manner. By now it should be clear that the index
(i, k) corresponds to the k’th cylinder cut down from Ai, which has volume
τi,k · m(Ai) and the notation is similar for the index (j, l). Now assume that
the cylinders being currently in hand are Ai and Bj and we have already cut
down k0−1 and l0−1 subcylinders from them respectively (in which case either
k0 or l0 or both is equal to 1). There are three cases but in either way define
b(i, k0) = (j, l0). The possibilities are

• ( 1
2 −

k0−1∑
k=1

τi,k)m(Ai) = ( 1
2 −

l0−1∑
l=1

τ̂j,l)m(Bj). In this case let τi,k0 = 1
2 −

k0−1∑
k=1

τi,k and τ̂j,l0 = 1
2 −

l0−1∑
l=1

τ̂j,l, throw away both Ai and Bj and replace

i by i+ 1, j by j + 1, k0 by 1 and also l0 by 1,

• ( 1
2 −

k0−1∑
k=1

τi,k)m(Ai) < ( 1
2 −

l0−1∑
l=1

τ̂j,l)m(Bj). If this is the case then let

τi,k0
= 1

2 −
k0−1∑
k=1

τi,k and τ̂j,l0 =
τi,k0

·m(Ai)

m(Bj)
, throw away the cylinder Ai

and replace i by i + 1, k0 by 1 and l0 by l0 + 1 (no modification of j is
needed),

• ( 1
2 −

k0−1∑
k=1

τi,k)m(Ai) > ( 1
2 −

l0−1∑
l=1

τ̂j,l)m(Bj). In such a case let τ̂j,l0 =

1
2−

l0−1∑
l=1

τ̂j,l and τi,k0
=

τ̂j,l0 ·m(Bj)

m(Ai)
, throw away the cylinder Bj and replace

j by j + 1, k0 by k0 + 1 and l0 by 1 (no modification of i is needed).

Running this procedure at each step at least one cylinder is thrown away, so
within finitely many steps the algorithm terminates. Observe that a cylinder
was thrown away exactly after half of its volume was cut down, so at the end
of the process we coupled half of the volume of one finite family of cylinders,
which still exceeds d

2 . Hence multiplying all τi,k’s and τ̂j,l’s with a constant

(which is less than 1) we can ensure that the total coupled volume is exactly d
2

and multiplication by a constant does not harm the first and the third condition
for the τi,k’s and τ̂j,l’s in the lemma. To be absolute precise for all indices (i, k)
and (j, l) that we have never used so far (note that there are infinitely many)
we fix an arbitrary extension of the bijection b and define all τi,k’s and τ̂j,l’s to
be zero.

Apply Lemma 5.13 to our cylinders crossing the magnet with m(Ai,k) =∫
Wn
i,k∩σ

ρ
(n)
i,k (x) dx and m(Bj,l) =

∫
Wn
j,l∩σ

ρ
(n)
j,l (x) dx. The resulting b will be the bi-

jection between our cylinders and keeping the constant heights τi,k ∈ [0, 1/2] the
relation (5.9) gives us the corresponding heights τ̂j,l(h(x)) ∈ [0, 0.6]. We again
emphasize that τ̂j,l(h(x)) is defined only on the set Wn

j,l∩σ so far. But since ρi, ρj
are by definition dynamically Hölder continuous and so is (JWn

i,k
h)(x) by Propo-

sition 4.7 and as a nature of hyperbolic systems s+(x1, x2) = s+(h(x1), h(x2))
it follows that τ̂j,l(h(x)) is also dynamically Hölder continuous on its present
domain. As a final step of the coupling of measures we want to ensure that
we proceed with the same kind of objects as we had before. When a compo-
nent of an iterate of a standard family crossed the magnet we considered the
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corresponding cylinder and removed certain “spikes” with various heights from
it, so it no longer remained a cylinder based on a u-manifold (equipped with
a regular density). To get cylinders we cut this object into two by defining a
cutting surface fitting on the “spikes”. We make this argument precise below.

Lemma 5.14. Let W be a u-manifold and σ ⊂ W 1
∞ be a closed subset for a

δ-filtration of W (recall Definition 3.2). Suppose that f is a function defined
on σ in a way that it is dynamically Hölder continuous and takes values in
the interval [0, 1]. We claim that there exists an extension f̃ of f such that f̃
is defined almost everywhere on W (and at every point of σ of course), takes
values in the interval [0, 1] as well and it is dynamically Hölder continuous on
its domain.

For uniformly hyperbolic systems with one dimensional unstable manifolds
(or just unstable curves) an independent proof of this lemma is given in [14,
Lemma 15]. Our argument here works also for higher dimensional u-manifolds.

Proof. Note that for two points x and y the equation s+(x, y) =∞ implies that
they are on the same local stable manifold. This can not happen with the points
of W , hence the set σ is totally disconnected and for every x, y ∈ σ we have
s+(x, y) < ∞, but this quantity is not necessarily bounded. Recall that ξsn(x)
denotes the connected component ofM\S(n) containing x. Since σ∩∂ξsn(x) = ∅
it follows that σ ∩ ξsn(x) is a closed set for every x ∈W and n ≥ 0.
Now consider a sequence xk ∈ σ, such that xk → x ∈ σ as k → ∞. Choose a
subsequence xkn in a way that for all n the inequality d(x, xkn) < δ2Λ−n holds.
By construction of a δ2-filtration it is clear that ∀n ≥ 0 : B(x, δ2Λ−n) ∩ S(n) =
∅, where B(x, r) denotes the ball in M centered at x with radius r. Hence
s+(x, xkn) > n and so the dynamical Hölder continuity of f on σ implies that
| ln f(x)−ln f(xkn)| < C ·θ−n. This holds for every n ≥ 0 so lim

n→∞
f(xkn) = f(x),

showing that f is continuous on σ. Therefore it attains its minimum on each
set of the form σ ∩ ξsn(x). Now we construct the extension of f as a limit of
a recursion. Let f0(x) : W → R be the constant function defined as f0(x) =
min
y∈σ

f(y). If fk(x) is already defined for some k ∈ N then fk+1(x) will be as

follows:

• if σ ∩ ξsk+1(x) = ∅ then let fk+1(x) = fk(x),

• if σ ∩ ξsk+1(x) 6= ∅ then let fk+1(x) = min
y∈σ∩ξsk+1(x)

f(y).

Finally let f̃ : W → R be lim
n→∞

fn. We claim that f̃ is the extension we are

looking for. It is clear that for all x ∈W and k ∈ N the function fk(x) is constant
on each connected component of W ∩ ξsk(x), fk(x) ≤ 1 and fk(x) ≤ fk+1(x).

Hence it follows that f̃ is well defined on W \S(∞), i.e. almost everywhere on W .
It is indeed an extension of f , because if x ∈ σ then by the monotonity of the
sequence fk(x) it follows that f̃(x) ≤ f(x). Now if it would be strictly less, then
it would mean for every k ≥ 0 there exists a point yk ∈ σ ∩ ξsk(x) different from
x, where f attains its minimum in the k-th step of the construction. Clearly
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s+(x, yk) > k, hence

| ln f̃(x)− ln f(x)| ≤
| ln f̃(x)− ln fk(x)|+ | ln fk(x)− ln f(x)| =
= | ln f̃(x)− ln fk(x)|+ | ln f(yk)− ln f(x)| <
< ε+ C · θs+(x,yk) ≤ ε+ C · θk < ε0

for any ε0 by chosing k large enough and using the definition of f̃(x) and the
dynamical Hölder continuity of f on the set σ. But this implies that f̃(x) can
not be less than f(x) so it is indeed an extension. What remains is to prove that
f̃ is dynamically Hölder continuous on its whole domain. Let x, y ∈ W \ S(∞),
there are two cases left:
if x ∈ σ but y /∈ σ (the reversed case is analogous) then there is a largest
index k0 such that σ ∩ ξsk0

(y) 6= ∅. Let us denote by z the point where the

minimum of f is attained on this set. Observe that then f̃(y) = f(z) and since
x ∈ σ it is clear that k0 ≥ s+(x, y)−1. So z ∈ σ∩ξss+(x,y)−1(x) and by definition

ξss+(x,y)−1(x) = ξss+(x,y)−1(y), hence s+(x, z) ≥ s+(x, y). Therefore

| ln f̃(x)− ln f̃(y)| = | ln f(x)− ln f(z)| ≤ C · θs+(x,z) ≤ C · θs+(x,y)

If x, y /∈ σ then there are maximal indices k and l such that σ ∩ ξsk(x) 6= ∅ and
σ ∩ ξsl (y) 6= ∅. Then

• either both k and l are less than s+(x, y) in which case they are actually
equal and so are the values of f̃(x) and f̃(y) by construction, so there is
no problem with regularity,

• or at least one of the indices k, l is at least s+(x, y). Then let w ∈ σ∩ξsk(x)
and z ∈ σ ∩ ξsl (y) be the points where the minimum of f is attained on
these sets respectively (it may happen that w = z actually, but in this case
f̃(x) = f̃(y) as well so again no problem with regularity). By construction
f̃(x) = f(w) and f̃(y) = f(z). Observe that w ∈ σ ∩ ξsn(x) for all n ≤ k
and z ∈ σ ∩ ξsm(y) for all m ≤ l, hence s+(x, y) ≤ s+(w, z). Therefore

| ln f̃(x)− ln f̃(y)| = | ln f(w)− ln f(z)| ≤ C · θs+(w,z) ≤ C · θs+(x,y).

Consider a cylinder that crosses the magnet σ. If it belongs to the first
family then it was denoted by Ŵn

i,k for some index i. For simplicity we neglect
the index k used to mark the components of Fn(Wi) and we will just simply
refer to these components as Wn

i . Lemma 5.13 produced finitely many nonzero
constant cutting heights τi,k (this k is now different from the one we have just

dropped) on the set Wn
i ∩ σ, such that Ti :=

∞∑
k=1

τi,k is in [0, 1/2]. The points

that are coupled now are of the form (x, t), where x ∈Wn
i ∩σ and t ∈ [0, Ti]. We

now remove these from Ŵn
i . The constant function Ti can obviously be extended

from Wn
i ∩ σ to the set Wn

i by keeping it constant, so it will cut our original

cylinder Ŵn
i into two parts. Observe that even after the removal of the coupled

points there are actually two cylinders!
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• One is the upper part containing no coupled points. It is based on the
u-manifold Wn

i and has (constant) height 1− Ti.

• The lower part contained all the coupled points and after removing them it
will still be a cylinder, but based on the u-manifold Wn

i \σ with (constant)
height Ti.

Both of these cylinders carry the measure with density ρ
(n)
i (x) dx dt. Now with

an appropriate linear transformation in the t-coordinate we strech both of them
to recover their unit height. This will modify the densities in a way, that they

will be (1− Ti)ρ(n)
i (x) dx dt and Tiρ(n)

i (x) dx dt respectively.
Note that multiplication by a constant does not change the dynamical Hölder
continuity of these functions. Hence, apart from the fact that the measures are
not normalized (yet, which is still just a multiplication by a constant) the upper
parts remaining from the first family after the coupling are standard pairs. This
is however not true for the lower parts, since the base u-manifolds Wn

i \ σ are
not admissible (their boundaries are not piecewise smooth). We will have to
iterate these lower parts further and wait for some moments, when some of
the components of their image will be standard pairs again. This will be an
important part of the next subsection.
For the second family we do exactly the same steps (we also neglect the index
l from now on). The only difference is that the cutting heights τ̂j,l(h(x)) (this l
is again different from the one we have just dropped) given by Lemma 5.13 and
(5.9) are no longer constants, but still dynamically Hölder continuous on the

set Wn
j ∩ σ. Then it is easy to see that the function T̂j(h(x)) :=

∞∑
l=1

τj,l(h(x))

is also dynamically Hölder continuous (and so is 1− T̂j(h(x)), since T̂j(h(x)) is
bounded away from 1) so by Lemma 5.14 we can extend it to the set Wn

j (or
to just a full measure set in it to be precise). This will cut the original cylinder
Ŵn
j again into two parts, which we treat exactly the same way as before.

Even though the product of two dynamically Hölder continuous functions still
has this kind of regularity, the upper parts after the cutting are not exactly
standard pairs again but here not just because of the lack of normalization. The
real problem with them is that the constant C0 for which

| ln T̂j(x)ρ
(n)
j (x)− ln T̂j(y)ρ

(n)
j (y)| ≤ C0 · θs+(x,y)

holds, is maybe larger than the constant Cr in the definition of standard pairs.
However if T̂j(y) is dynamically Hölder continuous with a constant say C1, then
C0 ≤ Cr + C1. Due to this uniform bound these measures will regularize in a
fixed number of iterations in the same way as described in Remark 3.13. So not
immediately after the coupling, but just after a fixed number of iterations the
upper parts of the second family after the cutting will be standard pairs.

The argument for the densities (1−T̂j(y))ρ
(n)
j (y) on the lower parts is the same.

But even though these densities regularize in a fixed number of iterations, the
lower parts will not be standard pairs at this stage. The problem is the same as
it is for the first family: the base u-manifolds Wn

j \ σ are not admissible.
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5.3 Coupling time

In the previous subsection we described how to couple measures on standard
families, when they are getting close to each other on the magnet. By our con-
struction it is clear that the first part of the Coupling Lemma (Lemma 5.2) holds
whatever the coupling time Γ(x, t) is. In this subsection we define the coupling
time for arbitrary standard families and prove that it admits the uniform expo-
nential tail bound in the second part of Lemma 5.2.
Consider two proper standard families G = {(Wi, νi)}i∈I and E = {(Wj , νj)}j∈J .
Corollary 5.9 implies that after n0 iterations their images will cross the special
magnet σ and the preimage of the intersections have µG (or µE) measure at least
d0 in G (or in E respectively). At this stage we apply our coupling procedure de-
scribed in the previous subsection to couple d0

2 amount of the measures. The cou-

pled points in the cylindrical extensions of Wi’s are of the form Ŵ1,c := {(x, t) ∈
Ĝ|Fn0(x) ∈Wn0

i ∩σ and t ∈ [0, Ti(x)] for some index i such that Wn0
i crosses σ}.

We set the coupling time Γ(x, t) = n0 for every (x, t) ∈ Ŵ1,c (here the index 1
refers to the first family G and c to the word coupling).

!!!Inner Comment!!! 5.15. Ezekben a sorokban n0 helyett, mindig valami
n0 + k-nak kell majd szerepelnie, ahol 0 ≤ k < n0, de a konkrét értéke az adott
standard pároktól függ.

After this coupling step we are left with components of three different kinds
basically. There are components of Fn0Wi’s that do not cross the magnet and
some which do. The cylindrical extensions of the later are divided into two
objects, which we described briefly in the final lines of the previous subsection.
Here we treat them in a slightly different way and in more detail. Let Wn0

i be
a component of Fn0(G) that crosses the magnet. Then as we have seen in the
proof of Lemma 5.7 there is a ball Bi ⊂ Wn0

i with radius δ1/3 + 2δ3, which
contains all points of the intersection Wn0

i ∩ σ.

!!!Inner Comment!!! 5.16. Lemma 5.7 nem biztos, hogy létezni fog a változtatások
után.

We cut out this ball from Wn0
i and consider the cylindrical extension of it.

During the coupling some sticks have been removed from this extension with
heights Ti(x) altogether forming the set Ŵ1,c. This function is defined by the
coupling only on Bi ∩ σ, but with the help of Lemma 5.14 we can extend it to
Bi and so we can cut the cylinder Bi × [0, 1] into two pieces. We will refer to
the lower part as B1

i and the upper part as B2
i .

To proceed with the coupling of measures we need to guarantee that the non-
coupled parts will return to the magnet and again cross it with an intersection
of fix relative measure. By Corollary 5.9 it is enough to show that after some
iterations the non-coupled parts will be proper standard families.
Considering the standard family that consists of standard pairs not
affected by the coupling: Observe that those components that do not cross
the magnet and the objects Wn0

i \Bi are actually standard pairs (after normal-
izing the measures on them). This almost holds for the B2

i ’s too, just a fixed
number of iterations is needed for the measures to regularize on them (cf. Re-
mark 3.13). Actually this number is uniformly bounded and may even reduced
to be 1 by choosing the constant Cr in Definition 2.4 large enough. Now we
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show that the union of all these three type of objects will form a proper stan-
dard family within a fixed number of iterations.
Let us index the components of Fn0(G) by i ∈ I = I1 ∪ I2, where I1 is for
components which cross the magnet and I2 is for those which do not. We dou-
ble every index i ∈ I1 and use (i, 1) and (i, 2) to refer to Wn0

i \ Bi and B2
i

(the upper part of Bi after cutting it with Ti(x)) respectively. These objects are
equipped with probability measures induced by the original measure µG on G,
which are as follows.

• If i ∈ I2 then the probability measure on Wn0
i has density

dν
(n0)
i (x) = ρ

(n0)
i (x) =

ρ(F−n0(x))(JWn0
i
F−n0)(x)∫

W
n0
i

ρ(F−n0(y))(JWn0
i
F−n0)(y) dy

• The situation is almost the same for every set Wn0
i \Bi, i ∈ I1. The only

difference is that the density of ν(i,1) is supported on Wn0
i \Bi so this has

to be the domain of integration in the previous formula.

• The case of B2
i ’s is somewhat different however. Here the density changes

since we kept only a fraction of the points from Bi after the coupling.
What remains is

dν
(n0)
(i,2)(x) = ρ

(n0)
(i,2)(x) =

ρ(F−n0(x))(JBiF−n0)(x)(1− Ti(x))∫
Bi

ρ(F−n0(y))(JBiF−n0)(y)(1− Ti(y)) dy

We need to adapt a factor measure on the new index set (the indices (i, 1), (i, 2)
are in count!) in a way that it preserves the original weight of each component.
So we take these weights, which are (in the order of the previous itemization)

• cn0
i =

∫
W
n0
i

ρ(F−n0(x))(JWn0
i
F−n0)(x) dx, for i ∈ I2,

• cn0

(i,1) =
∫

W
n0
i \Bi

ρ(F−n0(x))(JWn0
i \Bi

F−n0)(x) dx, for (i, 1) which is one

copy of the index i ∈ I1,

• cn0

(i,2) =
∫
Bi

ρ(F−n0(x))(JBiF−n0)(x)(1 − Ti(x)) dx for (i, 2) which is the

other copy of the index i ∈ I1.

Since we removed some mass from the standard family (corresponding to B1
i ’s)

we have to normalize these weights to get the new (probability) factor measure,
which we will denote by c̃n0

j for any kind of index j. We constructed the cutting
height function in a way that Ti(x) ∈ [d0/2, 3/5] and from this it is easy to
verify that ∑

i∈I1

cn0

(i,1) + cn0

(i,2) +
∑
i∈I2

cn0
i ≥

2

5

and hence for any kind of index j we have

c̃n0
j ≤

5

2
cn0
j . (5.12)
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Now we give an estimate on how much the cutting of Bi from Wn0
i increases the

measure of the ε-neighborhood of the boundary of the resulting set compared to
the ε-neighborhood of the boundary of the original set Wn0

i . For a fixed i ∈ I1

we introduce the sets

NBini = {x ∈ Bi|d(x, ∂Bi) < ε} NBouti
= {x ∈Wn0

i \Bi|d(x, ∂Bi) < ε}
NWn0

i
= {x ∈Wn0

i |d(x, ∂Wn0
i ) < ε}

With these notations the measure we want to estimate for every ε is

ν
(n0)
i ({x ∈Wn0

i |d(x, ∂Wn0
i ∪ ∂Bi) < ε}) = ν

(n0)
i (NWn0

i
∪NBini ∪NBouti

)

Using that Wn0
i has bounded curvature and its diameter is at most δ0 plus

the fact that ν
(n0)
i is uniformly equivalent to the normalized Lebesgue measure

on Wn0
i a geometrical argument, similar to the one in [6, Lemma 4.2] or [5,

Appendix C] but using polar coordinates instead of cartesian ones, shows that

ν
(n0)
i (NBini ) ≤ const · ν(n0)

i (NWn0
i

) ν
(n0)
i (NBouti

) ≤ const · ν(n0)
i (NWn0

i
)

with uniform constants and hence there is another uniform constant C > 0 for
which

ν
(n0)
i ({x ∈Wn0

i |d(x, ∂Wn0
i ∪ ∂Bi) < ε}) ≤ C · ν(n0)

i (NWn0
i

) (5.13)

We denote by G̃n0 the standard family consisting of the non-coupled parts,
more precisely of u-manifolds from ∪i∈I1

(Wn0
i \Bi ∪B2

i )
⋃

(∪i∈I2
Wn0
i ) and the

induced measures on them. The standard family before the coupling is denoted
by Gn0

. The measures induced by these families are µG̃n0
and µGn0

respectively.

Using these notations, (5.12) together with (5.13) implies that

ZG̃n0
≤ 5

2
CZGn0

. (5.14)

But at the moment of coupling we had ZGn0
≤ c3 and so by Corollary 3.16 and

Corollary 5.9 it follows that after a fixed number of iterations a fixed proportion
of the standard family formed by the non coupled parts will be on the magnet
and so it will be ready for coupling.
Considering the lower parts B1

i after the coupling: As we have already
pointed out the main problem with the set B1

i \ σ is that it is not a standard
pair, because its boundary is not piecewise smooth. We will deal with this issue
in the rest of this subsection.
Similar to what we did with B2

i ’s before, we stretch the set B1
i in the t-direction

with an appropriate linear transformation to get a cylinder with unit height.
Therefore we will have (Bi, ν̃i) as an initial object, where Bi is a ball (in its inner

metric) with radius δ1/3+2δ3 and ν̃i is a measure with density 1
cρ

(n0)
i (x) ·Ti(x),

where c is just the normalizing constant. Note that even (Bi, ν̃i) itself is not a
standard pair, since the measure is not regular in the sense of Definition 2.4. It
is however dynamicaly Hölder continuous with regularity constant Cr +C0 (in-
stead of just Cr) and so it is equivalent to the normalized Lebesgue measure on
Bi. Moreover within a fixed number of iterations it will regularize as explained
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in Remark 3.13 and so the image of (Bi, ν̃i) will be a standard family.
Consider the set Bi \ σ that remains after the coupling step. We will treat each
of these objects in the same way so from now on we omit the subscript i. Our
general strategy is to show that as we iterate B \σ, more and more parts of the
image will become standard families, so we can apply our coupling machinery to
them. We also would like to understand what proportion of the points became
members of standard families up to time n. The basic ideas of the constructions
in the rest of the paper date back to [6], however we need additional care.
Under the action of the dynamics B\σ will be expanded and cut by singularities
and also artificially to keep the diameter of the components below δ0 (see Re-
mark 3.3). At certain moments some of the connected components of the image
will be disjoint from the image of σ, so they will have nice boundaries and they
will form a standard family. We will use the expression that these components
are released at this moment of iteration. First we define a release time for points
in B \ σ. This will be a function f : B \ σ → N defined separately for two types
of points.
Release time for type I points: these are points x ∈ B \ σ such that the
local stable manifold W s(x) intersects Wu

σ , the unstable manifold on which the
special magnet σ was built. We will use the notation h(x) = W s(x)∩Wu

σ . Then
h(x) /∈ W 1

σ,∞, where W 1
σ,∞ is the limit object in the δ2-filtration of Wu

σ (δ1/3)
(the central part of Wu

σ with radius δ1/3), thus Wu
σ ∩ σ = W 1

σ,∞. Hence, either
h(x) ∈Wu

σ \Wu
σ (δ1/3) or h(x) ∈W 0

σ,m for some m = m(x) ≥ 0, where W 0
σ,m is

a gap in the δ2-filtration of Wu
σ (δ1/3). In the former case we set m(x) = 0 and

ε(x) = dWu
σ

(h(x),Wu
σ (δ1/3)). In the later case m(x) is already determined and

we set ε(x) = d(Fm(h(x)), ∂Fm(W 0
σ,m)). Then we define the release time to be

f(x) = m(x) + logΛ((δ0 + 4δ3)/ε(x)).
Release time for type II points: these are points in B \σ whose local stable
manifolds does not intersect Wu

σ . Recall that in the proof of Lemma 5.7 we
showed that Wu

σ (δ1/3) is overshadowed by B with stable distance at most 2δ3.

!!!Inner Comment!!! 5.17. Lemma 5.7 nem biztos, hogy létezni fog a változtatások
után.

Hence by our choice on the radius of Wu
σ (see the beginning of subsection

5.1), Lemma 3.7 implies that Wu
σ overshadows B with stable distance

ds(B,Wu
σ ) ≤ 2(

2

Ct
+

12δ3
Ctδ1

+ 1) · 2δ3 ≤ 4(
2.1

Ct
+ 1) · δ3 = C0 · δ3, (5.15)

where the second inequality follows from (3.4) and the final equality is just the
definition of the constant C0. From this it follows that if x ∈ B \ σ is a point of
type II, then its local stable manifold W s(x) does not contain a stable disk of
radius C0δ3. Therefore the quantity m = m(x) = min{n ≥ 0 : d(Fn(x), ∂∪ξs1) ≤
C0δ3Λ−n} is finite. Now consider Fm(B)(Fm(x)) the connected component of
Fm(B) that contains Fm(x). We will show that on this component the δ2Λ−m/2-
neighborhood of Fm(x) does not contain any point of the set Fm(σ). Indeed, as-
sume that, on the contrary, ∃y ∈ Fm(B∩σ) such that d(y, Fm(x)) ≤ δ2Λ−m/2.
Then by construction the intersection y′ = W s(y) ∩ Fm(Wu

σ ) exists, it belongs
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to Fm(σ) and d(y, y′) ≤ 2δ3 · Λ−m. From this it follows that

d(y′, ∂ ∪ ξs1) ≤ d(y′, y) + d(y, Fm(x)) + d(Fm(x), ∂ ∪ ξs1) ≤
≤ 2δ3 · Λ−m + δ2Λ−m/2 + C0δ3 · Λ−m = ((2 + C0)δ3 + δ2/2)Λ−m

≤ δ2 · Λ−m

(5.16)

if we set the constant cs in (3.4) to be cs = 1
2(2+C0) . This is however a con-

tradiction, because y′ ∈ Fm(Wu
σ ∩ σ) and so by construction y′ can not be

that close to a singularity as (5.16) tells. We then define the release time to be
f(x) = 2m(x) + logΛ(2δ0/δ2).
Observe that f(x) is defined in a way (for either type of points) that for any
n ≥ f(x) either the connected component of Fn(B) that contains Fn(x) is
disjoint from Fn(σ) or the δ0 neighborhood of Fn(x) (measured along this com-
ponent) does not contain any point of the set Fn(σ). This implies that if we
consider a 0-filtration {B1

n} of B, then the component of Fn(B1
n) that contains

Fn(x) does not intersect Fn(σ). Thus this component, with the appropriately
rescaled and restricted measure Fn∗ ν̃ on it will be a standard pair.
Now as an intermediate step of the construction of the coupling time we prove
that the points x ∈ B \ σ are released at an exponential rate.

Lemma 5.18. There are constants C1 > 0 and θ1 ∈ (0, 1) such that for each
ball B after the coupling step we have

ν̃(x ∈ B \ σ|f(x) > n) ≤ C1θ
n
1 , ∀n ≥ 0.

Proof. First of all recall that the measure ν̃ is uniformly equivalent to the nor-
malized Lebesgue measure on B, so it is enough to prove the statement with
mB . We prove the bound separately for the two types of points. For each point
x of type I we considered h(x) = W s(x) ∩Wu

σ . By the absolute continuity of
the holonomy map it suffices to estimate mWu

σ
(h(x)|f(x) > n). Recall that f(x)

was defined with the help of two numbers m(x) and ε(x). The argument can be
decomposed into three parts:

1. If h(x) /∈ Wu
σ (δ1/3), then m(x) = 0 and so f(x) > n is equivalent to

ε(x) < (δ0 + 4δ3)Λ−n. Therefore one has to estimate the measure of
a du-dimensional spherical shell of width (δ0 + 4δ3)Λ−n. Since unstable
manifolds have bounded curvature it follows that

mWu
σ

(h(x) /∈Wu
σ (δ1/3)|d(h(x),Wu

σ (δ1/3)) < (δ0+4δ3)Λ−n) ≤ const·Λ−n,

2. if h(x) ∈Wu
σ (δ1/3) then it belongs to the gap W 0

σ,m(x) of the δ2-filtration

of Wu
σ (δ1/3). First we consider the cases when 0 ≤ m(x) ≤ n/2. We use

the definition of the Z-function, part 1 of Corollary 3.6 and (3.1) in the
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final line to conclude that

mWu
σ

(h(x) ∈Wu
σ (δ1/3)|f(x) > n,m(x) ≤ n/2) =

=

n/2∑
m=0

mWu
σ

(h(x) ∈Wu
σ (δ1/3)|f(x) > n,m(x) = m) ≤

≤
n/2∑
m=0

Z[Wu
σ (δ1/3),W 0

σ,m,m] ·mWu
σ

(Wu
σ (δ1/3))(δ0 + 4δ3)Λ−(n−m) ≤

≤ (3K0 + 1)Z̄0(δ0 + 4δ3)Λ−n
Λn/2+1 − 1

Λ− 1
≤ const · Λ−n/2,

(5.17)

3. finally if h(x) belongs to a gap with m(x) > n/2 then by part 3 of Corollary
3.6 and again by (3.1) we have

mWu
σ

(h(x)|f(x) > n,m(x) > n/2) ≤ mWu
σ

(h(x)|m(x) > n/2) =

=

∞∑
m=n/2+1

mWu
σ

(W 0
σ,m) ≤ mWu

σ
(Wu

σ (δ1/3)) ·
∞∑

m=n/2+1

C ′′Z̄0δ2Λ−m ≤

≤ const · Λ−n/2.
(5.18)

This completes the verification of the exponential bound with θ1 = Λ−1/2 for
type I points.
For points of type II consider a C0δ3-filtration {B1

n, B
0
n} of the u-manifold B.

Observe that if x is a point of type II with m(x) = m then x ∈ B0
m. The u-

manifold B is a ball (in its inner metric) with radius δ1/3 + 2δ3 which is slightly
larger than δ1/3 so the analogue of (3.1) still holds, hence Z̄0 is still bounded.
Then again use part 3 of Corollary 3.6 with the present parameters to conclude
that mB(B0

m) is exponentially small in m.

Remember that our aim is to release connected components of the image of
B\σ, i.e. to collect connected components of the image that are disjoint from the
image of σ. Consider a 0-filtration of B and denote it by {Bn}. Observe that we
defined the point release time f(x) in a way that if V is a connected component
of Bn and ∃x ∈ V such that f(x) ≤ n then V is an admissable u-manifold and
so with the image of the measure ν̃ (restricted on it and normalized) it forms
a standard pair. We say that V is released. Now we define a component release
time s : B \ σ → N in the following way. For a connected component V ⊂ Bn
we set s(x) = n for every point x ∈ V iff ∃y ∈ Fn(V ) such that f(y) = n and
∀k ∈ {0, . . . , n − 1} the set Bk(V ), which is the connected component of Bk
that contains V , has the property that ∀y ∈ F k(Bk(V )) we have f(y) > k. It is
obvious then that s(x) ≤ f(x) for all x ∈ B \ σ.
For a fixed s ∈ N consider the set

W̃ (s) = ∪{V ⊂ F s(Bs)|∀x ∈ F−s(V ) : s(x) = s},

i.e. the union of the image of all components that are released exactly at time s.
Then by construction of the release times W̃ (s) is a standard family. In order to
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guarantee that this family will return to the magnet and so we can proceed with
the coupling of measures we want to use Corollary 5.9. This however requires
the standard family to be proper. Since W̃ (s) does not necessarily satisfy this
requirement we have to wait some time until it recovers and becomes a proper
standard family. For a fixed s we define on F−s(W̃ (s)) ⊂ B \ σ the function

g(x) = g(s) := min{n ≥ 0|∀n′ ≥ n : Fn
′
(W̃ (s)) is a proper standard family }.

It follows from Corollary 3.16 that g(s) ≤ χ · lnZ[W̃ (s), W̃ (s), 0]. We introduce
the notation q(s) = ν̃(F−s(W̃ (s))) and discuss the relation of it with g(s).

Z[W̃ (s), W̃ (s), 0] = sup
ε>0

F s∗ ν̃(x ∈ W̃ (s)|d(x, ∂W̃ (s)) < ε)

ε · F s∗ ν̃(W̃ (s))
≤

≤ sup
ε>0

F s∗ ν̃(x ∈ F s(Bs)|d(x, ∂F s(Bs)) < ε)

ε · F s∗ ν̃(F s(Bs))
· F

s
∗ ν̃(F s(Bs))

F s∗ ν̃(W̃ (s))
=

=
Z1
s

ν̃(F−s(W̃ (s)))
≤ Z̄0

q(s)
,

(5.19)

where in the final line we used part 1 of Corollary 3.6. Here Z̄0 is again bounded
by the easy modification of (3.1). As a consequence, if the time we have to wait
for the standard family, released at time s, to grow and become proper is more
than n (i.e. if g(s) > n), then the relation

n ≤ χ · lnZ[W̃ (s), W̃ (s), 0] ≤ χ ln Z̄0 − χ ln q(s)

holds. Hence
g(s) > n ⇒ q(s) < Ce−

n
χ , (5.20)

that is we have to wait a long time for the growth only on a set with exponentially
small measure.
Finally we define the recovery time for every point x ∈ B \ σ as s(x) + g(x).
Then for any fixed n the set {x ∈ B \ σ|s(x) + g(x) = n} is either empty or
forms a proper standard family with the probability measure induced by ν̃ on
it. As the key step of the coupling time construction we prove that the recovery
time admits an exponential tail bound.

Lemma 5.19. There are constants C2 > 0 and θ2 ∈ (0, 1) such that for every
n ≥ 0 we have

ν̃(x ∈ B \ σ|s(x) + g(x) > n) ≤ C2θ
n
2 .

Proof. We use Lemma 5.18 and the implication (5.20) to deduce that

ν̃(x|s(x) + g(x) > n) ≤ ν̃(x|s(x) ≥ n/2) + ν̃(x|s(x) < n/2, g(x) > n/2) ≤

≤ C1θ
n/2
1 + const · n

2
· e−

n
2χ ≤ const · θn2 ,

where we choose θ2 such that max{
√
θ1, e

− 1
2χ } < θ2 < 1 holds.

The rest of the construction of the coupling time goes in the exact same way
as in [8, Appendix, p.1090]. Therefore we do not repeat it here in all detail, we
just sketch the main lines of it instead. Before that we give a brief summary of
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what we have done so far.
Recall that we had two proper standard families G = {(Wi, νi)}i∈I and E =
{(Wj , νj)}j∈J . After n0 iterations some of the components of Fn0(Wk)’s (k can
be i or j) crossed the magnet and the preimage of the intersections formed
subsets of the original families with µG-measure (or µE respectively) at least d0.
We coupled exactly d0/2 amount of the measures. From now on we will only talk
about the image of the first family, analogous statements hold for the second
one too. After the coupling we were left with three types of objects

1. standard pairs coming from components that had not been affected by the
coupling,

2. admissible u-manifolds with dynamically Hölder continuous densities sup-
ported on them, but with regularity constant larger than Cr. They are
almost standard pairs and within a fixed number of iterations the densi-
ties regularize and they eventually become standard families,

3. u-manifolds which arose by removing Cantor sets from balls and on these
we have similar densities as in the previous item.

Let us denote the union of all these kind of objects we have after the first
coupling, together with the induced measures on them by G1. We emphasize
that G1 is not a standard family. The original measure µG induces a measure
on G1 (by this we mean not only the probability measures on the connected
u-manifolds, but also the probability factor measure on the set of them). This
will not be a probability measure since we removed d0/2 amount of the mass
by coupling. So we normalize this induced measure and denote the resulting
probability measure by µG1

. As we said G1 is not a standard family. One key
part of what we wrote so far in the present subsection was to show that under the
action of F more and more parts of G1 will become standard, moreover proper
standard families. For almost every point x that belongs to a u-manifold of a pair
from G1 we introduced a recovery time. This is the time when the u-manifold
that contains x, together with the probability measure on it induced by µG1

, is
a standard pair, moreover it can be regarded as a member of a proper standard
family. This recovery time is actually a fixed constant for points that belong to
type 1 or type 2 kind of objects (cf. (5.14)) and it was defined to be s(x) + g(x)
for points that belong to type 3 objects. Corollary 5.9 implies that whenever a
point is recovered, for all n ≥ n0 the n-th image of the proper standard family
to which it belongs to will cross the magnet σ and the intersection will have at
least d0 relative measure within the family.

!!!Inner Comment!!! 5.20. Az előző mondat megint nem lesz igaz, csak az,
hogy n0-as blokkonként lesz egy-egy pillanat, amikor legalább d0 mérték van a
mágnesen.

We will use the expression that in such a situation this standard family can
be stopped and d0/2 amount of its mass can be coupled. From our estimates in
the present subsection it follows that

µG1
(x| recovery time of x > n) ≤ const · θn2 . (5.21)

Of course the actual return time for points of two different initial standard
families may be very different. This is another point where we use the cylindrical
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extensions of the objects: this way we can define a stopping time on which we
have uniform control. The stopping time of a point (x, t) must be at least the
recovery time of x plus n0, because in this way (as we explained before) we
guarantee that (x, t) belongs to a proper standard family crossing the magnet
in a set with fix relative measure. We do not have to be gready though! We may
decide not to stop a point when this situation happens for the first time, we
may iterate it forward instead and stop it later at an appropriate moment. This
means that we have some freedom in the way how the stopping time is defined.
The content of Lemma 5.22 below is that the stopping time can be defined in
such a way that it has the same distribution for the cylindrical extension of
objects from any G1.
Let µ̂G1

denote the product measure on G1 × [0, 1] which is just µG1
times the

uniform measure on [0, 1].

!!!Inner Comment!!! 5.21. Itt korrigálni kell aszerint, hogy qn ne az n-ik
pillanatban megálĺıtott pontok mértéke legyen, hanem az n-ik n0-as blokkban
megálĺıtottaké. Emiatt lehet, hogy a jelenleginél egy kicsit részletesebb mag-
yarázatra is szükség lesz.

Lemma 5.22. There exists a probability distribution qn, n = 1, . . . , independent
of G1 that satisfies qn < const · θn2 and for all n ∈ N we have

µ̂G1((x, t)| the stopping time of (x, t) = n) = qn.

The proof of this lemma can be found in [8, Appendix] after Proposition
A.5., nonetheless here we provide a short explanation. The tail bound on qn
follows from (5.21), while the fact that qn can be chosen independently of G1 is
based on the large amount of freedom we have at the definition of the stopping
process. Indeed, (5.21) guarantees that at certain time moments we have some
amount of measure that can be stopped regardless of what G1 is. If this amount
is more than what we want to stop, then we just cut some of our cylinders in
proper standard families horizontally to ensure that we stop exactly the amount
of mass we need.
Note that for any n the collection of points that are stopped at time n forms a
union of proper standard families. Each of these families crosses the magnet and
the relative measure of the intersections with the magnet is at least d0. Hence,
for every n, we can apply our coupling procedure and couple d0/2 amount of the
points that are stopped at time n and for these points we set the coupling time
Γ(x, t) to be the initial n0 plus the stopping time of (x, t). Then we inductively
repeat the construction of recovery and stopping times on the set that remains
after this second coupling. Note that the points that are stopped once are not
necessarily coupled at that moment and so they may be stopped several more
times before they finally get coupled. The coupling time Γ(x, t) of the point
(x, t) will be n0 plus the sum of all stopping times defined for it before it got
coupled.
To finish our argument we recall that G = {(Wi, νi)}i∈I was one of our initial
proper standard families. As in [8, Appendix] we introduce the following nota-
tions. Let p̄n := µ̂G((x, t) ∈ ∪i∈IŴi|Γ(x, t) = n), the fraction of points being
coupled exactly at time n and let pn := µ̂G((x, t) ∈ ∪i∈IŴi|(x, t) is stopped at time n),
the fraction of points stopped (not necessarily for the first time) at time n. Note

that
∞∑
n=1

p̄n = 1, however
∞∑
n=1

pn may be larger because of multiple stoppings, in
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fact p̄n = d0/2 · pn. Furthermore, the above described construction implies the
convolution law:

pn+n0
= (1− d0/2)

(
qn + (1− d0/2)

n−1∑
i=1

qn−ipn0+i

)
∀n ≥ 1. (5.22)

Using this and the tail bound on the sequence qn a standard argument (as
in the lines after [8, (A.27)]) using generator functions gives that p̄n has an
exponentially decreasing tail, which verifies the second part of the coupling
lemma (Lemma 5.2).
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