
11 - Lyapunov’s method, first integrals

Introduction

Example. Consider the following nonlinear system

x ' = -y - x3 = f1(x, y)

y ' = x - y3 = f2(x, y)

The equilibrium point/points of the system can be determined by solving the following 
algebraic equation system:
x ' = 0
y ' = 0

   ⟹  -y - x3 = 0

x - y3 = 0

  ⟹  -y - y9 = -y1 + y8 = 0  ⟹ x = 0, y = 0.

The only equilibrium point is the origin: (0, 0).

The Jacobian matrix is f ' (x, y) =

∂ f1

∂ x

∂ f1

∂ y
∂ f2

∂ x

∂ f2

∂ y

=
-3 x2 -1

1 -3 y2

The coefficient matrix of the linearized system is f ' (0, 0) =
0 -1
1 0

  

⟹  det
-λ -1
1 -λ

= λ2 + 1 = 0  ⟹  the eigenvalues are λ12 = ± i. 

Since λ1 and λ2 are not hyperbolic (that is, Re(λ12) = 0), the stability of the origin cannot be 
decided based on the eigenvalues. The phase portrait of the system is the following:
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The trajectories go around the origin but it cannot be seen if they converge to the origin or 
diverge from it. To decide this question we will use Lyapunov’s method.



Lyapunov's method: We consider the function V(x, y) = x2 + y2, where (x, y) ∈ 2 and investigate 
whether the value of V  increases or decreases along the trajectories. The nullclines of V  are circles 
centered at the origin.

V(x, y) = x2 + y2
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Observation: If the value of V  
increases
decreases

  along the trajectories then the trajectories 

        
diverge from
converge to

  the origin, so the origin is  
unstable

asymptotically stable
.

Let (x(t), y(t)), (t ∈ ) be an arbitrary solution and let V*(t) = V(x(t), y(t)), (t ∈ ).

V(x, y) = x2 + y2   ⟹ ∂x V(x, y) = 2 x, ∂y V(x, y) = 2 y

Then the derivative of V*(t) = x2(t) + y2(t) with respect to the time t is the following:

d

dt
V*(t) = 2 x(t) ·x ' (t) + 2 y(t) ·y ' (t) = 2 x ·x ' + 2 y ·y ' =

= ∂x V(x, y) · f1(x, y) + ∂y V(x, y) · f2(x, y) =

= 2 x-y - x3 + 2 yx - y3 = -2 x4 + y4 < 0 for all (x, y) ≠ (0, 0)

Since the derivative of V  is negative, then the value of V  decreases along the trajectories, so the 
trajectories intersect the nullclines of V  going inwards. It means that the trajectories converge 
towards the origin and thus the origin is asymptotically stable. 
We obtained the phase portrait not only in a neighbourhood of the origin but on the whole 
phase plane.

This idea can be formulated for two-dimensional systems as follows.
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Lyapunov’s method

Definition. Let M⊂2 be a region and let f :M2 and V :M be continuously differentiable 
   functions. Then the derivative of V  with respect to the system 
   
   x ' = f1(x, y), y ' = f2(x, y) 
   
   (or the Lie-derivative of V) is the following scalar product:

   Lf V(x, y) = V ' (x, y) · f (x, y) = ∂x V(x, y) · f1(x, y) + ∂y V(x, y) · f2(x, y)

   where f (x, y) = (f1(x, y), f2(x, y)).

Remark. As we have seen in the example, if (x(t), y(t)) is a solution of the system 

         x ' = f1(x, y), y ' = f2(x, y) then for the function V*(t) = V(x(t), y(t)),   
d

dt
V*(t) = Lf V(x(t), y(t)). 

         It means that the sign of the function Lf V(x, y) indicates whether the value of V  increases 
         or decreases along the trajectories. 
         The main point of Lyapunov's method is to find a function V  that is monotonic along the 
         trajectories and the monotonicity of V  can be decided without calculating the solutions.     
         
         In the following, we investigate the stability of the equilibrium point with the help of a 
         Lyapunov function. Let M⊂2 be a region, let f :M2 be a continuously differentiable 
         function and let p ∈M be an equilibrium point of the autonomous system x ' (t) = f (x(t)), 
         that is, f (p) = 0.     
         

Theorem (Lyapunov's stability theorem).  Assume that there exists an open neighbourhood 
      U⊂M of p and a continuously differentiable function V : U such that  
      
      1. V(p) < V(q) for all q ∈ U\{p}  and
      2. Lf V(q) ≤ 0 for allq ∈ U\{p}.

      Then p is a stable equilibrium point.
      If Lf V(q) < 0 for allq ∈ U\{p} then p is an asymptotically stable equilibrium point.

Theorem (Lyapunov instability theorem). Assume that there exists an open neighbourhood 
      U⊂M of p and a continuously differentiable function V : U such that  
      
      1. p is not a local minimum of the function V   and
      2. Lf V(q) < 0 for allq ∈ U\{p}.

      Then p is an unstable equilibrium point.
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First integrals

It is an important special case when the value of V  is constant along the trajectories. 

Definition. The function V  is a first integral of the system x ' = f1(x, y), y ' = f2(x, y) if Lf V(x, y) ≡ 0.

Remark. In the special case when the planar system has the form 
x ' = f (y)
y ' = g(x)

 then by multiplying 

         the equations we obtain g(x) ·x ' = f (y) ·y '. Integrating both sides with respect to t and 

         then using the substitution formula (x ' dt =
dx

dt
dt = dx), it follows that g(x)dx = f (y)dy. 

         Thus, if F ' = f andG ' = g then V(x, y) = F(y) - G(x) is a first integral.

Lotka-Volterra population model
Let x(t) and y(t) respectively denote the number of preys and predators, say, rabbits and foxes 
at time t. We assume that the prey population is the total food supply for predators. We also 
assume the following:

1) Preys have unlimited food supply. Hence if there were no predators, their number would grow 
     exponentially, that is, when y = 0 we have x ' = a x where a > 0.

2) The prey population decreases at a rate proportional to the number of predator-prey encounters 
     (b x y). So the differential equation for the prey population is x ' = a x - b x y where a > 0, b > 0.

3) In the absence of prey, the predator population declines at a rate proportional to the current 
     population. So when x = 0 we have y ' = -c y with c > 0.
     
4) When there are prey in the environment, we assume that the predator population increases at a 
     rate proportional to the predator-prey meetings, or d x y. Together we have y ' = -c y + d x y 
     where c > 0, d > 0.

This simplified predator-prey system (also called the Volterra-Lotka system) is

x ' = a x - b x y = x(a - b y)

y ' = -c y + d x y = y(-c + d x)

where the parameters a, b, c and d are all assumed to be positive. Since we are dealing with 
populations, we only consider x, y ≥ 0.

The equilibrium points are the solutions of x(a - b y) = 0, y(-c + d x) = 0.

The two solutions are (0, 0) and 
c

d
,
a

b
. The Jacobian matrix of the system is 
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f ' (x, y) =
a - b y -b x
d y -c + d x

.

At (0, 0) the Jacobian matrix is f ' (0, 0) =
a 0
0 -c

. The eigenvalues are λ1 = a > 0 and λ2 = -c < 0 and 

we obtain a saddle point.

At the other equilibrium point 
c

d
,
a

b
, f '

c

d
,
a

b
=

0 -
b c

d
d a

b
0

. The eigenvalues are pure imaginary, 

λ12 = ± i a c  and so we cannot conclude anything at this stage about stability of this equilibrium 
point. We cannot determine the precise behavior of solutions: they could possibly spiral in toward 
the equilibrium point, spiral toward a limit cycle, spiral out toward “infinity” and the coordinate 
axes, or else lie on closed orbits. To make this determination, we search for a Lyapunov function V. 
Employing the trick of separation of variables, we look for a function of the form 

V(x, y) = F(x) + G(y).

The derivative of V  with respect to the system is 

d

d t
V(x(t), y(t)) = ∂x F ·x ' + ∂y G ·y ' = ∂x F ·x(a - b y) + ∂y G ·y(-c + d x).

We obtain 
d V

d t
≡ 0 provided 

∂x F ·x

d x - c
=
∂y G ·y

b y - a
. Since x and y are independent variables, this is possible 

if and only if   
∂x F ·x

d x - c
=
∂y G ·y

b y - a
= constant. Setting the constant equal to 1, we obtain

∂x F = d -
c

x
   and   ∂y G = b -

a

y
. Integrating, we find 

F(x) = d x - c log x   and   G(y) = b y - a log y.

Thus the function V(x, y) = d x - c log x + by - a log y is constant on the solution curves of the system 
when x, y > 0. 

Theorem. Every solution of the predator-prey system is a closed orbit (except the equilibrium point 
c

d
,
a

b
 and the coordinate axes).

⟹  For any given initial populations (x (0), y (0)) with x(0) ≠ 0 and y(0) ≠ 0, other than 
c

d
,
a

b
, 

the populations of predator and prey oscillate cyclically. No matter what the populations of prey 
and predator are, neither species will die out, nor will its population grow indefinitely.
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Such type of cyclic variations have been observed in nature, for example, for lynx and 
snowshoe hares in North Canada with a cycle of about 10 years. See also
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations

Remark. The equation  

x ' = k1 x - k2 x y

y ' = -k3 y + k2 x y

  

can be interpreted as the induced kinetic differential equation of the reaction 

X⟶
k1 2 X, X + Y⟶

k2 2 Y , Y⟶
k3 0

and was used as a model of oscillation in cold flames by Frank-Kamenetsky in 1947. Since the 
Lotka–Volterra  equation  has  a  nonlinear  first  integral,  it  shows conservative oscillations, 
i.e. to all initial concentrations in the open first quadrant (except the unique positive stationary 
point) a different closed trajectory is assigned.

Bendixson’s criterion
Supplementary material.

Theorem. Consider the system

x ' = f1(x, y)

y ' = f2(x, y)

If in a simply-connected open set E the expression div f = ∂x f1 + ∂y f2  has constant sign (i.e. the sign 

remains unchanged and the expression vanishes only at isolated points or on a curve), then the 
above system has no closed trajectories in the set E.
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Exercises

1. Show that the following system does not have a periodic solution:
x ' = x + y2 + x3

y ' = -x + y + x2 y

2. Show that following system does not have a periodic solution in the domain x2 + y2 < 4:
x ' = x - x y2 + y3

y ' = 3 y - x2 y + x3

3. Show that the following system does not have a periodic solution in the domain x2 + y2 ≤ 2 /3:
x ' = x - y - x3

y ' = x + y - y3

Bendixson–Dulac theorem
Theorem. Let E ⊂2 be a simply-connected open set and let B : E be a differentiable function 

  such that div(B f ) = ∂x (B f1) + ∂y (B f2) has constant sign and it vanishes only at isolated 

  points or on a curve. Then the system x ' = f1(x, y), y ' = f2(x, y) has no periodic solutions 
  lying entirely in the set E.

Exercises

4. Consider the system x ' = x(1 - a x - b y)

y ' = y(1 + c x - d y)

     where a, b, c, d > 0. Let B(x, y) =
1

x y
. Show that the system does not have a periodic solution 

     in the set E = {(x, y) : x > 0, y > 0}.

5. Consider the system x ' = y

y ' = x - a y + 2 x2 + b y2

     where a ≠ 0. Let B(x, y) = a e-2 b x. Show that the system does not have a periodic solution.

diffeq-11.nb     7



Solutions
1. f1(x, y) = x + y2 + x3, f2(x, y) = -x + y + x2 y      
div f (x, y) = ∂1 f1(x, y) + ∂2 f2(x, y) = 1 + 3 x2 + 1 + x2 = 2 + 4 x2 > 0 for all (x, y) ∈ 2, 

so the system does not have a periodic solution in 2.

2. f1(x, y) = x - x y2 + y3, f2(x, y) = 3 y - x2 y + x3   
div f (x, y) = ∂1 f1(x, y) + ∂2 f2(x, y) = 1 - y2 + 3 - x2 = 4 - x2 + y2 > 0, if x2 + y2 < 4, 

so the system does not have a periodic solution in the region x2 + y2 < 4.

3. f1(x, y) = x - y - x3, f2(x, y) = x + y - y3   
div f (x, y) = ∂1 f1(x, y) + ∂2 f2(x, y) = 1 - 3 x2 + 1 - 3 y2 = 2 - 3 x2 + 3 y2 > 0, if x2 + y2 < 2 /3, 

so the system does not have a periodic solution in the region x2 + y2 < 2 /3.

4. Let f1(x, y) = x (1 - a x - b y), f2(x, y) = y(1 + c x - d y).

B (x, y) f1(x, y) =
1

x y
x (1 - a x - b y) =

1

y
-
a x

y
- b

⟹ ∂1 (B(x, y) f1(x, y)) = -
a

y

 

  B(x, y) f2(x, y) =
1

x y
y(1 + c x - d y) =

1

x
+ c -

d y

x

⟹ ∂2 (B(x, y) f2(x, y)) = -
d

x

Then div (B f ) (x, y) = ∂1 (B(x, y) f1(x, y)) + ∂2 (B(x, y) f2(x, y)) = -
a

y
-
d

x
< 0, if x > 0 , y > 0, 

so the system does not have a periodic solution in E.

5. div (B f ) (x, y) = ∂1 a e-2 b x y + ∂2 a e-2 b xx - a y + 2 x2 + b y2 =

= -2ab -2 b x y + -a2 -2 b x + 2ab -2 b x y = -a2 -2 b x < 0

for all (x, y) ∈ 2, so the system does not have a periodic solution in 2.
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