07 - Power series method

Recall that if f is at least n times differentiable then the Taylor polynomial of order n generated by $f(x)$ about x_{0} is

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} .
$$

With the power series method the solution $y(x)$ of an initial value problem about x_{0} can be expressed in the form of a Taylor series about x_{0} if from the differential equation a recursion can be obtained for the coefficients. The solution is usually only approximated by a Taylor polynomial for which we calculate the first few coefficients.

In the exercises $x_{0}=0$, then the solution can be approximated as

$$
y(x) \approx T_{n}(x)=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2!} x^{2}+\frac{y^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots+\frac{y^{(n)}(0)}{n!} x^{n} .
$$

We obtain the values $y(0), y^{\prime}(0), y^{\prime \prime}(0)$, etc. from the given data and calculate them by differentiating the equation repeatedly. Then these values are substituted into the Taylor polynomial.

Exercises

1. $y^{\prime}(x)-2 x y(x)=1, y(0)=1$.

Find the 4th degree Taylor polynomial of the solution to the differential equation.
2. $y^{\prime \prime}(x)=y^{2}(x), y(0)=y^{\prime}(0)=1$.

Find the 3rd degree Taylor polynomial of the solution to the differential equation.
3. $y^{\prime}(t)-y(t) \sin t=t, y(0)=2$.

Find the 3rd degree Taylor polynomial of the solution to the differential equation.

Solutions

1. $y^{\prime}(x)-2 x y(x)=1, y(0)=1$.

Find the 4th degree Taylor polynomial of the solution to the differential equation.
Solution. For the Taylor polynomial we need the values $y(0), y^{\prime}(0), y^{\prime \prime}(0), y^{\prime \prime \prime}(0), y^{(4)}(0)$. The equation is $y^{\prime}(x)=2 x y(x)+1$.

1) From the initial condition $y(0)=1$
2) Substituting $x=0$ into the equation: $y^{\prime}(0)=2 \cdot 0 \cdot y(0)+1=1 \Longrightarrow y^{\prime}(0)=1$

The other values of the derivatives can be calculated by differentiating the equation repeatedly, recursively using previously values calculated at $x=0$.
3) Differentiating both sides of $y^{\prime}(x)=2 x y(x)+1$
$\Longrightarrow y^{\prime \prime}(x)=2 y(x)+2 x y^{\prime}(x)+0$
$\Longrightarrow y^{\prime \prime}(0)=2 y(0)+2 \cdot 0 \cdot y^{\prime}(0)=2 \cdot 1+2 \cdot 0 \cdot 1=2 \Longrightarrow y^{\prime \prime}(0)=2$
4) Differentiating both sides of $y^{\prime \prime}(x)=2 y(x)+2 x y^{\prime}(x)$
$\Longrightarrow y^{\prime \prime \prime}(x)=2 y^{\prime}(x)+2 y^{\prime}(x)+2 x y^{\prime \prime}(x)=4 y^{\prime}(x)+2 x y^{\prime \prime}(x)$
$\Longrightarrow y^{\prime \prime \prime}(0)=4 y^{\prime}(0)+2 \cdot 0 \cdot y^{\prime \prime}(0)=4 \cdot 1+2 \cdot 0 \cdot 2=4 \Longrightarrow y^{\prime \prime \prime}(0)=4$
5) Differentiating both sides of $y^{\prime \prime \prime}(x)=4 y^{\prime}(x)+2 x y^{\prime \prime}(x)$
$\Longrightarrow y^{(4)}(x)=4 y^{\prime \prime}(x)+2 y^{\prime \prime}(x)+2 x y^{\prime \prime \prime}(x)=6 y^{\prime \prime}(x)+2 x y^{\prime \prime \prime}(x)$
$\Longrightarrow y^{(4)}(0)=6 y^{\prime \prime}(0)+2 \cdot 0 \cdot y^{\prime \prime \prime}(0)=6 \cdot 2+2 \cdot 0 \cdot 4=12 \Longrightarrow y^{(4)}(0)=12$

We have $y(0)=1, y^{\prime}(0)=1, y^{\prime \prime}(0)=2, y^{\prime \prime \prime}(0)=4, y^{(4)}(0)=12$, so the approximation of the solution is

$$
\begin{aligned}
y(x) & \approx T_{4}(x)=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2!} x^{2}+\frac{y^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{y^{(4)}(0)}{4!} x^{4}= \\
& =1+1 \cdot x+\frac{2}{2!} x^{2}+\frac{4}{3!} x^{3}+\frac{12}{4!} x^{4}=1+x+x^{2}+\frac{2}{3} x^{2}+\frac{1}{2} x^{4}
\end{aligned}
$$

2. $y^{\prime \prime}(x)=y^{2}(x), y(0)=y^{\prime}(0)=1$.

Find the 3 rd degree Taylor polynomial of the solution to the differential equation.
Solution. For the Taylor polynomial we need the values $y(0), y^{\prime}(0), y^{\prime \prime}(0), y^{\prime \prime \prime}(0)$.
The equation is $y^{\prime}(x)=2 x y(x)+1$.

1) From the initial condition $y(0)=y^{\prime}(0)=1$
2) Substituting $x=0$ into the equation: $y^{\prime \prime}(0)=y^{2}(0)=1^{2}=1 \Longrightarrow y^{\prime \prime}(0)=1$
3) Differentiating both sides of $y^{\prime \prime}(x)=y^{2}(x)$ using the chain rule:

$$
\begin{aligned}
y^{\prime \prime}(x)=(y(x))^{2} & \Longrightarrow y^{\prime \prime \prime}(x)=2 y(x) y^{\prime}(x) \\
& \Longrightarrow y^{\prime \prime \prime}(0)=2 y(0) y^{\prime}(0)=2 \cdot 1 \cdot 1=2 \Longrightarrow y^{\prime \prime \prime}(0)=2
\end{aligned}
$$

The approximation of the solution is

$$
\begin{aligned}
y(x) & \approx T_{3}(x)=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2!} x^{2}+\frac{y^{\prime \prime \prime}(0)}{3!} x^{3}= \\
& =1+1 \cdot x+\frac{1}{2!} x^{2}+\frac{2}{3!} x^{3}=1+x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}
\end{aligned}
$$

3. $y^{\prime}(t)-y(t) \sin t=t, y(0)=2$.

Find the 3rd degree Taylor polynomial of the solution to the differential equation.
Solution. For the Taylor polynomial we need the values $y(0), y^{\prime}(0), y^{\prime \prime}(0), y^{\prime \prime \prime}(0)$. The equation is $y^{\prime}(t)=t+y(t) \sin t$.

1) From the initial condition $y(0)=2$
2) Substituting $t=0$ into the equation: $y^{\prime}(0)=0+y(0) \sin 0=0+2 \cdot 0=0 \Longrightarrow y^{\prime}(0)=0$
3) Differentiating both sides of $y^{\prime}(t)=t+y(t) \sin t$
$\Longrightarrow y^{\prime \prime}(t)=1+y^{\prime}(t) \sin t+y(t) \cos t$
$\Longrightarrow y^{\prime \prime}(0)=1+y^{\prime}(0) \sin 0+y(0) \cos 0=1+0 \cdot 0+2 \cdot 1=3 \Longrightarrow y^{\prime \prime}(0)=3$
4) Differentiating both sides of $y^{\prime \prime}(t)=1+y^{\prime}(t) \sin t+y(t) \cos t$
$\Longrightarrow y^{\prime \prime \prime}(t)=y^{\prime \prime}(t) \sin t+y^{\prime}(t) \cos t+y^{\prime}(t) \cos t+y(t)(-\sin t)$
$\Longrightarrow y^{\prime \prime \prime}(0)=3 \cdot 0+0 \cdot 1+0 \cdot 1+2 \cdot 0=0 \Longrightarrow y^{\prime \prime \prime}(0)=0$

The approximation of the solution is
$y(t) \approx T_{3}(t)=y(0)+y^{\prime}(0) t+\frac{y^{\prime \prime}(0)}{2!} t^{2}+\frac{y^{\prime \prime \prime}(0)}{3!} t^{3}=$

$$
=2+0 \cdot t+\frac{3}{2!} t^{2}+\frac{0}{3!} t^{3}=2+\frac{3}{2} t^{2}
$$

Homework

1. $y^{\prime \prime}(x)=x y^{2}(x)-y^{\prime}(x), y(0)=2, y^{\prime}(0)=1$.

Find the 3rd degree Taylor polynomial of the solution to the differential equation.
2. The angle of a pendulum of length $/$ is given by $\theta(t)$ as a function of the time. From the equation of motion, dividing by m, we obtain $\theta^{\prime \prime}(t)+\frac{g}{l} \sin \theta(t)=0$. Let $\omega:=\sqrt{\frac{g}{l}}$. If the pendulum is pushed from vertical position with velocity v, then the initial conditions are $\theta(0)=0, \theta^{\prime}(0)=v$. Find the 3rd degree Taylor polynomial of the solution to the differential equation.
3. In the chemical reaction $X+Y \longrightarrow 2 X$, the concentrations of the species X and Y are described by $x(t)$ and $y(t)$ as a function of the time. The reaction can be modelled by the differential equation system
$x^{\prime}(t)=k x(t) y(t)$
$y^{\prime}(t)=-k x(t) y(t)$
where $k>0$ is the reaction rate coefficient. Let $k=1$ and $x(0)=y(0)=1$.
Find the 3rd degree Taylor polynomial of the functions $x(t)$ and $y(t)$.

Solutions

1. $y^{\prime \prime}(x)=x y^{2}(x)-y^{\prime}(x), y(0)=2, y^{\prime}(0)=1$.

Find the 3rd degree Taylor polynomial of the solution to the differential equation.
Solution. For the Taylor polynomial we need the values $y(0), y^{\prime}(0), y^{\prime \prime}(0), y^{\prime \prime \prime}(0)$.

1) From the initial conditions $y(0)=2, y^{\prime}(0)=1$
2) Substituting $x=0$ into the equation:

$$
y^{\prime \prime}(0)=0 \cdot y^{2}(0)-y^{\prime}(0)=0 \cdot 2^{2}-1=-1
$$

3) Differentiating both sides of $y^{\prime \prime}(x)=x y^{2}(x)-y^{\prime}(x)$
$\Longrightarrow y^{\prime \prime \prime}(x)=y^{2}(x)+x \cdot 2 y(x) y^{\prime}(x)-y^{\prime \prime}(x)$
$\Longrightarrow y^{\prime \prime \prime}(0)=2^{2}+0 \cdot 2 \cdot 2 \cdot 1-(-1)=5$

The approximation of the solution is

$$
\begin{aligned}
y(x) & \approx T_{3}(x)=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2!} x^{2}+\frac{y^{\prime \prime \prime}(0)}{3!} x^{3}= \\
& =2+1 \cdot x+\frac{-1}{2!} x^{2}+\frac{5}{3!} x^{3}=2+x-\frac{1}{2} x^{2}+\frac{5}{6} x^{3}
\end{aligned}
$$

2. The angle of a pendulum of length L is given by $\theta(t)$ as a function of the time.

From the equation of motion, dividing by m, we obtain $\theta^{\prime \prime}(t)+\frac{g}{L} \sin \theta(t)=0$.
Let $\omega:=\sqrt{\frac{g}{L}}$. If the pendulum is pushed from vertical position with velocity v, then the initial conditions are $\theta(0)=0, \theta^{\prime}(0)=v$. Find the 3rd degree Taylor polynomial of the solution to the differential equation.

Solution. For the Taylor polynomial we need the values $\theta(0), \theta^{\prime}(0), \theta^{\prime \prime}(0), \theta^{\prime \prime}(0)$.
The equation is $\theta^{\prime \prime}(t)=-\frac{g}{L} \sin \theta(t)$.

1) From the initial conditions $\theta(0)=0, \theta^{\prime}(0)=v$
2) Substituting $t=0$ into the equation:

$$
\theta^{\prime \prime}(0)=-\frac{g}{L} \sin \theta(0)=0
$$

3) Differentiating both sides of $\theta^{\prime \prime}(t)=-\frac{g}{L} \sin (\theta(t))$ using the chain rule:
$\Longrightarrow \theta^{\prime \prime \prime}(t)=-\frac{g}{L} \cos (\theta(t)) \cdot \theta^{\prime}(t)$
$\Longrightarrow \theta^{\prime \prime \prime}(0)=-\frac{g}{L} \cos (\theta(0)) \cdot \theta^{\prime}(0)=-\frac{g}{L} \cos (0) \cdot \theta^{\prime}(0)=-\frac{g}{L} \cdot 1 \cdot v=-\omega^{2} v$

The approximation of the solution is

$$
\begin{aligned}
\theta(t) & \approx T_{3}(t)=\theta(0)+\theta^{\prime}(0) t+\frac{\theta^{\prime \prime}(0)}{2!} t^{2}+\frac{\theta^{\prime \prime \prime}(0)}{3!} t^{3}= \\
& =0+v t+\frac{0}{2!} t^{2}-\frac{\omega^{2} v}{3!} t^{3}=v t-\frac{\omega^{2} v}{6} t
\end{aligned}
$$

3. In the chemical reaction $X+Y \longrightarrow 2 X$, the concentrations of the species X and Y are described by $x(t)$ and $y(t)$ as a function of the time. The reaction can be modelled by the differential equation system

$$
\begin{aligned}
& x^{\prime}(t)=k x(t) y(t) \\
& y^{\prime}(t)=-k x(t) y(t)
\end{aligned}
$$

where $k>0$ is the reaction rate coefficient. Let $k=1$ and $x(0)=y(0)=1$.
Find the 3rd degree Taylor polynomial of the functions $x(t)$ and $y(t)$.

Solution.

1) From the initial conditions $x(0)=y(0)=1$
2) From the equation system the first derivatives and the substitution values:
$x^{\prime}(t)=x(t) y(t) \quad \Longrightarrow \quad x^{\prime}(0)=x(0) y(0)=1 \cdot 1=1$
$y^{\prime}(t)=-x(t) y(t) \quad y^{\prime}(0)=-x(0) y(0)=-1 \cdot 1=-1$
3) The second derivatives and the substitution values:

$x^{\prime \prime}(t)=x^{\prime}(t) y(t)+x(t) y^{\prime}(t) \quad \Longrightarrow \quad x^{\prime \prime}(0)=x^{\prime}(0) y(0)+x(0) y^{\prime}(0)=1 \cdot 1+1 \cdot(-1)=0$	
$y^{\prime \prime}(t)=-x^{\prime}(t) y(t)-x(t) y^{\prime}(t) \quad$	$y^{\prime \prime}(0)=-x^{\prime}(0) y(0)-x(0) y^{\prime}(0)=-1 \cdot 1-1 \cdot(-1)=0$

4) The third derivatives and the substitution values:
$x^{\prime \prime \prime}(t)=x^{\prime \prime}(t) y(t)+x^{\prime}(t) y^{\prime}(t)+x^{\prime}(t) y^{\prime}(t)+x(t) y^{\prime \prime}(t)$
$y^{\prime \prime \prime}(t)=-x^{\prime \prime}(t) y(t)-x^{\prime}(t) y^{\prime}(t)-x^{\prime}(t) y^{\prime}(t)-x(t) y^{\prime \prime}(t)$
$\Longrightarrow x^{\prime \prime}(0)=0 \cdot 1+1 \cdot(-1)+1 \cdot(-1)+1 \cdot 0=-2$
$y^{\prime \prime}(0)=-0 \cdot 1-1 \cdot(-1)-1 \cdot(-1)-1 \cdot 0=2$

The approximations of the solutions are
$x(t) \approx x(0)+x^{\prime}(0) t+\frac{x^{\prime \prime}(0)}{2!} t^{2}+\frac{x^{\prime \prime \prime}(0)}{3!} t^{3}=1+1 \cdot t+\frac{0}{2!} t^{2}+\frac{-2}{3!} t^{3}=1+t-\frac{1}{3} t^{3}$
$y(t) \approx y(0)+y^{\prime}(0) t+\frac{y^{\prime \prime}(0)}{2!} t^{2}+\frac{y^{\prime \prime \prime}(0)}{3!} t^{3}=1-1 \cdot t+\frac{0}{2!} t^{2}+\frac{2}{3!} t^{3}=1-t+\frac{1}{3} t^{3}$

