07 - Power series method

Recall that if f is at least n times differentiable then the Taylor polynomial of order n generated by f(x) about x_0 is

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k = f(x_0) + f'(x_0) \left(x - x_0\right) + \frac{f''(x_0)}{2!} \left(x - x_0\right)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \left(x - x_0\right)^n.$$

With the power series method the solution y(x) of an initial value problem about x_0 can be expressed in the form of a Taylor series about x_0 if from the differential equation a recursion can be obtained for the coefficients. The solution is usually only approximated by a Taylor polynomial for which we calculate the first few coefficients.

In the exercises $x_0 = 0$, then the solution can be approximated as

$$y(x) \approx T_n(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \dots + \frac{y^{(n)}(0)}{n!}x^n.$$

We obtain the values y(0), y'(0), y''(0), etc. from the given data and calculate them by differentiating the equation repeatedly. Then these values are substituted into the Taylor polynomial.

Exercises

1. y'(x) - 2xy(x) = 1, y(0) = 1.

Find the 4th degree Taylor polynomial of the solution to the differential equation.

2. $y''(x) = y^2(x)$, y(0) = y'(0) = 1. Find the 3rd degree Taylor polynomial of the solution to the differential equation.

3. $y'(t) - y(t) \sin t = t$, y(0) = 2. Find the 3rd degree Taylor polynomial of the solution to the differential equation.

Solutions

1. y'(x) - 2xy(x) = 1, y(0) = 1.

Find the 4th degree Taylor polynomial of the solution to the differential equation.

Solution. For the Taylor polynomial we need the values y(0), y'(0), y''(0), y'''(0), $y^{(4)}(0)$. The equation is y'(x) = 2xy(x) + 1.

1) From the initial condition y(0) = 1

2) Substituting x = 0 into the equation: $y'(0) = 2 \cdot 0 \cdot y(0) + 1 = 1 \implies y'(0) = 1$

The other values of the derivatives can be calculated by differentiating the equation repeatedly, recursively using previously values calculated at x = 0.

3) Differentiating both sides of
$$y'(x) = 2xy(x) + 1$$

$$\Rightarrow y''(x) = 2y(x) + 2xy'(x) + 0$$

$$\Rightarrow y''(0) = 2y(0) + 2 \cdot 0 \cdot y'(0) = 2 \cdot 1 + 2 \cdot 0 \cdot 1 = 2 \Rightarrow y''(0) = 2$$

4) Differentiating both sides of y''(x) = 2y(x) + 2xy'(x) $\implies y'''(x) = 2y'(x) + 2y'(x) + 2xy''(x) = 4y'(x) + 2xy''(x)$ $\implies y'''(0) = 4y'(0) + 2 \cdot 0 \cdot y''(0) = 4 \cdot 1 + 2 \cdot 0 \cdot 2 = 4 \implies y'''(0) = 4$

5) Differentiating both sides of y'''(x) = 4y'(x) + 2xy''(x) $\implies y^{(4)}(x) = 4y''(x) + 2y''(x) + 2xy'''(x) = 6y''(x) + 2xy'''(x)$ $\implies y^{(4)}(0) = 6y''(0) + 2 \cdot 0 \cdot y'''(0) = 6 \cdot 2 + 2 \cdot 0 \cdot 4 = 12 \implies y^{(4)}(0) = 12$

We have y(0) = 1, y'(0) = 1, y''(0) = 2, y'''(0) = 4, $y^{(4)}(0) = 12$, so the approximation of the solution is

$$y(x) \approx T_4(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \frac{y^{(4)}(0)}{4!}x^4 =$$
$$= 1 + 1 \cdot x + \frac{2}{2!}x^2 + \frac{4}{3!}x^3 + \frac{12}{4!}x^4 = 1 + x + x^2 + \frac{2}{3}x^2 + \frac{1}{2}x^4$$

2. $y''(x) = y^2(x), y(0) = y'(0) = 1.$

Find the 3rd degree Taylor polynomial of the solution to the differential equation.

Solution. For the Taylor polynomial we need the values y(0), y'(0), y''(0), y'''(0). The equation is y'(x) = 2xy(x) + 1.

1) From the initial condition y(0) = y'(0) = 12) Substituting x = 0 into the equation: $y''(0) = y^2(0) = 1^2 = 1 \implies y''(0) = 1$ 3) Differentiating both sides of $y''(x) = y^2(x)$ using the chain rule:

$$y''(x) = (y(x))^{2} \implies y'''(x) = 2y(x)y'(x)$$
$$\implies y'''(0) = 2y(0)y'(0) = 2 \cdot 1 \cdot 1 = 2 \implies y'''(0) = 2$$

The approximation of the solution is

$$y(x) \approx T_3(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 =$$

= 1+1·x + $\frac{1}{2!}x^2 + \frac{2}{3!}x^3 = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3$

3. $y'(t) - y(t) \sin t = t$, y(0) = 2. Find the 3rd degree Taylor polynomial of the solution to the differential equation.

Solution. For the Taylor polynomial we need the values y(0), y'(0), y''(0), y'''(0). The equation is $y'(t) = t + y(t) \sin t$.

1) From the initial condition y(0) = 22) Substituting t = 0 into the equation: $y'(0) = 0 + y(0) \sin 0 = 0 + 2 \cdot 0 = 0 \implies y'(0) = 0$

3) Differentiating both sides of $y'(t) = t + y(t) \sin t$ $\implies y''(t) = 1 + y'(t) \sin t + y(t) \cos t$ $\implies y''(0) = 1 + y'(0) \sin 0 + y(0) \cos 0 = 1 + 0.0 + 2.1 = 3 \implies y''(0) = 3$

4) Differentiating both sides of $y''(t) = 1 + y'(t) \sin t + y(t) \cos t$ $\implies y'''(t) = y''(t) \sin t + y'(t) \cos t + y'(t) \cos t + y(t) (-\sin t)$ $\implies y'''(0) = 3 \cdot 0 + 0 \cdot 1 + 0 \cdot 1 + 2 \cdot 0 = 0 \implies y'''(0) = 0$

The approximation of the solution is $y(t) \approx T_3(t) = y(0) + y'(0) t + \frac{y''(0)}{2!} t^2 + \frac{y'''(0)}{3!} t^3 = 2 + 0 \cdot t + \frac{3}{2!} t^2 + \frac{0}{3!} t^3 = 2 + \frac{3}{2} t^2$

Homework

1. $y''(x) = x y^2(x) - y'(x)$, y(0) = 2, y'(0) = 1. Find the 3rd degree Taylor polynomial of the solution to the differential equation.

2. The angle of a pendulum of length *l* is given by $\theta(t)$ as a function of the time. From the equation of motion, dividing by *m*, we obtain $\theta''(t) + \frac{g}{l} \sin \theta(t) = 0$.

Let $\omega := \sqrt{\frac{g}{l}}$. If the pendulum is pushed from vertical position with velocity v, then the initial conditions are $\theta(0) = 0$, $\theta'(0) = v$. Find the 3rd degree Taylor polynomial of the solution to the differential equation.

3. In the chemical reaction $X + Y \rightarrow 2X$, the concentrations of the species X and Y are described by x(t) and y(t) as a function of the time. The reaction can be modelled by the differential equation system

x'(t) = k x(t) y(t)y'(t) = -k x(t) y(t)

where k > 0 is the reaction rate coefficient. Let k = 1 and x(0) = y(0) = 1. Find the 3rd degree Taylor polynomial of the functions x(t) and y(t).

Solutions

1. $y''(x) = x y^2(x) - y'(x)$, y(0) = 2, y'(0) = 1. Find the 3rd degree Taylor polynomial of the solution to the differential equation.

Solution. For the Taylor polynomial we need the values y(0), y'(0), y''(0), y'''(0).

1) From the initial conditions y(0) = 2, y'(0) = 1

2) Substituting *x* = 0 into the equation:

 $y''(0) = 0 \cdot y^{2}(0) - y'(0) = 0 \cdot 2^{2} - 1 = -1$ 3) Differentiating both sides of $y''(x) = x y^{2}(x) - y'(x)$ $\implies y'''(x) = y^{2}(x) + x \cdot 2 y(x) y'(x) - y''(x)$ $\implies y'''(0) = 2^{2} + 0 \cdot 2 \cdot 2 \cdot 1 - (-1) = 5$

$$y(x) \approx T_3(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 =$$
$$= 2 + 1 \cdot x + \frac{-1}{2!}x^2 + \frac{5}{3!}x^3 = 2 + x - \frac{1}{2}x^2 + \frac{5}{6}x^3$$

2. The angle of a pendulum of length *L* is given by $\theta(t)$ as a function of the time. From the equation of motion, dividing by *m*, we obtain $\theta''(t) + \frac{g}{t} \sin \theta(t) = 0$.

Let $\omega := \sqrt{\frac{g}{L}}$. If the pendulum is pushed from vertical position with velocity *v*, then the initial conditions are $\theta(0) = 0$, $\theta'(0) = v$. Find the 3rd degree Taylor polynomial of the solution to the differential equation.

Solution. For the Taylor polynomial we need the values $\theta(0)$, $\theta'(0)$, $\theta''(0)$, $\theta'''(0)$. The equation is $\theta''(t) = -\frac{g}{L} \sin \theta(t)$.

1) From the initial conditions $\theta(0) = 0$, $\theta'(0) = v$

2) Substituting t = 0 into the equation:

$$\theta''(0) = -\frac{g}{L}\sin\theta(0) = 0$$

3) Differentiating both sides of $\theta''(t) = -\frac{g}{L} \sin(\theta(t))$ using the chain rule:

$$\implies \theta^{\prime\prime\prime}(t) = -\frac{g}{L}\cos(\theta(t)) \cdot \theta^{\prime}(t)$$

$$\implies \theta^{\prime\prime\prime}(0) = -\frac{g}{L}\cos(\theta(0)) \cdot \theta^{\prime}(0) = -\frac{g}{L}\cos(0) \cdot \theta^{\prime}(0) = -\frac{g}{L} \cdot 1 \cdot v = -\omega^2 v$$

The approximation of the solution is $\theta(t) \approx T_3(t) = \theta(0) + \theta'(0)t + \frac{\theta''(0)}{2!}t^2 + \frac{\theta'''(0)}{3!}t^3 = 0 + vt + \frac{0}{2!}t^2 - \frac{\omega^2 v}{3!}t^3 = vt - \frac{\omega^2 v}{6}t$

3. In the chemical reaction $X + Y \rightarrow 2X$, the concentrations of the species X and Y are described by x(t) and y(t) as a function of the time. The reaction can be modelled by the differential equation system

x'(t) = k x(t) y(t)y'(t) = -k x(t) y(t)

where k > 0 is the reaction rate coefficient. Let k = 1 and x(0) = y(0) = 1. Find the 3rd degree Taylor polynomial of the functions x(t) and y(t).

Solution.

1) From the initial conditions x(0) = y(0) = 1

2) From the equation system the first derivatives and the substitution values:

$$\begin{aligned} x'(t) &= x(t) y(t) \implies x'(0) = x(0) y(0) = 1 \cdot 1 = 1 \\ y'(t) &= -x(t) y(t) \qquad y'(0) = -x(0) y(0) = -1 \cdot 1 = -1 \end{aligned}$$

3) The second derivatives and the substitution values: $x''(t) = x'(t)y(t) + x(t)y'(t) \implies x''(0) = x'(0)y(0) + x(0)y'(0) = 1 \cdot 1 + 1 \cdot (-1) = 0$ $y''(t) = -x'(t)y(t) - x(t)y'(t) \qquad y''(0) = -x'(0)y(0) - x(0)y'(0) = -1 \cdot 1 - 1 \cdot (-1) = 0$

4) The third derivatives and the substitution values: x'''(t) = x''(t)y(t) + x'(t)y'(t) + x'(t)y'(t) + x(t)y''(t)y'''(t) = -x''(t)y(t) - x'(t)y'(t) - x(t)y''(t)

 $\implies x''(0) = 0 \cdot 1 + 1 \cdot (-1) + 1 \cdot (-1) + 1 \cdot 0 = -2$ $y''(0) = -0 \cdot 1 - 1 \cdot (-1) - 1 \cdot (-1) - 1 \cdot 0 = 2$

The approximations of the solutions are

 $\begin{aligned} x(t) &\approx x(0) + x'(0) t + \frac{x''(0)}{2!} t^2 + \frac{x'''(0)}{3!} t^3 = \mathbf{1} + \mathbf{1} \cdot t + \frac{0}{2!} t^2 + \frac{-2}{3!} t^3 = \mathbf{1} + t - \frac{1}{3} t^3 \\ y(t) &\approx y(0) + y'(0) t + \frac{y''(0)}{2!} t^2 + \frac{y'''(0)}{3!} t^3 = \mathbf{1} - \mathbf{1} \cdot t + \frac{0}{2!} t^2 + \frac{2}{3!} t^3 = \mathbf{1} - t + \frac{1}{3} t^3 \end{aligned}$