
04 - Higher order linear differential equations
Definition. An nth order linear differential equation has the form

(1)   y(n) + an-1(x) y(n-1) + ... + a1(x) y ' + a0(x) y = f (x)

(2)  f (x) ≡ 0: homogeneous equation
(3)  f (x) ≢ 0: nonhomogeneous equation

Initial values:

(4)  y(x0) = y0, y ' (x0) = y0,1, ..., y(n-1)(x0) = y0,n-1

Theorem: If the functions f , a0, a1, ..., an-1 are all continuous on some open interval I 
  containing x0 then the initial value problem given by (1), (4) has a unique solution 
  on the interval I.

Theorem: If y1 and y2 are solutions of the nonhomogeneous equation (3) then y1 - y2 is a 
  solution of the homogeneous equation (2).

Proof: Let L[y] := y(n) + an-1(x) y(n-1) + ... + a1(x) y ' + a0(x) y
    Since L[y1] = f (x), L[y2] = f (x) and

(y1 - y2) ' = y1 ' - y2 ', (y1 - y2) '' = y1 '' - y2 '', etc.
           ⟹  L[y1 - y2] = L[y1] - L[y2] = f (x) - f (x) = 0.

Theorem (consequence): The general solution of the nonhomogeneous equation (3) on I is 
y(x) = yh(x) + yp(x) where yh(x) is the general solution of the homogeneous equation (2) 

and yp(x) is a particular solution of (3).

Proof: If y is any solution of (3) and yp is a particular solution of (3) then y - yp is a

 solution of (2). Let y - yp = yh  ⟹  y = yp + yh, where yh is the general solution of (2).

Theorem (Superposition principle or linearity principle): 
        For the homogeneous linear differential equation (2), sums and constant multiples of 
        solutions on some open interval I are also solutions of (2) on I.

Proof: Let L[y] := y(n) + an-1(x) y(n-1) + ... + a1(x) y ' + a0(x) y
 We show that if L[Y1] ≡ 0 and L[Y2] ≡ 0 then L[Y1 + Y2] ≡ 0.

    
                   Y1

(n) + an-1(x) Y1
(n-1) + ... + a1(x) Y1 ' + a0(x) Y1 ≡ 0

Y2
(n) + an-1(x) Y2

(n-1) + ... + a1(x) Y2 ' + a0(x) Y2 ≡ 0
 

            ⟹  (Y1 + Y2)
(n) + an-1(x) (Y1 + Y2)

(n-1) + ... + a1(x) (Y1 + Y2) ' + a0(x) (Y1 + Y2) ≡ 0
            ⟹  L[Y1 + Y2] ≡ 0



 Similarly, if L[Y1] ≡ 0 then L[C ·Y1] = 0.

Warning: The theorem does not hold for the nonhomogeneous equation or for nonlinear equations.

Linear independence of solutions

Definition: n solutions y1, y2, ..., yn form a basis (or fundamental system) of solutions of (2) 
   on I  if these solutions are linearly independent on I.

Theorem: If y1, y2, ..., yn are linearly independent solutions of the homogeneous equation (2) 
  then the general solution is of the form

  y(x) = c1 y1(x) + c2 y2(x) + ... + cn yn(x), ci ∈ 

Definition: The functions y1, y2, ..., yn are called linearly independent on an interval I 
    if the equation

    λ1 y1(x) + λ2 y2(x) + ... + λn yn(x) = 0,  for all x ∈ I

    implies that all λ1 = λ2 = ... = λn = 0. 
    These functions are called linearly dependent on I if this equation holds on I 
    for some  λ1, λ2, ..., λn not all zero.

Remarks: (1) If for example λ1 ≠ 0 then y1(x) can be expressed as the following linear combination:

         y1(x) = -
1

λ1
(λ2 y2(x) + ... + λn yn(x))

 (2) If n = 2 and λ1 ≠ 0 or λ2 ≠ 0 then y1 = -
λ2

λ1
y2 or y2 = -

λ1

λ2
y1.

        ⟹   y1 and y2 are proportional, while in the case of linear independence
        they are not proportional.

Examples:  (1) The functions y1 = x, y2 = 2 x - x2, y3 = 3 x2 are linearly dependent on any interval 

 since  2 y1 - y2 -
1

3
y3 = 0.

    (2) The functions y1 = x, y2 = x2, y3 = x3 are linearly independent on any interval since if 
 λ1 x + λ2 x2 + λ3 x3 = 0 for all x ∈  then with x = -1, 1, 2, we get

  -λ1 + λ2 - λ3 = 0
λ1 + λ2 + λ3 = 0
2 λ1 + 4 λ2 + 8 λ3 = 0

  from where λ1 = λ2 = λ3 = 0, that is, y1, y2 and y3 are linearly independent.

Definition: Let y1, y2, ..., yn be at least (n - 1) times continuously differentiable on I. 
    The Wronski determinant or Wronskian of y1, y2, ..., yn is
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    W(x) = det

y1 y2 ... yn
y1 ' y2 ' ... yn '
... ... ... ...

y1
(n-1) y2

(n-1) ... yn(n-1)

Theorem: (1) If W ≢ 0 on I then y1, y2, ..., yn are linearly independent on I.

Remark:  The converse of statement (1) is not true. For example, y1(x) = x3 and y2(x) = x 3  are 

           linearly independent on I but 
           

          W = det
x3 x3

3 x2 3 x2 ≡ 0 if x ≥ 0   and   W = det
x3 -x3

3 x2 -3 x2 ≡ 0 if x ≤ 0.

(2) If y1, y2, ..., yn are linearly dependent on I then W ≡ 0.

Examples: (1) The functions y1 = x, y2 = 2 x - x2, y3 = 3 x2 are linearly dependent so

          W = det
x 2 x - x2 3 x2

1 2 - 2 x 6 x
0 -2 6

= x(12 - 12 x + 12 x) - 1 ·12 x - 6 x2 + 6 x2 = 12 x - 12 x = 0.

          
              (2) If y1 = x, y2 = x2, y3 = x3 then 

          W = det
x x2 x3

1 2 x 3 x2

0 2 6 x
= x12 x2 - 6 x2 - 1 ·6 x3 - 2 x3 ≡ 6 x3 - 4 x3 = 2 x3 ≠ 0 

         
          so y1, y2, y3 are linearly independent.

Theorem: Suppose that the coefficients a0(x), a1(x), ..., an-1(x) of the homogeneous 
  equation (2) are continuous on some open interval I. Then n solutions 
  y1, y2, ..., yn of (2) on I are linearly independent if and only if W(x) ≠ 0 if x ∈ I.

Higher order homogeneous equations with constant coefficients

Consider the equation

y(n) + an-1 y(n-1) + ... + a1 y ' + a0 y = 0,     where  ai ∈ , i = 0, 1, ..., n - 1

We assume that the equation has a solution of the form y = eλ x (recall that a first order linear 
differential equation y ' + K y = 0 has a solution y = e-K x, where K is a constant).

Substituting y = eλ x, λ ∈  :  y ' = λ eλ x, y '' = λ2 eλ x, ..., y(n) = λn eλ x

⟹ eλ xλn + an-1 λ
n-1 + ... + a1 λ + a0 = 0, eλ x≠0
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We obtain the characteristic equation:

λn + an-1 λ
n-1 + ... + a1 λ + a0 = 0

Cases:

1. Distinct real roots: If all the n roots λ1, λ2, ..., λn are real and different then the solutions 
eλ1 x, eλ2 x, ..., eλn x are linearly independent (they constitute a basis).

Example: y1 = e2 x, y2 = e3 x 

⟹  W = det
y1 y2

y1 ' y2 '
= det

e2 x e3 x

2 e2 x 3 e3 x = 3 e5 x - 2 e5 x = e5 x ≠ 0  

⟹  y1 = e2 x, y2 = e3 x are linearly independent.

2. Multiple real roots: If λ is a root of order k, then k linearly independent solutions 
corresponding to this root are   eλ x, x eλ x, x 2 eλ x, ..., xk-1 eλ x  (it is called inner resonance).

3. Simple complex roots: If λ1,2 = α ± β i then the solutions eα x cosβ x and  eα x sinβ x

are linearly independent.

If complex roots occur, they must occur in conjugate pairs since the coefficients of the 
characteristic equation are real. The previous statements are also true for complex roots, 
however, in this case the solutions are complex. In the following, we use the 
Euler's formula ei x = cos x + i sin x.

      
      If the roots are λ1 = α + β i and λ2 = λ1 = α - β i then two complex solutions are

      
      Y1 = eλ1 x = eα+β i x = eα x ei β x = eα x(cosβ x + i sinβ x)

Y2 = eλ2 x = eα-β i x = eα x ei (-β) x = eα x(cos(-β x) + i sin(-β x)) = eα x(cosβ x - i sinβ x)
      

      Any linear combination of Y1 and Y2 is also a solution  ⟹

      Z1 :=
Y1 + Y2

2
= eα x cosβ x = Reeλ1 x       (this is the real part of eλ1 x)

      Z2 :=
Y1 - Y2

2 i
= eα x sinβ x = Imeλ1 x        (this is the imaginary part of eλ1 x)

      
      Z1 and Z2 are linearly independent (since they are not a constant multiple of 
      each other). We use Z1 and Z2 instead of Y1 and Y2.

4. Multiple complex roots: Z1 and Z2 are multiplied by x, x2, x3, etc.       

Examples

1. y ''' - 2 y '' - 3 y ' = 0

The characteristic equation is λ3 - 2 λ2 - 3 λ = 0
λ(λ + 1) (λ - 3) = 0   ⟹   λ1 = 0, λ2 = -1, λ3 = 3  (distinct real roots)
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The linearly independent solutions are e0 x = 1, e-x, e3 x

The general solution of the homogeneous equation is a linear combination of these functions: 
yh(x) = c1 + c2 e-x + c3 e3 x where c1, c2, c3 ∈ 

2. y ''' + 2 y '' + y ' = 0

The characteristic equation is λ3 + 2 λ2 + λ = λλ2 + 2 λ + 1 = λ(λ + 1)2 = 0  

⟹   λ1 = 0, λ2 = λ3 = -1  (double real roots, inner resonance)
    

The linearly independent solutions are e0 x = 1, e-x, x e-x

The general solution is:  yh(x) = c1 + c2 e-x + c3 x e-x

3. y ''' + 4 y '' + 13 y ' = 0

The characteristic equation is λ3 + 4 λ2 + 13 λ = λλ2 + 4 λ + 13 = 0  

⟹   λ1 = 0, λ2,3 =
-4 ± 16 - 52

2
=
-4 ± 6 i

2
= -2 ± 3 i  (simple complex roots)

    
The linearly independent solutions are e0 x = 1, e-2 x cos 3 x, e-2 x sin 3 x
The general solution is:  yh(x) = c1 + c2 e-2 x cos 3 x + c3 e-2 x sin 3 x

4. y(4) + 2 y '' + y = 0

The characteristic equation is λ4 + 2 λ2 + 1 = λ2 + 12
= (λ - i)2 (λ + i)2 = 0  

⟹   λ1 = λ2 = i, λ3 = λ4 = -i  (double complex roots, inner resonance)
    

The linearly independent solutions are e0 x cos x = cos x, sin x, x cos x, x sin x
The general solution is:  yh(x) = c1 cos x + c2 sin x + c3 x cos x + c4 x sin x

Higher order linear nonhomogeneous differential 
equations

Higher order nonhomogeneous equations with constant coefficients

Consider the equation

y(n) + an-1 y(n-1) + ... + a1 y ' + a0 y = f (x)

with constant coefficients where f (x) ≠ 0. The general solution of the nonhomogeneous linear equa-
tion is

y = yh + yp

where yh is the general solution of the corresponding homogeneous equation and yp is a particular 
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solution of the nonhomogeneous equation.

If f (x) has a special form: exponential function, polynomial, cosine, sine or sums or products of 
such functions then the derivatives of f (x) are similar to f (x) itself. 
In these cases we can find yp with the method of undetermined coefficients: 

we suppose that the form of yp is similar to the form of f (x).

Rules for the method of undetermined coefficients

1. Basic Rule. If f (x) has the form
1. f (x) = K eα x

2. f (x) = Pm(x) = am xm + ... + a0

3. f (x) = K sinβ x   or   K cosβ x
4. f (x) = K eα x sinβ x   or   K eα x cosβ x
5. f (x) = Pm(x) sinβ x   or   Pm(x) cosβ x,  where Pm(x) = am xm + ... + a0

6. f (x) = Pm(x) eα x,  where Pm(x) = am xm + ... + a0

7. f (x) = Pm(x) eα x sinβ x or Pm(x) eα x cosβ x, where Pm(x) = am xm + ... + a0

then the choice for yp is

1. yp = A eα x,   where A is unknown

2. yp =Qm(x) = Bm xm + ... + B0,   where B0, ..., Bm are unknowns

3. yp = A sinβ x + B cosβ x,    where A, B are unknowns 

4. yp = eα x(A sinβ x + B cosβ x),    where A, B are unknowns

5. yp =Qm(x) sinβ x + Rm(x) cosβ x,   where Qm(x), Rm(x) are unknown polynomials of degree m

6. yp =Qm(x) eα x,   where Qm(x) is an unknown polynomial of degree m

7. yp = eα x(Qm(x) sinβ x + Rm(x) cosβ x), whereQm(x), Rm(x) are  unknown polynomials of 

degree m

The unknown coefficients in yp can be determined by substituting yp and its derivatives into the 

nonhomogeneous equation and comparing the corresponding terms on both sides. 
If the choice for yp is correct then we get the same number of independent linear equations 

as the number of unknowns, so the solution for the unknowns is unique.

2. Sum Rule. If f (x) is a sum of functions in the above list then yp is also the sum of the 

corresponding functions.

3. Modification Rule The method doesn’t work if a term in f (x) (or yp) happens to be a solution 

of the homogeneous equation. It is called outer resonance, and this term is multiplied by 
x, x2, ... etc. until the resonance disappears.

Practice exercises - Homework
Solve the following differential equations.
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1. y ''-3 y '+2 y = e3 x+ x2 + x

Solution. The general solution of the homogeneous equation: 

λ2 - 3 λ + 2 = (λ - 2) (λ - 1) = 0  ⟹  yh = C1 e2 x + C2 ex

Here f (x) = e3 x + x2 + x. Finding a particular solution of the nonhomogeneous equation:

2 · yp := A e3 x + B x2 + C x + D
-3 · yp ' = 3 A e3 x + 2B x + C

1 · yp '' = 9 A e3 x + 2B

Substituting into the nonhomogeneous equation:

(9 A - 9 A + 2 A) e3 x + x2(2B) + x(2C - 6B) + (2D - 3C + 2B) = e3 x + x2 + x

Comparing the coefficients of the corresponding terms on both sides:

2 A = 1  ⟹  A =
1

2

2B = 1  ⟹  B =
1

2
2C - 6B = 1  ⟹  2C = 4, C = 2

2D - 3C + 2B = 0  ⟹  2D = 6 - 1,  D =
5

2
The general solution of the nonhomogeneous equation is

y(x) = yh(x) + yp(x) = C1 e2 x + C2 ex +
1

2
x2 + 2 x +

5

2
+

1

2
e3 x

2. y ''-3 y '+2 y = (x) + (ex)

Solution. The general solution of the homogeneous equation: 

λ2 - 3 λ + 2 = (λ - 2) (λ - 1) = 0 ⟹ yh = C1 e2 x + C2 ex

Here f (x) = (x) + (ex). Now we have outer resonance. Let’s see what happens if we don’t observe this 
and 
make a wrong choice for yp. Based on the structure of f (x) only:

2 · yp := (A x + B) + (C ex)
-3 · yp ' = A + C ex

1 · yp '' = C ex

 
Substituting into the nonhomogeneous equation:
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x(2 A) + (2B - 3 A) + (2C - 3C + C) ex = x + ex

This is a contradiction since the coefficient of ex is 0 on the left-hand side and 
1 on the right-hand side and 0 ≠ 1.

Since the term C ex in yp  (or ex in f (x)) is a constant multiple of the term C2 ex in yh 

then we multiply C ex by x, so the right choice for yp is the following:

2 · yp := (A x + B) + (C x ex)    ⟸  yh = C1 e2 x + C2 ex

-3 · yp ' = A + C x ex + C ex

1 · yp '' = C x ex + C ex + C ex

Substituting into the nonhomogeneous equation and comparing the coefficients on both sides:

x(2 A) + (2B - 3 A) + x ex(2C - 3C + C) + ex(-3C + 2C) = x + ex

2 A = 1  ⟹  A =
1

2

2B - 3 A = 0  ⟹  B =
3

2
A =

3

4
-C = 1  ⟹  C = -1

The general solution of the nonhomogeneous equation is

y(x) = yh(x) + yp(x) = C1 e2 x + C2 ex +
1

2
x +

3

4
-x ex

3. y ''- y = x2 - x +1+ (ex)

Solution. The general solution of the homogeneous equation: 

λ2 - 1 = 0   ⟹  λ1 = 1, λ2 = -1    ⟹ yh = C1 ex + C2 e-x

Here f (x) = x2 - x + 1 + (ex), so there is outer resonance.

-1 · yp := A x2 + B x + C + (D x ex)

   0 · yp ' = 2 A x + B + D x ex + D ex

1 · yp '' = 2 A + D x ex + D ex + D ex

Substituting into the nonhomogeneous equation and comparing the coefficients on both sides:

(-A) x2 + (-B) x + (2 A - C) + x ex(-D + D) + ex ·2D = x2 - x + 1 + ex
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A = -1, B = 1,  C = 2 A - 1 = -3,  D =
1

2

The general solution of the nonhomogeneous equation is

y(x) = yh(x) + yp(x) = C1 ex + C2 e-x - x2 + x - 3 +
1

2
x ex

4. y ''-2 y '+ y = 6 ex

Solution. The general solution of the homogeneous equation: 

λ2 - 2 λ + 1 = 0   ⟹  λ1 = λ2 = 1    ⟹ yh = C1 ex + C2 x ex   (inner resonance)

First try: yp = A ex   ⟹ substituting into the equation: ex(A - 2 A + A) = 6 ex, that is, 0 = 6, 

which is a contradiction. This choice is not correct since A ex is a constant multiple of C1 ex in yh
⟹  we have to multiply this term by x

Second try: yp = A x ex. This choice is not correct either since A x ex is a constant multiple 

of the term C2 x ex in yh.
⟹ we multiply this term again by x

So the correct choice for yp is the following:

1 · yp := A x2 ex     (outer resonance)
-2 · yp ' = 2 A x ex + A x2 ex

1 · yp '' = 2 A ex + 2 A x ex + 2 A x ex + A x2 ex

x2 ex(A - 2 A + A) + x ex(-4 A + 4 A) + 2 A ex = 6 ex

2 A = 6  ⟹  A = 3

The general solution of the nonhomogeneous equation is

y(x) = yh(x) + yp(x) = C1 ex + C2 x ex + 3 x2 ex

5. y ''+8 y '+25 y = e-4 x

Solution. The general solution of the homogeneous equation: 

λ2 + 8 λ + 25 = 0   ⟹  λ1,2 =
-8 ± 64 - 100

2
=
-8 ± 6 i

2
= -4 ± 3 i   

yh(x) = C1 e-4 x cos 3 x + C2 e-4 x sin 3 x

Here f (x) = e-4 x. There is no outer resonance in this case, since e-4 x is not a constant
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multiple of either of the terms in yh.

25 · yp := A e-4 x 
8 · yp ' = -4 A e-4 x

1 · yp '' = 16 A e-4 x

(25 A - 32 A + 16 A) e-4 x = e-4 x

9 A = 1  ⟹  A =
1

9

The general solution of the nonhomogeneous equation is

y(x) = yh(x) + yp(x) = C1 e-4 x cos 3 x + C2 e-4 x sin 3 x +
1

9
e-4 x

6. y ''+5 y '+6 y = 2 e-2 x, y(0) = 0, y ' (0) = 3

Solution. The general solution of the homogeneous equation: 
λ2 + 5 λ + 6 = (λ + 2) (λ + 3) = 0   ⟹  λ1 = -2, λ2 = -3   

yh(x) = C1 e-2 x + C2 e-3 x

Here f (x) = 2 e-2 x.  There is outer resonance, so the choice yp = A e-2 x  is not correct, 

since it is a constant multiple of C1 e-2 x  in yh(x). So the correct choice for yp is:

6 · yp := A x e-2 x 
5 · yp ' = A e-2 x - 2 A x e-2 x

1 · yp '' = -2 A e-2 x - 2 A e-2 x + 4 A x e-2 x

x e-2 x(6 A - 10 A + 4 A) + e-2 x(5 A - 4 A) = 2 e-2 x

⟹  A = 2

The general solution of the nonhomogeneous equation is
y(x) = yh(x) + yp(x) = C1 e-2 x + C2 e-3 x + 2 x e-2 x

For the initial conditions we need y ':
y ' (x) = -2C1 e-2 x - 3C2 e-3 x + 2 e-2 x - 4 x e-2 x

From the initial conditions:
y(0) = 0   ⟹  C1 + C2 = 0
y ' (0) = 3  ⟹ -2C1 - 3C2 + 2 = 3   ⟹  C1 = 1, C2 = -1

The solution of the initial value problem is
y(x) = e-2 x - e-3 x + 2 x e-2 x
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7. y ''+ y = (-4 cos x) + (x), y(0) = 2, y ' (0) = 2

Solution.  λ2 + 1 = 0   ⟹  λ1,2 = ± i   ⟹  yh(x) = C1 cos x + C2 sin x

Here f (x) = (-4 cos x) + (x)
First try: yp = (A cos x + B sin x) + (C x + D) but this is not correct since A cos x is a 

constant multiple of C1 cos x  and B sin x is a constant multiple of C2 sin x in yh(x). 

There is outer resonance, so we multiply these two terms by x.

1 · yp := (A x cos x + B x sin x) + (C x + D) 
0 · yp ' = A cos x - A x sin x + B sin x + B x cos x + C
1 · yp '' = -A sin x - A sin x - A x cos x + B cos x + B cos x - B x sin x

(A - A) x cos x + (B - B) x sin x + (2B) cos x + (-2 A) sin x + C x + D = -4 cos x + x

2B = -4, B = -2
-2 A = 0, A = 0
C = 1, D = 0

The general solution of the nonhomogeneous equation is
y(x) = yh(x) + yp(x) = C1 cos x + C2 sin x - 2 x sin x + x

For the initial conditions we need y ':
y ' (x) = -C1 sin + C2 cos x - 2 sin x - 2 x cos x + 1

From the initial conditions:
y(0) = 2   ⟹  C1 = 2
y ' (0) = 2  ⟹ C2 + 1 = 2   ⟹  C2 = 1

The solution of the initial value problem is
y(x) = 2 cos x + sin x + x(1 - 2 sin x)

First order linear differential equations with constant 
coefficients

1. Mixing problem: y ' = 0.6-0.2 y

See exercise 02-7. We can apply different solution methods:

(1) separable (autonomous): 
d y

d t
= 0.2 (3 - y) ⟹ 

1

3 - y
dy = 0.2 dt ...

(2) first-order linear nonhomogeneous equation:
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homogeneous equation: y ' = -0.2 y  ⟹  yh(t) = C e-0.2 t

variation of the constant method: yp(t) = c(t) e-0.2 t  ⟹

c ' (t) e-0.2 t + c(t) e-0.2 t(-0.2) = 0.6 - 0.2 c(t) e-0.2 t  ⟹ c ' (t) = 0.6 e0.2 t ⟹
c(t) = 3 e0.2 t  ⟹  yp(t) = 3  ⟹

y(t) = yh(t) + yp(t) = C e-0.2 t + 3

(3) first-order linear nonhomogeneous equation with constant coefficients:
y ' + 0.2 y = 0.6
characteristic equation: λ + 0.2 = 0  ⟹ yh(t) = C e-0.2 t

the particular solution of the nonhomogeneous equation: yp(t) = A  ⟹

0 + 0.2 A = 0.6  ⟹ A = 3
the general solution of the nonhomogeneous equation: 
y(t) = yh(t) + yp(t) = C e-0.2 t + 3

2. Current in an RC circuit:   R I' (t) + 1

C
I(t) = F(t)

See exercise 03-6. We solve it in the case when R = C = 1 and F(t) = F0 sin t where F0 > 0.
Homogeneous equation: I ' (t) + I(t) = 0
Characteristic equation: λ + 1 = 0  ⟹  λ = -1
The general solution of the homogeneous equation: Ih(t) = C e-t

If F(t) = F0 sin t then the particular solution of the nonhomogeneous equation:

1 · Ip(t) = a sin t + b cos t

1 · Ip ' (t) = a cos t - b sin t

Substituting into the nonhomogeneous equation:
sin t(a - b) + cos t(b + a) = F0 sin t  ⟹

a - b = F0

b + a = 0

   ⟹  a =
F0

2
, b = -

F0

2

The general solution of the nonhomogeneous equation:

I(t) = Ih(t) + Ip(t) = C e-t +
F0

2
(sin t - cos t)
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Physical examples

1. Simple harmonic motion (mass on a spring)

Newton’s second law: ma =mx '' = -D x

m: mass, a: acceleration, D: spring constant, x: displacement from the equilibrium position

-D x: spring force,  ω =
D

m
: angular frequency

⟹  x '' (t) +ω2 x(t) = 0

Characteristic equation: λ2 +ω2 = 0  ⟹  λ1,2 = ±ω i

The general solution of the homogeneous equation: xh(t) = c1 sin ω t + c2 cos ω t

Remark: The equation can also be written in the form xh(t) = A cos(ω t - α) 

where A = c1
2 + c2

2  and tanα =
c1

c2
.

tanα =
c1

c2
  ⟹  sinα =

c1

c1
2 + c2

2
, cosα =

c2

c1
2 + c2

2
  ⟹  

xh(t) = c1 sinω t + c2 cosω t = c1
2 + c2

2 c1

c1
2 + c2

2
sinω t +

c2

c1
2 + c2

2
cosω t =

= c1
2 + c2

2 (sinα ·sinω t + cosα ·cosω t) = c1
2 + c2

2 ·cos(ω t - α).

Example: x '' (t) + 4 x(t) = 0, x(0) = 0, x ' (0) = 10 
⟹  x(t) = 5 sin(2 t)

2 4 6 8 10

-4

-2

2

4

2. Damped harmonic motion

Newton’s second law: ma = -D x - c v

-D x: spring force,  -c v: linear damping force

Let ω2 =
D

m
 and 2 k =

c

m
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⟹  x '' (t) + 2 k x ' (t) +ω2 x(t) = 0

Characteristic equation: λ2 + 2 k λ +ω2 = 0  ⟹  λ1,2 = -k ± k2 -ω2

a) k >ω (overdamping - distinct real roots)
b) k =ω (critical damping - double real roots)
c) k <ω (underdamping - complex roots)

a) k > ω (overdamping - distinct real roots)

Example: k = 5, ω = 4
x '' (t) + 10 x ' (t) + 16 x(t) = 0, x(0) = 0, x ' (0) = 1 

⟹  x(t) = -
1

6
e-8 t +

1

6
e-2 t

0.5 1.0 1.5 2.0 2.5 3.0

0.02

0.04

0.06

0.08

b) k = ω (critical damping - double real roots)

Example: k = 2, ω = 2
x '' (t) + 4 x ' (t) + 4 x(t) = 0, x(0) = 0, x ' (0) = 1 
⟹  x(t) = t e-2 t

0.5 1.0 1.5 2.0 2.5 3.0

0.02

0.04

0.06

0.08

c) k < ω (underdamping - complex roots)

Example: k = 1, ω = 20
x '' (t) + 2 x ' (t) + 400 x(t) = 0, x(0) = 0, x ' (0) = 1 

⟹  x(t) =
1

399
e-t sin 399 t

1 2 3 4 5

-0.04

-0.02

0.02

0.04
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3. Forced harmonic motion

 x '' (t) +2 k x ' (t) +ω2 x(t) =
F

m
sin(α t)

F sin (α t): external force or driving force, 
α: driving frequency (frequency of the external force)

Example: m = 1, k = 1, ω = 10, F = 1, α = 1
x '' (t) + 2 x ' (t) + 100 x(t) = sin t, x(0) = 0, x ' (0) = 1 

⟹  x(t) = e-t
2

9805
cos3 11 t +

3236

9805 11
sin3 11 t +

-2 cos t + 99 sin t

9805

5 10 15 20 25 30

-0.05

0.05

4. Forced undamped harmonic motion

 x '' (t) +ω2 x(t) =
F

m
sin(α t)

ω: natural frequency of the system (the frequency at which a system tends to oscillate 
in the absence of any driving or damping force)
α: driving frequency (frequency of the external force)

Example: m = 1, ω = 3, F = 1, α = 2
x '' (t) + 9 x(t) = sin 2 t, x(0) = 0, x ' (0) = 1 

⟹  x(t) =
1

5
(sin 2 t + sin 3 t)

5 10 15 20

-0.4

-0.2

0.2

0.4
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Resonance: ω = α

Example: m = 1, ω = 1, F = 1, α = 1
x '' (t) + x(t) = sin t, x(0) = 0, x ' (0) = 1 

⟹  x(t) =
1

2
(-t cos t + 3 sin t)

20 40 60 80 100

-40

-20

20

40

Examples: - pushing a person in a swing
- electrical resonance of tuned circuits in radios and TVs that allow radio frequencies to selectively 
received
- acoustic resonances of musical instruments etc.

Hyperlink["https://en.wikipedia.org/wiki/Resonance"]

https://en.wikipedia.org/wiki/Resonance
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