## 04 - Higher order linear differential equations

Definition. An $n$th order linear differential equation has the form
(1) $y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{1}(x) y^{\prime}+a_{0}(x) y=f(x)$
(2) $f(x) \equiv 0$ : homogeneous equation
(3) $f(x) \neq 0$ : nonhomogeneous equation

Initial values:
(4) $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0,1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{0, n-1}$

Theorem: If the functions $f, a_{0}, a_{1}, \ldots, a_{n-1}$ are all continuous on some open interval / containing $x_{0}$ then the initial value problem given by (1), (4) has a unique solution on the interval $/$.

Theorem: If $y_{1}$ and $y_{2}$ are solutions of the nonhomogeneous equation (3) then $y_{1}-y_{2}$ is a solution of the homogeneous equation (2).

Proof:
Let $L[y]:=y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{1}(x) y^{\prime}+a_{0}(x) y$
Since $L\left[y_{1}\right]=f(x), L\left[y_{2}\right]=f(x)$ and
$\left(y_{1}-y_{2}\right)^{\prime}=y_{1}^{\prime}-y_{2}{ }^{\prime},\left(y_{1}-y_{2}\right)^{\prime \prime}=y_{1}{ }^{\prime \prime}-y_{2}{ }^{\prime \prime}$, etc.
$\Longrightarrow L\left[y_{1}-y_{2}\right]=L\left[y_{1}\right]-L\left[y_{2}\right]=f(x)-f(x)=0$.
Theorem (consequence): The general solution of the nonhomogeneous equation (3) on / is $\boldsymbol{y}(\boldsymbol{x})=\boldsymbol{y}_{\boldsymbol{h}}(\boldsymbol{x})+\boldsymbol{y}_{\boldsymbol{p}}(\boldsymbol{x})$ where $y_{h}(x)$ is the general solution of the homogeneous equation (2) and $y_{p}(x)$ is a particular solution of (3).

Proof: If $y$ is any solution of (3) and $y_{p}$ is a particular solution of (3) then $y-y_{p}$ is a solution of (2). Let $y-y_{p}=y_{h} \Longrightarrow y=y_{p}+y_{h}$, where $y_{h}$ is the general solution of (2).

## Theorem (Superposition principle or linearity principle):

For the homogeneous linear differential equation (2), sums and constant multiples of solutions on some open interval I are also solutions of (2) on I.

Proof: Let $L[y]:=y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{1}(x) y^{\prime}+a_{0}(x) y$
We show that if $L\left[Y_{1}\right] \equiv 0$ and $L\left[Y_{2}\right] \equiv 0$ then $L\left[Y_{1}+Y_{2}\right] \equiv 0$.
$Y_{1}^{(n)}+a_{n-1}(x) Y_{1}^{(n-1)}+\ldots+a_{1}(x) Y_{1}{ }^{\prime}+a_{0}(x) Y_{1} \equiv 0$
$Y_{2}^{(n)}+a_{n-1}(x) Y_{2}^{(n-1)}+\ldots+a_{1}(x) Y_{2}{ }^{\prime}+a_{0}(x) Y_{2} \equiv 0$
$\Longrightarrow\left(Y_{1}+Y_{2}\right)^{(n)}+a_{n-1}(x)\left(Y_{1}+Y_{2}\right)^{(n-1)}+\ldots+a_{1}(x)\left(Y_{1}+Y_{2}\right)^{\prime}+a_{0}(x)\left(Y_{1}+Y_{2}\right) \equiv 0$
$\Longrightarrow L\left[Y_{1}+Y_{2}\right] \equiv 0$

Similarly, if $L\left[Y_{1}\right] \equiv 0$ then $L\left[C \cdot Y_{1}\right]=0$.
Warning: The theorem does not hold for the nonhomogeneous equation or for nonlinear equations.

## Linear independence of solutions

Definition: $n$ solutions $y_{1}, y_{2}, \ldots, y_{n}$ form a basis (or fundamental system) of solutions of (2) on $/$ if these solutions are linearly independent on $/$.

Theorem: If $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent solutions of the homogeneous equation (2) then the general solution is of the form

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x), \quad c_{i} \in \mathbb{R}
$$

Definition: The functions $y_{1}, y_{2}, \ldots, y_{n}$ are called linearly independent on an interval / if the equation
$\lambda_{1} y_{1}(x)+\lambda_{2} y_{2}(x)+\ldots+\lambda_{n} y_{n}(x)=0$, for all $x \in I$
implies that all $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=0$.
These functions are called linearly dependent on I if this equation holds on / for some $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ not all zero.

Remarks: (1) If for example $\lambda_{1} \neq 0$ then $y_{1}(x)$ can be expressed as the following linear combination: $y_{1}(x)=-\frac{1}{\lambda_{1}}\left(\lambda_{2} y_{2}(x)+\ldots+\lambda_{n} y_{n}(x)\right)$
(2) If $n=2$ and $\lambda_{1} \neq 0$ or $\lambda_{2} \neq 0$ then $y_{1}=-\frac{\lambda_{2}}{\lambda_{1}} y_{2}$ or $y_{2}=-\frac{\lambda_{1}}{\lambda_{2}} y_{1}$.
$\Longrightarrow y_{1}$ and $y_{2}$ are proportional, while in the case of linear independence they are not proportional.

Examples: (1) The functions $y_{1}=x, y_{2}=2 x-x^{2}, y_{3}=3 x^{2}$ are linearly dependent on any interval since $2 y_{1}-y_{2}-\frac{1}{3} y_{3}=0$.
(2) The functions $y_{1}=x, y_{2}=x^{2}, y_{3}=x^{3}$ are linearly independent on any interval since if $\lambda_{1} x+\lambda_{2} x^{2}+\lambda_{3} x^{3}=0$ for all $x \in \mathbb{R}$ then with $x=-1,1,2$, we get

$$
\begin{aligned}
& -\lambda_{1}+\lambda_{2}-\lambda_{3}=0 \\
& \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
& 2 \lambda_{1}+4 \lambda_{2}+8 \lambda_{3}=0
\end{aligned}
$$

from where $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$, that is, $y_{1}, y_{2}$ and $y_{3}$ are linearly independent.
Definition: Let $y_{1}, y_{2}, \ldots, y_{n}$ be at least $(n-1)$ times continuously differentiable on $l$. The Wronski determinant or Wronskian of $y_{1}, y_{2}, \ldots, y_{n}$ is

$$
W(x)=\operatorname{det}\left(\begin{array}{cccc}
y_{1} & y_{2} & \ldots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \ldots & y_{n}^{\prime} \\
\ldots & \ldots & \ldots & \ldots \\
y_{1}^{(n-1)} & y_{2}{ }^{(n-1)} & \ldots & y_{n}^{(n-1)}
\end{array}\right)
$$

Theorem: (1) If $W \neq 0$ on $/$ then $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent on $I$.
Remark: The converse of statement (1) is not true. For example, $y_{1}(x)=x^{3}$ and $y_{2}(x)=|x|^{3}$ are linearly independent on / but

$$
W=\operatorname{det}\left(\begin{array}{cc}
x^{3} & x^{3} \\
3 x^{2} & 3 x^{2}
\end{array}\right) \equiv 0 \text { if } x \geq 0 \text { and } W=\operatorname{det}\left(\begin{array}{cc}
x^{3} & -x^{3} \\
3 x^{2} & -3 x^{2}
\end{array}\right) \equiv 0 \text { if } x \leq 0
$$

(2) If $y_{1}, y_{2}, \ldots, y_{n}$ are linearly dependent on $/$ then $W \equiv 0$.

Examples: (1) The functions $y_{1}=x, y_{2}=2 x-x^{2}, y_{3}=3 x^{2}$ are linearly dependent so

$$
W=\operatorname{det}\left(\begin{array}{ccc}
x & 2 x-x^{2} & 3 x^{2} \\
1 & 2-2 x & 6 x \\
0 & -2 & 6
\end{array}\right)=x(12-12 x+12 x)-1 \cdot\left(12 x-6 x^{2}+6 x^{2}\right)=12 x-12 x=0
$$

(2) If $y_{1}=x, y_{2}=x^{2}, y_{3}=x^{3}$ then

$$
W=\operatorname{det}\left(\begin{array}{ccc}
x & x^{2} & x^{3} \\
1 & 2 x & 3 x^{2} \\
0 & 2 & 6 x
\end{array}\right)=x\left(12 x^{2}-6 x^{2}\right)-1 \cdot\left(6 x^{3}-2 x^{3}\right) \equiv 6 x^{3}-4 x^{3}=2 x^{3} \neq 0
$$

so $y_{1}, y_{2}, y_{3}$ are linearly independent.

Theorem: Suppose that the coefficients $a_{0}(x), a_{1}(x), \ldots, a_{n-1}(x)$ of the homogeneous equation (2) are continuous on some open interval $I$. Then $n$ solutions $y_{1}, y_{2}, \ldots, y_{n}$ of (2) on $I$ are linearly independent if and only if $W(x) \neq 0$ if $x \in I$.

## Higher order homogeneous equations with constant coefficients

Consider the equation
$y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=0, \quad$ where $a_{i} \in \mathbb{R}, i=0,1, \ldots, n-1$

We assume that the equation has a solution of the form $y=e^{\lambda x}$ (recall that a first order linear differential equation $y^{\prime}+K y=0$ has a solution $y=e^{-K x}$, where $K$ is a constant).

Substituting $y=e^{\lambda x}, \lambda \in \mathbb{R}: y^{\prime}=\lambda e^{\lambda x}, y^{\prime \prime}=\lambda^{2} e^{\lambda x}, \ldots, y^{(n)}=\lambda^{n} e^{\lambda x}$
$\Longrightarrow e^{\lambda x}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}\right)=0, \quad e^{\lambda x} \neq 0$

We obtain the characteristic equation:
$\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}=0$

## Cases:

1. Distinct real roots: If all the $n$ roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are real and different then the solutions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{n} x}$ are linearly independent (they constitute a basis).

Example: $\quad y_{1}=e^{2 x}, y_{2}=e^{3 x}$

$$
\begin{aligned}
& \Longrightarrow W=\operatorname{det}\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
e^{2 x} & e^{3 x} \\
2 e^{2 x} & 3 e^{3 x}
\end{array}\right)=3 e^{5 x}-2 e^{5 x}=e^{5 x} \neq 0 \\
& \Longrightarrow y_{1}=e^{2 x}, y_{2}=e^{3 x} \text { are linearly independent. }
\end{aligned}
$$

2. Multiple real roots: If $\lambda$ is a root of order $k$, then $k$ linearly independent solutions corresponding to this root are $e^{\lambda x}, x e^{\lambda x}, x^{2} e^{\lambda x}, \ldots, x^{k-1} e^{\lambda x}$ (it is called inner resonance).
3. Simple complex roots: If $\lambda_{1,2}=\alpha \pm \beta i$ then the solutions $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ are linearly independent.

If complex roots occur, they must occur in conjugate pairs since the coefficients of the characteristic equation are real. The previous statements are also true for complex roots, however, in this case the solutions are complex. In the following, we use the
Euler's formula $e^{i x}=\cos x+i \sin x$.

If the roots are $\lambda_{1}=\alpha+\beta$ i and $\lambda_{2}=\overline{\lambda_{1}}=\alpha-\beta i$ then two complex solutions are

$$
\begin{aligned}
& Y_{1}=e^{\lambda_{1} x}=e^{(\alpha+\beta i) x}=e^{\alpha x} e^{i \beta x}=e^{\alpha x}(\cos \beta x+i \sin \beta x) \\
& Y_{2}=e^{\lambda_{2} x}=e^{(\alpha-\beta i) x}=e^{\alpha x} e^{i(-\beta) x}=e^{\alpha x}(\cos (-\beta x)+i \sin (-\beta x))=e^{\alpha x}(\cos \beta x-i \sin \beta x)
\end{aligned}
$$

Any linear combination of $Y_{1}$ and $Y_{2}$ is also a solution $\Longrightarrow$
$Z_{1}:=\frac{Y_{1}+Y_{2}}{2}=e^{\alpha x} \cos \beta x=\operatorname{Re}\left(e^{\lambda_{1} x}\right) \quad$ (this is the real part of $e^{\lambda_{1} x}$ )
$Z_{2}:=\frac{Y_{1}-Y_{2}}{2 i}=e^{\alpha x} \sin \beta x=\operatorname{lm}\left(e^{\lambda_{1} x}\right) \quad$ (this is the imaginary part of $\left.e^{\lambda_{1} x}\right)$
$Z_{1}$ and $Z_{2}$ are linearly independent (since they are not a constant multiple of each other). We use $Z_{1}$ and $Z_{2}$ instead of $Y_{1}$ and $Y_{2}$.
4. Multiple complex roots: $Z_{1}$ and $Z_{2}$ are multiplied by $x, x^{2}, x^{3}$, etc.

## Examples

1. $y^{\prime \prime \prime}-2 y^{\prime \prime}-3 y^{\prime}=0$

The characteristic equation is $\lambda^{3}-2 \lambda^{2}-3 \lambda=0$
$\lambda(\lambda+1)(\lambda-3)=0 \Longrightarrow \lambda_{1}=0, \lambda_{2}=-1, \lambda_{3}=3$ (distinct real roots)

The linearly independent solutions are $e^{0 x}=1, e^{-x}, e^{3 x}$
The general solution of the homogeneous equation is a linear combination of these functions: $y_{h}(x)=c_{1}+c_{2} e^{-x}+c_{3} e^{3 x}$ where $c_{1}, c_{2}, c_{3} \in \mathbb{R}$
2. $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$

The characteristic equation is $\lambda^{3}+2 \lambda^{2}+\lambda=\lambda\left(\lambda^{2}+2 \lambda+1\right)=\lambda(\lambda+1)^{2}=0$
$\Longrightarrow \lambda_{1}=0, \lambda_{2}=\lambda_{3}=-1$ (double real roots, inner resonance)

The linearly independent solutions are $e^{0 x}=1, e^{-x}, x e^{-x}$
The general solution is: $y_{h}(x)=c_{1}+c_{2} e^{-x}+c_{3} x e^{-x}$
3. $y^{\prime \prime \prime}+4 y^{\prime \prime}+13 y^{\prime}=0$

The characteristic equation is $\lambda^{3}+4 \lambda^{2}+13 \lambda=\lambda\left(\lambda^{2}+4 \lambda+13\right)=0$
$\Rightarrow \lambda_{1}=0, \lambda_{2,3}=\frac{-4 \pm \sqrt{16-52}}{2}=\frac{-4 \pm 6 i}{2}=-2 \pm 3 i$ (simple complex roots)

The linearly independent solutions are $e^{0 x}=1, e^{-2 x} \cos 3 x, e^{-2 x} \sin 3 x$
The general solution is: $y_{h}(x)=c_{1}+c_{2} e^{-2 x} \cos 3 x+c_{3} e^{-2 x} \sin 3 x$
4. $y^{(4)}+2 y^{\prime \prime}+y=0$

The characteristic equation is $\lambda^{4}+2 \lambda^{2}+1=\left(\lambda^{2}+1\right)^{2}=(\lambda-i)^{2}(\lambda+i)^{2}=0$
$\Longrightarrow \lambda_{1}=\lambda_{2}=i, \lambda_{3}=\lambda_{4}=-i$ (double complex roots, inner resonance)

The linearly independent solutions are $e^{0 x} \cos x=\cos x, \sin x, x \cos x, x \sin x$
The general solution is: $y_{h}(x)=c_{1} \cos x+c_{2} \sin x+c_{3} x \cos x+c_{4} x \sin x$

## Higher order linear nonhomogeneous differential equations

## Higher order nonhomogeneous equations with constant coefficients

Consider the equation
$y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=f(x)$
with constant coefficients where $f(x) \neq 0$. The general solution of the nonhomogeneous linear equation is
$y=y_{h}+y_{p}$
where $y_{h}$ is the general solution of the corresponding homogeneous equation and $y_{p}$ is a particular
solution of the nonhomogeneous equation.

If $f(x)$ has a special form: exponential function, polynomial, cosine, sine or sums or products of such functions then the derivatives of $f(x)$ are similar to $f(x)$ itself.
In these cases we can find $y_{p}$ with the method of undetermined coefficients: we suppose that the form of $y_{p}$ is similar to the form of $f(x)$.

## Rules for the method of undetermined coefficients

1. Basic Rule. If $f(x)$ has the form
2. $f(x)=K e^{\alpha x}$
3. $f(x)=P_{m}(x)=a_{m} x^{m}+\ldots+a_{0}$
4. $f(x)=K \sin \beta x$ or $K \cos \beta x$
5. $f(x)=K e^{\alpha x} \sin \beta x$ or $K e^{\alpha x} \cos \beta x$
6. $f(x)=P_{m}(x) \sin \beta x$ or $P_{m}(x) \cos \beta x$, where $P_{m}(x)=a_{m} x^{m}+\ldots+a_{0}$
7. $f(x)=P_{m}(x) e^{\alpha x}$, where $P_{m}(x)=a_{m} x^{m}+\ldots+a_{0}$
8. $f(x)=P_{m}(x) e^{\alpha x} \sin \beta x$ or $P_{m}(x) e^{\alpha x} \cos \beta x$, where $P_{m}(x)=a_{m} x^{m}+\ldots+a_{0}$
then the choice for $y_{p}$ is
9. $y_{p}=A e^{\alpha x}$, where $A$ is unknown
10. $y_{p}=Q_{m}(x)=B_{m} x^{m}+\ldots+B_{0}$, where $B_{0}, \ldots, B_{m}$ are unknowns
11. $y_{p}=A \sin \beta x+B \cos \beta x$, where $A, B$ are unknowns
12. $y_{p}=e^{\alpha x}(A \sin \beta x+B \cos \beta x)$, where $A, B$ are unknowns
13. $y_{p}=Q_{m}(x) \sin \beta x+R_{m}(x) \cos \beta x$, where $Q_{m}(x), R_{m}(x)$ are unknown polynomials of degree $m$
14. $y_{p}=Q_{m}(x) e^{\alpha x}$, where $Q_{m}(x)$ is an unknown polynomial of degree $m$
15. $y_{p}=e^{\alpha x}\left(Q_{m}(x) \sin \beta x+R_{m}(x) \cos \beta x\right)$, where $Q_{m}(x), R_{m}(x)$ are unknown polynomials of degree $m$

The unknown coefficients in $y_{p}$ can be determined by substituting $y_{p}$ and its derivatives into the nonhomogeneous equation and comparing the corresponding terms on both sides.
If the choice for $y_{p}$ is correct then we get the same number of independent linear equations as the number of unknowns, so the solution for the unknowns is unique.
2. Sum Rule. If $f(x)$ is a sum of functions in the above list then $y_{p}$ is also the sum of the corresponding functions.
3. Modification Rule The method doesn't work if a term in $f(x)$ (or $y_{p}$ ) happens to be a solution of the homogeneous equation. It is called outer resonance, and this term is multiplied by $x, x^{2}, \ldots$ etc. until the resonance disappears.

## Practice exercises - Homework

Solve the following differential equations.

1. $y^{\prime \prime}-3 y^{\prime}+2 y=\left(e^{3 x}\right)+\left(x^{2}+x\right)$

Solution. The general solution of the homogeneous equation:
$\lambda^{2}-3 \lambda+2=(\lambda-2)(\lambda-1)=0 \Longrightarrow y_{h}=C_{1} e^{2 x}+C_{2} e^{x}$
Here $f(x)=\left(e^{3 x}\right)+\left(x^{2}+x\right)$. Finding a particular solution of the nonhomogeneous equation:

$$
\begin{aligned}
2 \cdot & y_{p}:=\left(A e^{3 x}\right)+\left(B x^{2}+C x+D\right) \\
-3 \cdot \mid & y_{p}{ }^{\prime}=3 A e^{3 x}+2 B x+C \\
1 \cdot & y_{p}==9 A e^{3 x}+2 B
\end{aligned}
$$

Substituting into the nonhomogeneous equation:

$$
(9 A-9 A+2 A) e^{3 x}+x^{2}(2 B)+x(2 C-6 B)+(2 D-3 C+2 B)=e^{3 x}+x^{2}+x
$$

Comparing the coefficients of the corresponding terms on both sides:

$$
\begin{aligned}
& 2 A=1 \Rightarrow A=\frac{1}{2} \\
& 2 B=1 \Rightarrow B=\frac{1}{2} \\
& 2 C-6 B=1 \Longrightarrow 2 C=4, C=2 \\
& 2 D-3 C+2 B=0 \Longrightarrow 2 D=6-1, D=\frac{5}{2}
\end{aligned}
$$

The general solution of the nonhomogeneous equation is
$y(x)=y_{h}(x)+y_{p}(x)=C_{1} e^{2 x}+C_{2} e^{x}+\frac{1}{2} x^{2}+2 x+\frac{5}{2}+\frac{1}{2} e^{3 x}$
2. $y^{\prime \prime}-3 y^{\prime}+2 y=(x)+\left(e^{x}\right)$

Solution. The general solution of the homogeneous equation:
$\lambda^{2}-3 \lambda+2=(\lambda-2)(\lambda-1)=0 \Longrightarrow y_{h}=C_{1} e^{2 x}+C_{2} e^{x}$

Here $f(x)=(x)+\left(e^{x}\right)$. Now we have outer resonance. Let's see what happens if we don't observe this and
make a wrong choice for $y_{p}$. Based on the structure of $f(x)$ only:

$$
\begin{aligned}
2 \cdot & y_{p}:=(A x+B)+\left(C e^{x}\right) \\
-3 \cdot & y_{p}{ }^{\prime}=A+C e^{x} \\
1 \cdot & y_{p} "=C e^{x}
\end{aligned}
$$

Substituting into the nonhomogeneous equation:

$$
x(2 A)+(2 B-3 A)+(2 C-3 C+C) e^{x}=x+e^{x}
$$

This is a contradiction since the coefficient of $e^{x}$ is 0 on the left-hand side and 1 on the right-hand side and $0 \neq 1$.

Since the term $C e^{x}$ in $y_{p}$ (or $e^{x}$ in $f(x)$ ) is a constant multiple of the term $C_{2} e^{x}$ in $y_{h}$ then we multiply $C e^{x}$ by $x$, so the right choice for $y_{p}$ is the following:

$$
\begin{aligned}
2 \cdot & y_{p}:=(A x+B)+\left(C x e^{x}\right) \Longleftarrow y_{h}=C_{1} e^{2 x}+C_{2} e^{x} \\
-3 \cdot & y_{p}^{\prime}=A+C x e^{x}+C e^{x} \\
1 \cdot & y_{p}{ }^{\prime \prime}=C x e^{x}+C e^{x}+C e^{x}
\end{aligned}
$$

Substituting into the nonhomogeneous equation and comparing the coefficients on both sides:

$$
\begin{aligned}
& x(2 A)+(2 B-3 A)+x e^{x}(2 C-3 C+C)+e^{x}(-3 C+2 C)=x+e^{x} \\
& 2 A=1 \Longrightarrow A=\frac{1}{2} \\
& 2 B-3 A=0 \Longrightarrow B=\frac{3}{2} A=\frac{3}{4} \\
& -C=1 \Longrightarrow C=-1
\end{aligned}
$$

The general solution of the nonhomogeneous equation is
$y(x)=y_{h}(x)+y_{p}(x)=C_{1} e^{2 x}+C_{2} e^{x}+\frac{1}{2} x+\frac{3}{4}-x e^{x}$
3. $y^{\prime \prime}-y=\left(x^{2}-x+1\right)+\left(e^{x}\right)$

Solution. The general solution of the homogeneous equation:

$$
\lambda^{2}-1=0 \Longrightarrow \lambda_{1}=1, \lambda_{2}=-1 \Rightarrow y_{h}=C_{1} e^{x}+C_{2} e^{-x}
$$

Here $f(x)=\left(x^{2}-x+1\right)+\left(e^{x}\right)$, so there is outer resonance.

$$
\begin{array}{ll}
-1 \cdot & y_{p}:=\left(A x^{2}+B x+C\right)+\left(D x e^{x}\right) \\
0 \cdot \mid & y_{p}{ }^{\prime}=2 A x+B+D x e^{x}+D e^{x} \\
1 \cdot & y_{p}^{\prime \prime}=2 A+D x e^{x}+D e^{x}+D e^{x}
\end{array}
$$

Substituting into the nonhomogeneous equation and comparing the coefficients on both sides:

$$
(-A) x^{2}+(-B) x+(2 A-C)+x e^{x}(-D+D)+e^{x} \cdot 2 D=x^{2}-x+1+e^{x}
$$

$$
A=-1, B=1, C=2 A-1=-3, D=\frac{1}{2}
$$

The general solution of the nonhomogeneous equation is

$$
y(x)=y_{h}(x)+y_{p}(x)=C_{1} e^{x}+C_{2} e^{-x}-x^{2}+x-3+\frac{1}{2} x e^{x}
$$

4. $y^{\prime \prime}-2 y^{\prime}+y=6 e^{x}$

Solution. The general solution of the homogeneous equation:
$\lambda^{2}-2 \lambda+1=0 \Longrightarrow \lambda_{1}=\lambda_{2}=1 \Rightarrow y_{h}=c_{1} e^{x}+c_{2} x e^{x}$ (inner resonance)

First try: $y_{p}=A e^{x} \Longrightarrow$ substituting into the equation: $e^{x}(A-2 A+A)=6 e^{x}$, that is, $0=6$, which is a contradiction. This choice is not correct since $A e^{x}$ is a constant multiple of $C_{1} e^{x}$ in $y_{h}$ $\Rightarrow$ we have to multiply this term by $x$

Second try: $y_{p}=\boldsymbol{A} \boldsymbol{x} \boldsymbol{e}^{x}$. This choice is not correct either since $A x e^{x}$ is a constant multiple of the term $C_{2} x e^{x}$ in $y_{h}$.
$\Longrightarrow$ we multiply this term again by $x$

So the correct choice for $y_{p}$ is the following:

$$
\begin{aligned}
& 1 \cdot y_{p}:=A x^{2} e^{x} \quad \text { (outer resonance) } \\
&-2 \cdot y_{p}{ }^{\prime}=2 A \boldsymbol{x} \mathbf{e}^{x}+A x^{2} e^{x} \\
& 1 \cdot y_{p} "=2 A e^{x}+2 A \boldsymbol{x} e^{x}+2 A \boldsymbol{x} \boldsymbol{e}^{x}+A x^{2} e^{x} \\
& x^{2} e^{x}(A-2 A+A)+x e^{x}(-4 A+4 A)+2 A e^{x}=6 e^{x} \\
& 2 A=6 \Longrightarrow A=3
\end{aligned}
$$

The general solution of the nonhomogeneous equation is
$y(x)=y_{h}(x)+y_{p}(x)=C_{1} e^{x}+C_{2} x e^{x}+3 x^{2} e^{x}$
5. $y^{\prime \prime}+8 y^{\prime}+25 y=e^{-4 x}$

Solution. The general solution of the homogeneous equation:
$\lambda^{2}+8 \lambda+25=0 \Longrightarrow \lambda_{1,2}=\frac{-8 \pm \sqrt{64-100}}{2}=\frac{-8 \pm 6 i}{2}=-4 \pm 3 i$
$y_{h}(x)=C_{1} e^{-4 x} \cos 3 x+C_{2} e^{-4 x} \sin 3 x$

Here $f(x)=e^{-4 x}$. There is no outer resonance in this case, since $e^{-4 x}$ is not a constant
multiple of either of the terms in $y_{h}$.
25. $y_{p}:=A e^{-4 x}$
8. $\mid y_{p}{ }^{\prime}=-4 A e^{-4 x}$

1. $\mid y_{p}{ }^{\prime \prime}=16 A e^{-4 x}$
$(25 A-32 A+16 A) e^{-4 x}=e^{-4 x}$
$9 A=1 \Longrightarrow A=\frac{1}{9}$

The general solution of the nonhomogeneous equation is
$y(x)=y_{h}(x)+y_{p}(x)=C_{1} e^{-4 x} \cos 3 x+C_{2} e^{-4 x} \sin 3 x+\frac{1}{9} e^{-4 x}$
6. $y^{\prime \prime}+5 y^{\prime}+6 y=2 e^{-2 x}, y(0)=0, y^{\prime}(0)=3$

Solution. The general solution of the homogeneous equation:
$\lambda^{2}+5 \lambda+6=(\lambda+2)(\lambda+3)=0 \Longrightarrow \lambda_{1}=-2, \lambda_{2}=-3$
$y_{h}(x)=C_{1} e^{-2 x}+C_{2} e^{-3 x}$

Here $f(x)=2 e^{-2 x}$. There is outer resonance, so the choice $y_{p}=A e^{-2 x}$ is not correct, since it is a constant multiple of $C_{1} e^{-2 x}$ in $y_{h}(x)$. So the correct choice for $y_{p}$ is:

$$
\begin{aligned}
& 6 \cdot \mid \quad y_{p}:=A x e^{-2 x} \\
& 5 \cdot \mid \quad y_{p}^{\prime}=A e^{-2 x}-2 A x e^{-2 x} \\
& 1 \cdot \mid \quad y_{p}^{\prime \prime}=-2 A e^{-2 x}-2 A e^{-2 x}+4 A x e^{-2 x} \\
& x e^{-2 x}(6 A-10 A+4 A)+e^{-2 x}(5 A-4 A)=2 e^{-2 x} \\
& \Rightarrow A=2
\end{aligned}
$$

The general solution of the nonhomogeneous equation is $y(x)=y_{h}(x)+y_{p}(x)=C_{1} e^{-2 x}+C_{2} e^{-3 x}+2 x e^{-2 x}$

For the initial conditions we need $y^{\prime}$ :
$y^{\prime}(x)=-2 C_{1} e^{-2 x}-3 C_{2} e^{-3 x}+2 e^{-2 x}-4 x e^{-2 x}$

From the initial conditions:

$$
\begin{aligned}
& y(0)=0 \Longrightarrow C_{1}+C_{2}=0 \\
& y^{\prime}(0)=3 \Longrightarrow-2 C_{1}-3 C_{2}+2=3 \Longrightarrow C_{1}=1, C_{2}=-1
\end{aligned}
$$

The solution of the initial value problem is $y(x)=e^{-2 x}-e^{-3 x}+2 x e^{-2 x}$
7. $y^{\prime \prime}+y=(-4 \cos x)+(x), y(0)=2, y^{\prime}(0)=2$

Solution. $\lambda^{2}+1=0 \Longrightarrow \lambda_{1,2}= \pm i \Longrightarrow y_{h}(x)=\boldsymbol{C}_{1} \cos x+\boldsymbol{C}_{2} \sin \boldsymbol{x}$

Here $f(x)=(-4 \cos x)+(x)$
First try: $y_{p}=(A \cos x+B \boldsymbol{\operatorname { s i n }} \boldsymbol{x})+(C x+D)$ but this is not correct since $A \cos x$ is a constant multiple of $C_{1} \cos x$ and $B \sin x$ is a constant multiple of $C_{2} \sin x$ in $y_{h}(x)$.

There is outer resonance, so we multiply these two terms by $x$.

$$
\begin{aligned}
& 1 \cdot \\
& 0 \cdot \\
& 0 \cdot \\
& 1 \cdot \\
& 1 \cdot \\
& \left(\begin{array}{l}
p
\end{array}\right)=(A x \cos x+B x \sin x)+(C x+D) \\
& (A-A) x \cos x+(B-B) x \sin x+(2 B) \cos x+(-2 A) \sin x+C x+D=-4 \cos x+x \\
& 2 B=-4, B=-2 \\
& -2 A=0, A=0 \\
& C=1, D=0
\end{aligned}
$$

The general solution of the nonhomogeneous equation is
$y(x)=y_{h}(x)+y_{p}(x)=C_{1} \cos x+C_{2} \sin x-2 x \sin x+x$

For the initial conditions we need $y$ ':
$y^{\prime}(x)=-C_{1} \sin +C_{2} \cos x-2 \sin x-2 x \cos x+1$

From the initial conditions:
$y(0)=2 \Longrightarrow C_{1}=2$
$y^{\prime}(0)=2 \Rightarrow C_{2}+1=2 \Rightarrow C_{2}=1$

The solution of the initial value problem is
$y(x)=2 \cos x+\sin x+x(1-2 \sin x)$

## First order linear differential equations with constant coefficients

1. Mixing problem: $y^{\prime}=0.6-0.2 y$

See exercise 02-7. We can apply different solution methods:
(1) separable (autonomous): $\frac{d y}{d t}=0.2(3-y) \Longrightarrow \int \frac{1}{3-y} \mathrm{dy}=\int 0.2 \mathrm{dt} \ldots$
(2) first-order linear nonhomogeneous equation:

```
homogeneous equation: \(y^{\prime}=-0.2 y \Longrightarrow y_{h}(t)=C e^{-0.2 t}\)
variation of the constant method: \(y_{p}(t)=c(t) e^{-0.2 t} \Longrightarrow\)
\(c^{\prime}(t) e^{-0.2 t}+c(t) e^{-0.2 t}(-0.2)=0.6-0.2 c(t) e^{-0.2 t} \Longrightarrow c^{\prime}(t)=0.6 e^{0.2 t} \Longrightarrow\)
\(c(t)=3 e^{0.2 t} \Longrightarrow y_{p}(t)=3 \Longrightarrow\)
\(y(t)=y_{h}(t)+y_{p}(t)=C e^{-0.2 t}+3\)
```

(3) first-order linear nonhomogeneous equation with constant coefficients:

$$
y^{\prime}+0.2 y=0.6
$$

characteristic equation: $\lambda+0.2=0 \Longrightarrow y_{h}(t)=C e^{-0.2 t}$
the particular solution of the nonhomogeneous equation: $y_{p}(t)=A \Longrightarrow$
$0+0.2 A=0.6 \Longrightarrow A=3$
the general solution of the nonhomogeneous equation:
$y(t)=y_{h}(t)+y_{p}(t)=C e^{-0.2 t}+3$

## 2. Current in an RC circuit: $R I^{\prime}(t)+\frac{1}{C} I(t)=F(t)$

See exercise 03-6. We solve it in the case when $R=C=1$ and $F(t)=F_{0} \sin t$ where $F_{0}>0$.
Homogeneous equation: $I^{\prime}(t)+I(t)=0$
Characteristic equation: $\lambda+1=0 \Longrightarrow \lambda=-1$
The general solution of the homogeneous equation: $I_{h}(t)=C e^{-t}$

If $F(t)=F_{0} \sin t$ then the particular solution of the nonhomogeneous equation:

$$
\begin{aligned}
& 1 \cdot \mid I_{p}(t)=a \sin t+b \cos t \\
& 1 \cdot \mid I_{p}^{\prime}(t)=a \cos t-b \sin t
\end{aligned}
$$

Substituting into the nonhomogeneous equation:
$\sin t(a-b)+\cos t(b+a)=F_{0} \sin t \Longrightarrow$
$a-b=F_{0} \Longrightarrow a=\frac{F_{0}}{2}, b=-\frac{F_{0}}{2}$
$b+a=0$

The general solution of the nonhomogeneous equation:
$I(t)=I_{h}(t)+I_{p}(t)=C e^{-t}+\frac{F_{0}}{2}(\sin t-\cos t)$

## Physical examples

## 1. Simple harmonic motion (mass on a spring)

Newton's second law: $m a=m x x^{\prime \prime}=-D x$
$m$ : mass, $a$ : acceleration, $D$ : spring constant, $x$ : displacement from the equilibrium position - $D x$ : spring force, $\omega=\sqrt{\frac{D}{m}}$ : angular frequency
$\Longrightarrow x^{\prime \prime}(t)+\omega^{2} x(t)=0$

Characteristic equation: $\lambda^{2}+\omega^{2}=0 \Longrightarrow \lambda_{1,2}= \pm \omega i$
The general solution of the homogeneous equation: $\boldsymbol{x}_{\boldsymbol{h}}(\boldsymbol{t})=\boldsymbol{c}_{\mathbf{1}} \boldsymbol{\operatorname { s i n }} \boldsymbol{\omega} \boldsymbol{t}+\boldsymbol{c}_{\mathbf{2}} \boldsymbol{\operatorname { c o s }} \omega \boldsymbol{t}$

Remark: The equation can also be written in the form $x_{h}(t)=A \cos (\omega t-\alpha)$
where $A=\sqrt{c_{1}{ }^{2}+c_{2}{ }^{2}}$ and $\tan \alpha=\frac{c_{1}}{c_{2}}$.
$\tan \alpha=\frac{c_{1}}{c_{2}} \Longrightarrow \sin \alpha=\frac{c_{1}}{\sqrt{c_{1}{ }^{2}+c_{2}{ }^{2}}}, \cos \alpha=\frac{c_{2}}{\sqrt{c_{1}{ }^{2}+c_{2}{ }^{2}}} \Longrightarrow$

$=\sqrt{{c_{1}{ }^{2}+c_{2}^{2}}^{2}}(\sin \alpha \cdot \sin \omega t+\cos \alpha \cdot \cos \omega t)=\sqrt{c_{1}^{2}+c_{2}^{2}} \cdot \cos (\omega t-\alpha)$.

Example: $\quad x^{\prime \prime}(t)+4 x(t)=0, x(0)=0, x^{\prime}(0)=10$

$$
\Longrightarrow x(t)=5 \sin (2 t)
$$



## 2. Damped harmonic motion

Newton's second law: $m a=-D x-c v$
$-D x$ : spring force, $-c v$ : linear damping force

Let $\omega^{2}=\frac{D}{m}$ and $2 k=\frac{c}{m}$
$\Longrightarrow x^{\prime \prime}(t)+2 k x^{\prime}(t)+\omega^{2} x(t)=0$

Characteristic equation: $\lambda^{2}+2 k \lambda+\omega^{2}=0 \Longrightarrow \lambda_{1,2}=-k \pm \sqrt{k^{2}-\omega^{2}}$
a) $k>\omega$ (overdamping - distinct real roots)
b) $k=\omega$ (critical damping - double real roots)
c) $k<\omega$ (underdamping - complex roots)
a) $k>\omega$ (overdamping - distinct real roots)

Example: $\quad k=5, \omega=4$

$$
\begin{aligned}
& x^{\prime \prime}(t)+10 x^{\prime}(t)+16 x(t)=0, x(0)=0, x^{\prime}(0)=1 \\
& \Rightarrow x(t)=-\frac{1}{6} e^{-8 t}+\frac{1}{6} e^{-2 t}
\end{aligned}
$$


b) $k=\omega$ (critical damping - double real roots)

Example: $\quad k=2, \omega=2$

$$
\begin{aligned}
& x^{\prime \prime}(t)+4 x^{\prime}(t)+4 x(t)=0, x(0)=0, x^{\prime}(0)=1 \\
& \Rightarrow x(t)=t e^{-2 t}
\end{aligned}
$$


c) $k<\omega$ (underdamping - complex roots)

Example: $\quad k=1, \omega=20$

$$
\begin{aligned}
& x^{\prime \prime}(t)+2 x^{\prime}(t)+400 x(t)=0, x(0)=0, x^{\prime}(0)=1 \\
& \Rightarrow x(t)=\frac{1}{\sqrt{399}} e^{-t} \sin (\sqrt{399} t)
\end{aligned}
$$



## 3. Forced harmonic motion

$x^{\prime \prime}(t)+2 k x^{\prime}(t)+\omega^{2} x(t)=\frac{F}{m} \sin (\alpha t)$
$F \sin (\alpha t)$ : external force or driving force, $\alpha$ : driving frequency (frequency of the external force)

Example: $\quad m=1, k=1, \omega=10, F=1, \alpha=1$

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+100 x(t)=\sin t, x(0)=0, x^{\prime}(0)=1
$$

$$
\Rightarrow x(t)=e^{-t}\left(\frac{2}{9805} \cos (3 \sqrt{11} t)+\frac{3236}{9805 \sqrt{11}} \sin (3 \sqrt{11} t)\right)+\frac{-2 \cos t+99 \sin t}{9805}
$$



## 4. Forced undamped harmonic motion

$$
x^{\prime \prime}(t)+\omega^{2} x(t)=\frac{F}{m} \sin (\alpha t)
$$

$\omega$ : natural frequency of the system (the frequency at which a system tends to oscillate in the absence of any driving or damping force)
$\alpha$ : driving frequency (frequency of the external force)
Example: $\quad m=1, \omega=3, F=1, \alpha=2$

$$
\begin{aligned}
& x^{\prime \prime}(t)+9 x(t)=\sin 2 t, x(0)=0, x^{\prime}(0)=1 \\
& \Rightarrow x(t)=\frac{1}{5}(\sin 2 t+\sin 3 t)
\end{aligned}
$$



Resonance: $\omega=\alpha$
Example: $\quad m=1, \omega=1, F=1, \alpha=1$

$$
\begin{aligned}
& x^{\prime \prime}(t)+x(t)=\sin t, x(0)=0, x^{\prime}(0)=1 \\
& \Rightarrow x(t)=\frac{1}{2}(-t \cos t+3 \sin t)
\end{aligned}
$$



Examples: - pushing a person in a swing

- electrical resonance of tuned circuits in radios and TVs that allow radio frequencies to selectively received
- acoustic resonances of musical instruments etc.

Hyperlink["https://en.wikipedia.org/wiki/Resonance"]
https://en.wikipedia.org/wiki/Resonance

