03 - First order linear differential equations

Solution method

Definition. A first order linear differential equation has the form

$$
y^{\prime}(t)+f(t) y(t)=g(t)
$$

where f and g are continuous functions on an interval I. If $g(t) \equiv 0$ then the equation is said to be homogeneous, otherwise it is said to be nonhomogeneous.

Solution. 1st step: Consider the homogeneous equation
$y^{\prime}(t)+f(t) y(t)=0 \Longrightarrow \frac{d y}{d t}=-f(t) y$
It is a separable equation. The constant solution is $y(t) \equiv 0$. If $y \neq 0$ then by separating the variables, we get $\int \frac{1}{y} \mathrm{dy}=-\int f(t) \mathrm{dt}$. Let $F(t)=\int f(t) \mathrm{dt}$, then
$\ln |y|=-F(t)+c_{1} \Longrightarrow|y|=e^{c_{1}} e^{-F(t)}=K \cdot e^{-F(t)}$, where $K>0$.
If $y>0$ then $y=K \cdot e^{-F(t)}$, if $y<0$ then $y=-K \cdot e^{-F(t)}$ and $y \equiv 0$ is also a solution.

Therefore, the general solution of the homogeneous equation is
$y_{h}(t)=C \cdot e^{-F(t)}$ where $C \in \mathbb{R}$.

2nd step: variation of the constant method. We suppose that the nonhomogeneous equation has a particular solution of the form
$y_{p}(t)=c(t) \cdot e^{-F(t)} \Longrightarrow y_{p}{ }^{\prime}(t)=c^{\prime}(t) \cdot e^{-F(t)}+c(t) \cdot e^{-F(t)} \cdot(-f(t))$

Substituting $y_{p}{ }^{\prime}(t)$ into the nonhomogeneous equation $y^{\prime}(t)+f(t) y(t)=g(t)$, we get
$c^{\prime}(t) \cdot e^{-F(t)}+c(t) \cdot e^{-F(t)} \cdot(-f(t))+f(t) \cdot c(t) \cdot e^{-F(t)}=g(t)$
$\Longrightarrow c^{\prime}(t) \cdot e^{-F(t)}=g(t)$
$\Longrightarrow c^{\prime}(t)=g(t) \cdot e^{F(t)} \Longrightarrow c(t)=\int g(t) \cdot e^{F(t)} \mathrm{dt}+D$
The general solution of the nonhomogeneous equation is
$y(t)=y_{p}(t)+y_{h}(t)=\left(\int g(t) \cdot e^{F(t)} \mathrm{dt}\right) e^{-F(t)}+D e^{-F(t)}$ (we obtain $y_{p}(t)$ when $D=0$)

