03 - First order linear differential equations, exercises

Solve the following differential equations.

- **1.** In the mixing problem, suppose that the salt content in the inflow decreases exponentially. Then the equation is $y'(t) = 0.6 e^{-t} - 0.2 y(t)$
- **2.** $y'(t) = \frac{y(t)}{t} + t$ $(t \neq 0)$ **3.** $x'(t) + 2x(t) = e^t$, x(0) = 0 **4.** $tx'(t) - 2x(t) = 2t^4$ **5.** $E'(r) = -\frac{2}{r}E(r) + \frac{1}{r}$ (here E(r) > 0 is the force field of a point mass and $\frac{1}{r}$ is the external force).

6.* The current I(t) in an RC circuit is described by the equation $RI'(t) + \frac{1}{C}I(t) = F(t)$

where *R*, C > 0 are constants (*R* is the resistance and *C* is the capacity) and *F*(*t*) is the external excitation.

a) Find the general solution if $I(0) = I_0$ and there is no external excitation, that is, $F(t) \equiv 0$. b) Find the general solution if R = C = 1 and $F(t) = F_0 \sin t$ is a periodic excitation, where $F_0 > 0$ is a constant. Show that after a long time I(t) can also be considered periodic.

7.* In the chemical reaction $X \xrightarrow{k} Y \xrightarrow{m} Z$, let x(t), y(t) and z(t) denote the concentrations of the species X, Y and Z as a function of t, respectively. The reaction is described by the following differential equation system:

x'(t) = -kx(t) y'(t) = kx(t) - my(t)z'(t) = my(t)

where k > 0 and m > 0 are the reaction rate coefficients.

a) Solve the equation system if k > m and x(0) = 1, y(0) = 0, z(t) = 0. **b)** Show that $\lim_{t\to\infty} x(t) = \lim_{t\to\infty} y(t) = 0$ and $\lim_{t\to\infty} z(t) = 1$.

8.* Consider the following chemical reaction: $CH_3 COO - C_2 H_5 + Na OH \rightarrow CH_3 COONa + C_2 H_5 OH$ (ethyl acetate + sodium hydroxide \rightarrow sodium acetate + ethanol).

The chemical reaction can be written in the form $A + B \xrightarrow{k} X + Y$. Let a(t), b(t), x(t) and y(t) respectively denote the concentrations of the species A, B, X and Y at time t where a(t), b(t), x(t), $y(t) \ge 0$ and k > 0 is the reaction rate coefficient. The reaction can be described by the following differential equation system:

a'(t) = -k a(t) b(t)
b'(t) = -k a(t) b(t)
x'(t) = k a(t) b(t)
y'(t) = k a(t) b(t)

Assume that the initial concentrations are $a(0) = a_0 = 0.02$ and $b(0) = b_0 = 0.004$. If the concentration of ethyl acetate decreases by 10% in 25 minutes then in how many minutes decreases the concentration by 15%?