03 - First order linear differential equations, exercises

Solve the following differential equations.

1. In the mixing problem, suppose that the salt content in the inflow decreases exponentially. Then the equation is $y^{\prime}(t)=0.6 e^{-t}-0.2 y(t)$
2. $y^{\prime}(t)=\frac{y(t)}{t}+t \quad(t \neq 0)$
3. $x^{\prime}(t)+2 x(t)=e^{t}, x(0)=0$
4. $t x^{\prime}(t)-2 x(t)=2 t^{4}$
5. $E^{\prime}(r)=-\frac{2}{r} E(r)+\frac{1}{r}$
(here $E(r)>0$ is the force field of a point mass and $\frac{1}{r}$ is the external force).
6.* The current $I(t)$ in an RC circuit is described by the equation $R I^{\prime}(t)+\frac{1}{C} I(t)=F(t)$ where $R, C>0$ are constants (R is the resistance and C is the capacity) and $F(t)$ is the external excitation.
a) Find the general solution if $I(0)=I_{0}$ and there is no external excitation, that is, $F(t) \equiv 0$.
b) Find the general solution if $R=C=1$ and $F(t)=F_{0} \sin t$ is a periodic excitation, where $F_{0}>0$ is a constant. Show that after a long time $I(t)$ can also be considered periodic.
6. ${ }^{\star}$ In the chemical reaction $X \xrightarrow{k} Y \xrightarrow{m} Z$, let $x(t), y(t)$ and $z(t)$ denote the concentrations of the species X, Y and Z as a function of t, respectively. The reaction is described by the following differential equation system:
$x^{\prime}(t)=-k x(t)$
$y^{\prime}(t)=k x(t)-m y(t)$
$z^{\prime}(t)=m y(t)$
where $k>0$ and $m>0$ are the reaction rate coefficients.
a) Solve the equation system if $k>m$ and $x(0)=1, y(0)=0, z(t)=0$.
b) Show that $\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} y(t)=0$ and $\lim _{t \rightarrow \infty} z(t)=1$.
7. ${ }^{*}$ Consider the following chemical reaction: $\mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethyl acetate + sodium hydroxide \longrightarrow sodium acetate + ethanol).
The chemical reaction can be written in the form $A+B \xrightarrow{k} X+Y$.
Let $a(t), b(t), x(t)$ and $y(t)$ respectively denote the concentrations of the species A, B, X and Y at time t where $a(t), b(t), x(t), y(t) \geq 0$ and $k>0$ is the reaction rate coefficient.

The reaction can be described by the following differential equation system:
(1) $a^{\prime}(t)=-k a(t) b(t)$
(2) $b^{\prime}(t)=-k a(t) b(t)$
(3) $x^{\prime}(t)=k a(t) b(t)$
(4) $y^{\prime}(t)=k a(t) b(t)$

Assume that the initial concentrations are $a(0)=a_{0}=0.02$ and $b(0)=b_{0}=0.004$.
If the concentration of ethyl acetate decreases by 10% in 25 minutes then in how many minutes decreases the concentration by 15% ?

