
02 - Separable differential equations

Definition

First-order separable differential equations are equations of the form

   y ' = f (x) ·g(y)

where f : (a, b)⟶ and g : (c, d)⟶ are continuous functions.
The solution is a function y = y(x) for which

y ' (x) ≡ f (x) ·g(y(x)), ∀ x ∈ (a, b)    (notation: ∀ means “for all”)

Theorem

The solution of the above separable equation is the following:
1) If g(y0) = 0   (where y0 ∈ (c, d))  then y ≡ y0 is a solution (since y ' ≡ 0).
2) If  g(y) ≠ 0  for y ∈ (c1, d1)⊂ (c, d) then the initial value problem

  y ' = f (x) ·g(y), y(x0) = y0, x0 ∈ (a, b), y0 ∈ (c1, d1)

has a unique solution y(x) that can be determined by the implicit equation  
1

g(y)
dy = f (x)dx.
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Proof. 1) Substituting y ≡ y0 into y ' = f (x) ·g(y)  
         ⟹  y0 ' = f (x) ·g(y0)  ⟹  0 = f (x) ·0 = 0  ⟹  y ≡ y0 is a solution.
         

    2) Since g(y) ≠ 0 then  y ' = f (x) ·g(y) ⟺
y '

g(y)
= f (x).

        If y = y(x) (y(x0) = y0) is a solution then 
y ' (x)

g(y(x))
= f (x)

        for all x ∈ (x0 - δ, x0 + δ)  (for some δ > 0).
        



        Since the functions h(y) =
1

g(y)
  and f (x) are continuous, they have antiderivatives 

           on (c1, d1) and (a, b), respectively.  Let 
d H

dy
= h(y) =

1

g(y)
  and 

d F

dx
= f (x). 

        Then 
y ' (x)

g(y(x))
= f (x)  ⟺  

d

dx
(H(y(x))) =

d

dx
(F(x)), 

        so the general solution of the equation is H(y(x)) = F(x) + C, C ∈ .

        From the initial condition y(x0) = x0, the constant C can be determined uniquely:
                  H(y(x0)) = F(x0) + C  ⟹  C =H(y(x0)) - F(x0)

       Conversely, assume that H(y(x)) = F(x) + C for some constant C. 
       Then differentiating both sides with respect to x, we get that 

       h(y(x)) y ' (x) = f (x)   ⟹  
y ' (x)

g(y(x))
= f (x)   ⟹  y(x) is a solution of y ' = f (x) ·g(y).

Remark. Integrating both sides with respect to x:    
y ' (x)

g(y(x))
= f (x)  ⟹  

y ' (x)

g(y(x))
dx = f (x)dx  

        By the substitution formula  y ' (x)dx =
dy

dx
dx = dy   ⟹  

1

g(y)
dy = f (x)dx

Summary

y ' (x) = f (x) g(y(x))

1st step: Finding the constant solutions (if there are any). 
If y(x) ≡ c then y ' (x) ≡ 0  so from the equation f (x) g(y(x)) ≡ 0 ⟹ g(y(x)) ≡ 0  
and the constant solution(s) y(x) ≡ c can be expressed.

2nd step: We rewrite  the derivative as y ' (x) =
dy

dx
 and then handle y as a variable.

Assuming that g(y) ≠ 0 on an interval I and dividing by g(y):
dy

dx
= f (x) g(y)  ⟺  

dy

g(y)
= f (x)dx  ⟺  

1

g(y)
dy = f (x)dx

Integrating both sides, we get an equation of the form G(y) = F(x) + c (c ∈ ) from where 
we have to express y as a function of x.

Special cases

a) If g(y) = 1 then   y ' (x) = f (x)  is a directly integrable equation
b) If f (x) = 1 then   y ' = g(y)  is an autonomous equation 
     (the right-hand side doesn't depend explicitly on x)
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Remark

a) If y ' (x) = f (x) then the solutions are y(x) = F(x) + C, where F ' (x) = f (x) and C ∈ .
     ⟹  the graphs of the solutions are shifted vertically
     
b) If y(x) is a solution of the autonomous equation y ' = g(y) then for all s ∈  the function
     z(x) = y(x + s) is also a solution since z ' (x) = y ' (x + s) = g(y(x + s)) = g(z(x)).
     ⟹  the graphs of the solutions are shifted horizontally
     
     It means that is enough to determine the solutions at x = 0 since the other solutions
     can be obtained by shifting them horizontally.
     
a)  b)
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