02 - Separable differential equations

Definition

First-order separable differential equations are equations of the form

 $y' = f(x) \cdot g(y)$

where $f:(a, b) \longrightarrow \mathbb{R}$ and $g:(c, d) \longrightarrow \mathbb{R}$ are continuous functions. The solution is a function y = y(x) for which

 $y'(x) \equiv f(x) \cdot g(y(x)), \forall x \in (a, b)$ (notation: \forall means "for all")

Theorem

The solution of the above separable equation is the following: 1) If $g(y_0) = 0$ (where $y_0 \in (c, d)$) then $y \equiv y_0$ is a solution (since $y' \equiv 0$). 2) If $g(y) \neq 0$ for $y \in (c_1, d_1) \subset (c, d)$ then the initial value problem

 $y' = f(x) \cdot g(y), y(x_0) = y_0, x_0 \in (a, b), y_0 \in (c_1, d_1)$

has a unique solution y(x) that can be determined by the implicit equation $\int \frac{1}{q(y)} dy = \int f(x) dx$.

Proof. 1) Substituting $y \equiv y_0$ into $y' = f(x) \cdot g(y)$ $\implies y_0' = f(x) \cdot g(y_0) \implies 0 = f(x) \cdot 0 = 0 \implies y \equiv y_0$ is a solution.

2) Since $g(y) \neq 0$ then $y' = f(x) \cdot g(y) \iff \frac{y'}{g(y)} = f(x)$. If $y = y(x) \ (y(x_0) = y_0)$ is a solution then $\frac{y'(x)}{g(y(x))} = f(x)$ for all $x \in (x_0 - \delta, x_0 + \delta)$ (for some $\delta > 0$). Since the functions $h(y) = \frac{1}{g(y)}$ and f(x) are continuous, they have antiderivatives on (c_1, d_1) and (a, b), respectively. Let $\frac{dH}{dy} = h(y) = \frac{1}{g(y)}$ and $\frac{dF}{dx} = f(x)$. Then $\frac{y'(x)}{g(y(x))} = f(x) \iff \frac{d}{dx} (H(y(x))) = \frac{d}{dx} (F(x))$,

so the general solution of the equation is $H(y(x)) = F(x) + C, C \in \mathbb{R}$.

From the initial condition $y(x_0) = x_0$, the constant *C* can be determined uniquely: $H(y(x_0)) = F(x_0) + C \implies C = H(y(x_0)) - F(x_0)$

Conversely, assume that H(y(x)) = F(x) + C for some constant C.

Then differentiating both sides with respect to x, we get that

$$h(y(x))y'(x) = f(x) \implies \frac{y'(x)}{g(y(x))} = f(x) \implies y(x) \text{ is a solution of } y' = f(x) \cdot g(y).$$

Remark. Integrating both sides with respect to x: $\frac{y'(x)}{g(y(x))} = f(x) \implies \int \frac{y'(x)}{g(y(x))} dx = \int f(x) dx$ By the substitution formula $\left(y'(x) dx = \frac{dy}{dx} dx = dy\right) \implies \int \frac{1}{g(y)} dy = \int f(x) dx$

Summary

y'(x) = f(x)g(y(x))

1st step: Finding the constant solutions (if there are any). If $y(x) \equiv c$ then $y'(x) \equiv 0$ so from the equation $f(x) g(y(x)) \equiv 0 \implies g(y(x)) \equiv 0$

and the constant solution(s) $y(x) \equiv c$ can be expressed.

2nd step: We rewrite the derivative as $y'(x) = \frac{dy}{dx}$ and then handle y as a variable.

Assuming that $g(y) \neq 0$ on an interval *I* and dividing by g(y):

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y) \iff \frac{\mathrm{d}y}{g(y)} = f(x)\,\mathrm{d}x \iff \int \frac{1}{g(y)}\,\mathrm{d}y = \int f(x)\,\mathrm{d}x$$

Integrating both sides, we get an equation of the form G(y) = F(x) + c ($c \in \mathbb{R}$) from where we have to express y as a function of x.

Special cases

a) If g(y) = 1 then y'(x) = f(x) is a **directly integrable equation**

b) If f(x) = 1 then y' = g(y) is an **autonomous equation**

(the right-hand side doesn't depend explicitly on x)

Remark

- a) If y'(x) = f(x) then the solutions are y(x) = F(x) + C, where F'(x) = f(x) and $C \in \mathbb{R}$. \implies the graphs of the solutions are shifted vertically
- b) If y(x) is a solution of the autonomous equation y' = g(y) then for all $s \in \mathbb{R}$ the function z(x) = y(x + s) is also a solution since z'(x) = y'(x + s) = g(y(x + s)) = g(z(x)). \implies the graphs of the solutions are shifted horizontally

It means that is enough to determine the solutions at x = 0 since the other solutions can be obtained by shifting them horizontally.

