02 - Separable differential equations

Definition

First-order separable differential equations are equations of the form

$$
y^{\prime}=f(x) \cdot g(y)
$$

where $f:(a, b) \rightarrow \mathbb{R}$ and $g:(c, d) \rightarrow \mathbb{R}$ are continuous functions.
The solution is a function $y=y(x)$ for which

```
y'(x)\equivf(x)\cdotg(y(x)),\quad\forallx\in(a,b) (notation: \forall means "for all")
```


Theorem

The solution of the above separable equation is the following:

1) If $g\left(y_{0}\right)=0$ (where $y_{0} \in(c, d)$) then $y \equiv y_{0}$ is a solution (since $y^{\prime} \equiv 0$).
2) If $g(y) \neq 0$ for $y \in\left(c_{1}, d_{1}\right) \subset(c, d)$ then the initial value problem

$$
y^{\prime}=f(x) \cdot g(y), \quad y\left(x_{0}\right)=y_{0}, \quad x_{0} \in(a, b), y_{0} \in\left(c_{1}, d_{1}\right)
$$

has a unique solution $y(x)$ that can be determined by the implicit equation $\int \frac{1}{g(y)} d y=\int f(x) \mathrm{dx}$.

Proof. 1) Substituting $y \equiv y_{0}$ into $y^{\prime}=f(x) \cdot g(y)$
$\Longrightarrow y_{0}{ }^{\prime}=f(x) \cdot g\left(y_{0}\right) \Longrightarrow 0=f(x) \cdot 0=0 \Longrightarrow y \equiv y_{0}$ is a solution.
2) Since $g(y) \neq 0$ then $y^{\prime}=f(x) \cdot g(y) \Longleftrightarrow \frac{y^{\prime}}{g(y)}=f(x)$.

If $y=y(x)\left(y\left(x_{0}\right)=y_{0}\right)$ is a solution then $\frac{y^{\prime}(x)}{g(y(x))}=f(x)$
for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ (for some $\delta>0$).

Since the functions $h(y)=\frac{1}{g(y)}$ and $f(x)$ are continuous, they have antiderivatives
on $\left(c_{1}, d_{1}\right)$ and (a, b), respectively. Let $\frac{d H}{d y}=h(y)=\frac{1}{g(y)}$ and $\frac{d F}{d x}=f(x)$.
Then $\frac{y^{\prime}(x)}{g(y(x))}=f(x) \Longleftrightarrow \frac{d}{d x}(H(y(x)))=\frac{d}{d x}(F(x))$,
so the general solution of the equation is $H(y(x))=F(x)+C, C \in \mathbb{R}$.

From the initial condition $y\left(x_{0}\right)=x_{0}$, the constant C can be determined uniquely:
$H\left(y\left(x_{0}\right)\right)=F\left(x_{0}\right)+C \Longrightarrow C=H\left(y\left(x_{0}\right)\right)-F\left(x_{0}\right)$

Conversely, assume that $H(y(x))=F(x)+C$ for some constant C.
Then differentiating both sides with respect to x, we get that
$h(y(x)) y^{\prime}(x)=f(x) \Longrightarrow \frac{y^{\prime}(x)}{g(y(x))}=f(x) \Longrightarrow y(x)$ is a solution of $y^{\prime}=f(x) \cdot g(y)$.
Remark. Integrating both sides with respect to $x: \frac{y^{\prime}(x)}{g(y(x))}=f(x) \Longrightarrow \int \frac{y^{\prime}(x)}{g(y(x))} \mathrm{dx}=\int f(x) \mathrm{dx}$
By the substitution formula $\left(y^{\prime}(x) \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dx}} \mathrm{dx}=\mathrm{dy}\right) \Longrightarrow \int \frac{1}{g(y)} \mathrm{dy}=\int f(x) \mathrm{dx}$

Summary

$y^{\prime}(x)=f(x) g(y(x))$

1st step: Finding the constant solutions (if there are any).
If $y(x) \equiv c$ then $y^{\prime}(x) \equiv 0$ so from the equation $f(x) g(y(x)) \equiv 0 \Longrightarrow g(y(x)) \equiv 0$ and the constant solution(s) $y(x) \equiv c$ can be expressed.

2nd step: We rewrite the derivative as $y^{\prime}(x)=\frac{\mathrm{dy}}{\mathrm{dx}}$ and then handle y as a variable.
Assuming that $g(y) \neq 0$ on an interval / and dividing by $g(y)$:
$\frac{\mathrm{dy}}{\mathrm{dx}}=f(x) g(y) \Longleftrightarrow \frac{\mathrm{dy}}{g(y)}=f(x) \mathrm{dx} \Longleftrightarrow \int \frac{1}{g(y)} \mathrm{dy}=\int f(x) \mathrm{dx}$
Integrating both sides, we get an equation of the form $G(y)=F(x)+c(c \in \mathbb{R})$ from where we have to express y as a function of x.

Special cases

a) If $g(y)=1$ then $y^{\prime}(x)=f(x)$ is a directly integrable equation
b) If $f(x)=1$ then $y^{\prime}=g(y)$ is an autonomous equation
(the right-hand side doesn't depend explicitly on x)

Remark

a) If $y^{\prime}(x)=f(x)$ then the solutions are $y(x)=F(x)+C$, where $F^{\prime}(x)=f(x)$ and $C \in \mathbb{R}$.
\Rightarrow the graphs of the solutions are shifted vertically
b) If $y(x)$ is a solution of the autonomous equation $y^{\prime}=g(y)$ then for all $s \in \mathbb{R}$ the function $z(x)=y(x+s)$ is also a solution since $z^{\prime}(x)=y^{\prime}(x+s)=g(y(x+s))=g(z(x))$. \Longrightarrow the graphs of the solutions are shifted horizontally

It means that is enough to determine the solutions at $x=0$ since the other solutions can be obtained by shifting them horizontally.
a)

b)

