01 - Introduction

Basic concepts

Differential equation: an equation that contains an unknown function and its derivatives

Ordinary differential equation (ODE): the function has one variable Partial differential equation (PDE): the function has two or more variables

nth order differential equation: the highest derivative is of order n

nth order implicit equation: $F(x, y, y', y'', ..., y^{(n)}) = 0$ nth order explicit equation: $y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)})$ nth order linear equation: $a_0(x)y(x) + a_1(x)y'(x) + a_2(x)y''(x) + ... + a_n(x)y^{(n)}(x) = f(x)$

Solution of a differential equation

In order to solve a differential equation, we want to find those differentiable one-variable real functions for which the equation holds, that is, substituting them into the equation, we get an identity.

General solution of an nth order differential equation: a family of functions with n parameters

The general solution in explicit form: $y = g(x, c_1, c_2, ..., c_n), c_1, c_2, ..., c_n \in \mathbb{R}$ The general solution in implicit form: $G(x, y, c_1, c_2, ..., c_n) = 0, c_1, c_2, ..., c_n \in \mathbb{R}$

Particular solution: one of the solutions

For example, setting *n* initial conditions, we can determine one particular solution:

 $y(x_0) = y_{0,0}, y'(x_0) = y_{0,1}, \dots, y^{(n-1)}(x_0) = y_{0,n-1}$ where $x_0, y_{0,0}, y_{0,1}, y_{0,n-1} \in \mathbb{R}$

Finding a particular solution is also possible with **boundary conditions**.

First-order ODE

Definition. First order implicit differential equation:	(1) $F(x, y, y') =$	0 or: $F(x, y(x), y'(x)) = 0$
If y' can be expressed then the equation is explicit:	(2) $y' = f(x, y)$	or: $y'(x) = f(x, y(x))$
Initial value problem or Cauchy problem:	(3) $y' = f(x, y)$,	$y(x_0) = y_0$

Definition.

a) We say that the differentiable function $\varphi: (a, b) \longrightarrow \mathbb{R}$, (a < b) is a solution of (2) if

 $\varphi'(x)=f(x,\,\varphi(x)), \ \forall\,x\in(a,\,b)$

The graph of the solution or the integral curve is the graph of φ : {(*x*, *y*) : *y* = φ (*x*), *x* \in (*a*, *b*)}.

The general solution is the set of all solutions. A particular solution is one of the solutions, for example the solution of the Cauchy problem.

b) We say that φ is a solution of the Cauchy problem (3) if there is an interval (a, b) (where a < b) such that

 $\varphi'(x) = f(x, \varphi(x)), \forall x \in (a, b) \text{ where } x_0 \in (a, b) \text{ and } \varphi(x_0) = y_0$

Example. y' = 2x + 2

a) Find the general solution of the differential equation.

b) Find the particular solution for which the initial condition y(1) = 5 holds.

Solution. This is a first-order differential equation in explicit form.

a) The general solution: $y(x) = \int (2x+2) dx = x^2 + 2x + C$, $C \in \mathbb{R}$

For each point of the plane, there is exactly one solution curve that passes through that point.

b) Here we solve an initial value problem where $x_0 = 1$, $y_0 = 5$ ($y(x_0) = y_0$)

Substituting x = 1 and y(1) = 5 in the general solution:

 $5=1+2+C \implies C=2$

The particular solution: $y(x) = x^2 + 2x + 2$

Here the solution of the initial value problem is unique.

Basic questions

There are two basic questions relating to the theory of differential equations:

- 1) Existence: does an initial value problem have a solution?
- 2) Uniqueness: is the solution unique?

Existence and uniqueness of the solution

Solution. Since f(x) = sgn(x) is not continuous then because of Darboux's theorem, the equation does not have a solution.

The theorem states that every function that is the derivative of another function has the intermediate value property: the image of an interval is also an interval.

Darboux's theorem: Let *I* be a closed interval, $f : I \longrightarrow \mathbb{R}$ a real valued differentiable function. Then *f* has the **intermediate value property**: if *a* and *b* are points in *I* with *a* < *b*, then for every *y* between *f*'(*a*) and *f*'(*b*), there exists an *x* in (*a*, *b*) such that *f*'(*x*) = *y*.

Question: When does an initial value problem have a solution?

Cauchy-Peano theorem (or Peano existence theorem)

Theorem. Let *I*, *J* be intervals, $f: I \times J \longrightarrow \mathbb{R}$ and consider the initial value problem

 $y'(x) = f(x, y(x)), y(x_0) = y_0$ (where $(x_0 \in I, y_0 \in J)$.

If **f** is continuous then for some value $\varepsilon > 0$ there exists a solution $\varphi(x)$ to the initial value problem on $[x_0 - \varepsilon, x_0 + \varepsilon]$:

 $\varphi'(x) = f(x, \varphi(x)), \ \varphi(x_0) = y_0 \text{ for all } x \in [x_0 - \varepsilon, x_0 + \varepsilon].$

Remark: The solution need not be unique: the same initial value may give rise to many different solutions φ .

Exercise 2.
Let
$$y(x) = \begin{cases} \left(\frac{x}{2}\right)^2 & \text{if } x \ge 0\\ 0 & \text{if } -6 \le x \le 0\\ -\left(\frac{x}{2}+3\right)^2 & \text{if } x \le -6 \end{cases}$$

Show that *y* is continuously differentiable. Determine the functions *y* ' and $\sqrt{|y|}$.

y is differentiable on the open intervals $(-\infty, -6)$, (-6, 0), $(0, \infty)$.

$$y'(x) = \begin{cases} 2 \cdot \frac{1}{2} \cdot \frac{x}{2} = \frac{x}{2} & \text{if } x > 0\\ 0 & \text{if } -6 < x < 0\\ -2 \cdot \frac{1}{2} \cdot \left(\frac{x}{2} + 3\right) = -\left(\frac{x}{2} + 3\right) & \text{if } x < -6 \end{cases}$$

y is also differentiable at x = 0 and x = -6.

By the definition of the derivative:

$$\lim_{h \to 0+0} \frac{y(0+h) - y(0)}{h} = \lim_{h \to 0+0} \frac{\left(\frac{h}{2}\right)^2 - 0}{h} = \lim_{h \to 0+0} \frac{h}{4} = 0 \text{ and}$$
$$\lim_{h \to 0-0} \frac{y(0+h) - y(0)}{h} = \lim_{h \to 0-0} \frac{0 - 0}{h} = 0 \implies y'(0) = 0 \text{ and similarly } y'(-6) = 0$$
$$\implies y \text{ is differentiable on } \mathbb{R} \text{ and } y'(x) = \begin{cases} \frac{x}{2} & \text{if } x \ge 0\\ 0 & \text{if } -6 \le x \le 0\\ -\left(\frac{x}{2} + 3\right) & \text{if } x \le -6 \end{cases}$$

Let us calculate $\sqrt{|y|}$:

$$\sqrt{|y(x)|} = \begin{cases} \sqrt{\left|\left(\frac{x}{2}\right)^2\right|} = \frac{x}{2} & \text{if } x \ge 0\\ 0 & \text{if } -6 \le x \le 0\\ \sqrt{\left|-\left(\frac{x}{2}+3\right)^2\right|} = \left|\frac{x}{2}+3\right| = -\left(\frac{x}{2}+3\right) & \text{if } x \le -6 \end{cases}$$

 \implies y is a solution of the equation y'(x) = $\sqrt{|y(x)|}$.

Exercise 3.

Solve the following initial value problem: $y'(x) = \sqrt{|y(x)|}$, y(0) = 0.

Solution. The function y from the previous exercise is a solution since y(0) = 0.

Question: Are there any other solutions?

Other solutions for example: 1) $y \equiv 0$ (that is, y(x) = 0, $x \in \mathbb{R}$)

Question: How many solutions are there?

There are infinitely many solutions that can be constructed from the following functions:

Question: When is the solution unique?

Picard-Lindelöf theorem

Theorem. Let *I*, *J* be intervals, $f: I \times J \longrightarrow \mathbb{R}$ and consider the initial value problem

 $y'(x) = f(x, y(x)), y(x_0) = y_0$

Suppose that **f** is continuous in x and Lipschitz continuous in y, that is, there exists a constant $L \ge 0$ such that for all $x \in I$ and $y_1, y_2 \in J$,

 $| f(x, y_1) - f(x, y_2) | \le L | y_1 - y_2 |.$

Then for some value $\varepsilon > 0$, **there exists a unique solution** $\varphi(x)$ to the initial value problem on $[x_0 - \varepsilon, x_0 + \varepsilon]$:

 $\varphi'(x) = f(x, \varphi(x)), \ \varphi(x_0) = y_0 \text{ for all } x \in [x_0 - \varepsilon, x_0 + \varepsilon].$

Remarks

Remark 1. If *f* is differentiable with respect to *y* and the derivative is bounded then *f* is Lipschitz continuous is *y*.

Remark 2. Consider the initial value problem $y' = \sqrt{|y|}$, y(0) = 0.

The function $f(x, y) = \sqrt{|y|}$ is not differentiable at y = 0 and is not Lipschitz continuous at y = 0. The graph of $g(y) = \sqrt{|y|}$ has a vertical tangent line at y = 0. \Rightarrow the solution of the initial value problem is not unique

Remark 3. Consider the initial value problem $y' = \sqrt{|y|}$, y(0) = 1. The function $f(x, y) = \sqrt{|y|}$ is differentiable at $y = 1 \implies$ the solution $y(x) = \left(\frac{x}{2} + 1\right)^2$ is unique if *I* and *J* are suitable neighbourhoods of $x_0 = 0$ and $y_0 = 1$.

Direction field or slope field

Definitions

Introduction. Suppose that $y = \varphi(x)$, $x \in (a, b)$ is a solution of the equation y' = f(x, y). Then

 $\varphi'(x) = f(x, \varphi(x)), \forall x \in (a, b).$

If the graph of φ passes through the point (x_0, y_0) then $\varphi(x_0) = y_0$ and

 $\varphi'(x_0) = f(x_0, \varphi(x_0)) = f(x_0, y_0)$

The meaning of $\varphi'(x_0)$ is the slope of the tangent line of the graph of φ that passes through the point (x_0, y_0) , so tan $\alpha = f(x_0, y_0)$.

Definitions. Consider the differential equation y' = f(x, y).

1) A **lineal element** is a line segment with slope $f(x_0, y_0)$ passing through the point (x_0, y_0) . At each point (x_0, y_0) , the lineal element is tangent to the solution curve passing through this point.

2) The **direction field** is the set of all lineal elements in the plane. We can associate a direction field to every differential equation y' = f(x, y).

3) An **isocline** is a curve with equation f(x, y) = K, $K \in \mathbb{R}$. That is, all the solution intersecting that curve have the same slope K.

Examples

Example 1. $y' = \frac{y}{x}$

Isoclines: y' = K ($K \in \mathbb{R}$) $\implies \frac{y}{x} = K$, y = Kx (straight lines) Isoclines with K = -2, -1, 0, 1, 2 and the direction field:

Example 2.
$$y' = -\frac{x}{y}$$

Isoclines: y' = K ($K \in \mathbb{R}$) $\implies -\frac{x}{y} = K$, $y = -\frac{1}{K}x$ (straight lines) The isoclines with K = -2, -1, 1, 2 and the direction field:

v

Remark: The differential equation can be obtained from the equation of the circle:

$$x^{2} + y^{2} = C$$
 (or: $x^{2} + y^{2}(x) = C$) $\implies y(x) = \pm \sqrt{C - x^{2}}$

Differentiating both sides with respect to *x*: $2x + 2y(x)y'(x) = 0 \implies y'(x) = -\frac{x}{y(x)}$ Verification:

$$y(x) = \sqrt{C - x^2} \implies y'(x) = \left(\sqrt{C - x^2}\right)' = \frac{1}{2} \left(C - x^2\right)^{-1/2} \cdot (-2x) = -\frac{x}{\sqrt{C - x^2}} = -\frac{x}{y(x)}$$
$$y(x) = -\sqrt{C - x^2} \implies y'(x) = \left(-\sqrt{C - x^2}\right)' = -\frac{1}{2} \left(C - x^2\right)^{-1/2} \cdot (-2x) = \frac{x}{\sqrt{C - x^2}} = -\frac{x}{-\sqrt{C - x^2}} = -\frac{x}{y(x)}$$

Example 3. y' = xy

Isoclines: y' = K ($K \in \mathbb{R}$) $\implies xy = K, y = K \cdot \frac{1}{x}$ (hyperbolas) Isoclines with K = -2, -1, 0, 1, 2 and the direction field:

Remark. Recall that f has a local extremum at x_0 if $f'(x_0) = 0$ and $f''(x_0) \neq 0$ (local minimum if $f''(x_0) > 0$ and local maximum if $f''(x_0) < 0$). f has an inflection point at x_0 if $f''(x_0) = 0$ and $f'''(x_0) \neq 0$.

Example 4*. Consider the equation $y' = x - y^2$.

- 1) Find the equation of the isoclines. At what points does the solution have an extremum and what is the type of the extremum?
- 2) Consider the solution passing through the point (1, -2). Does this solution have an inflection point at (1, -2)?

Solution.

1) The equation of the isoclines: $x - y^2 = K$ (lying parabolas) Necessary condition for the local extremum: y' = 0 \implies the solutions can have a local extremum at the points of the isocline with K = 0: $x - y^2 = 0 \implies x = y^2$ (the solution curves intersect this isocline horizontally)

For the sufficient condition we investigate the value of y''. Differentiating both sides of the equation $y'(x) = x - y^2(x)$ with respect to x: y'' = 1 - 2yy'

If $x = y^2$ then $y' = 0 \implies y'' = 1 > 0$

Thus, at the points of the parabola $x = y^2$ we have that y' = 0 and y'' > 0

 \implies the solution curves have a local minimum at the points of the parabola.

2) y(1) = -2 and $y' = x - y^2 \implies y'(1) = 1 - (-2)^2 = -3$ $y'' = 1 - 2yy' \implies y''(1) = 1 - 2 \cdot (-2) \cdot (-3) = -11 \neq 0$ Necessary condition for the existence of an inflection point doesn't hold \implies the solution doesn't have an inflection point at (1, -2).

Some solution curves: y(0) = 0.5 (green), y(1) = 0 (black), y(1) = -2 (red)

Consider the solution that passes through the point (2, 1). What local properties does this solution have at (2, 1)?

Solution.

The solution passes through (2, 1) \implies y(2) = 1 ($x_0 = 2, y_0 = 1$) $y'(x) = x^3 + y^3(x) - 9 \implies y'(2) = 2^3 + 1^3 - 9 = 0$ \implies the solution can have a local extremum at $x_0 = 2$ Differentiating both sides with respect to *x*:

 $y''(x) = 3x^2 + 3y^2(x)y'(x) \implies y''(2) = 3 \cdot 2^2 + 3 \cdot 1^2 \cdot 0 = 12 > 0$ Since y'(2) = 0 and $y''(2) > 0 \implies y(2) = 1$ is a local minimum